实物机械传动示意图
- 格式:ppt
- 大小:988.50 KB
- 文档页数:5
一、传动系统概述车辆的动力装置和驱动轮之间的所有传动部件总称为传动系统。
基本功用是将动力装置的动力按需传给驱动轮和其它机构由于车辆动力装置的性能不同,以及所采用传动系统类型的不同,其传动系统的组成和具体功能也有差别。
传动系统的主要类型:机械传动、液力机械传动、液压传动和电传动。
(一)机械传动机械传动系可由内燃机或电动机驱动。
对于内燃机驱动的车辆要求其传动系具有以下功能:(1)降低转速,增大转矩。
(2)实现变速,通过变速器改变传动比。
(3)内燃机不反转,通过变速箱让车辆反向行驶。
(4)必要时切断动力传递,用主离合器切断或结合动力传递,让内燃机起动、怠速、暂停车及人力换挡。
(5)实现左右驱动车轮间的差速。
内燃机驱动的机械传动系由图1.1所示机件组成。
机械式传动系各总成的基本功用分别是:(1)离合器:按照需要适时地切断或接合发动机与传动系之间的动力传递。
(2)变速器:改变发动机输出转速的高低、转矩的大小及旋转方向,也可以切断发动机向驱动轮的动力传递。
(3)万向传动装置:将变速器输出的动力传递给主减速器,并适应两者之间距离和轴线夹角的变化。
(4)主减速器:降低转速,增大转矩,改变动力的传递方向90°。
(5)差速器:将主减速器传来的动力分配给左右两半轴,并允许左右两半轴以不同速度旋转,以满足左右两驱动轮在行驶过程中差速的需要。
(6)半轴:将差速器传来的动力传给驱动轮,使驱动轮获得旋转的动力。
优点;结构简单、工作可靠、价格低廉、重量轻,效率高以及可利用发动机运行零件的惯性进行作业等缺点:内燃机容易过载熄火;人力换档时换档动力中断时间长;传动系零件及动力装置因冲击载荷大和外载荷急剧变化而降低使用寿命。
电动车辆也可采用机械传动系统。
其结构形式有集中驱动(图1.2)和分别驱动两种形式。
a)主减速器传动系统;b)具有主减速器及轮边减速器传动系统1.主减速器;2.差速器;3.半轴;4.驱动车轮;5.电动机;6.轮边减速器图1.2 集中驱动的电动车辆传动系统简图电动车辆的驱动轮为分别驱动时,不再有驱动桥及差速器等,电动机通过减速装置直接驱动一个驱动车轮,其传动简图如图1.3所示。
1⼤波涡轮蜗杆传动机械动图来袭,很多机械结构在⽤此结构蜗轮传动绿⾊齿轮和粉⾊蜗杆的轴线倾斜90°⾓。
蜗杆的头数为1,齿轮齿数为3。
输⼊端是蜗杆蠕⾍。
传动⽐为3。
这是⼀种⾃锁传动,传动⽐⼩。
齿轮不能作为输⼊。
输出旋转不平稳,因为齿轮齿廓设计不佳。
升降台1蓝⾊电机通过蜗杆传动使两个橙⾊轴反向旋转。
由于切线机构,固定在轴上的橙⾊曲柄可上下移动绿⾊⼯作台。
同时施加在桌⼦所有四条腿上的⼒使桌⼦容易移动。
升降台2蓝⾊电机通过蜗杆传动使三个黄⾊杠杆同步上下旋转。
杠杆通过紫⾊连杆上下移动绿⾊桌⼦。
后者对称布置,帮助桌⼦垂直移动,同时保持⽔平,尽管桌⼦没有任何垂直跑道。
三⽖⾃定⼼卡盘转动粉⾊蜗杆,通过绿⾊滑块和灰⾊块(齿轮和凹槽盘)径向移动三个蓝⾊钳⼝,以夹紧或释放⼯件(未显⽰)。
蜗杆传动的⾃锁特性有助于稳定夹紧⼯件。
再看⼀下⽰意图↓↓车床⽤半螺母轴螺母通过蓝⾊槽⾯凸轮与丝杠啮合,该机构⽤于转动螺纹。
⽴式钻床的⼯作台升降机构转动粉红⾊轴以升⾼或降低⼯作台。
由于粉红⾊的蜗杆⾃锁,重⼒不能使⼯作台向下移动。
⼯作台可以围绕机器杆转动。
调整后⽤绿⾊螺丝固定⼯作台。
蓝⾊齿轮是⼀种螺旋形齿轮,与斜齿的紫罗兰齿条啮合。
车削多头螺纹灰⾊⼯件有两个起始螺纹,⼀个是蓝⾊,另⼀个是粉红⾊。
先车削蓝⾊然后粉红⾊。
从蜗杆⼀端移动到另⼀端:拉动红⾊销钉,将⼯件旋转A度。
并释放销钉。
A= 360/NN:头数,这⾥N=2。
车床上⾯对庞⼤⼯件的装置⼯件固定在车床⼗字滑块上,黄⾊主体通过其带尾固定在车床主轴上。
粉红⾊蜗杆与床⾝有旋转关节。
紫⾊螺母蜗轮与蜗杆啮合,可以绕着⾝体的横轴和蜗杆旋转。
橙⾊⼗字螺钉与螺母蜗轮的内螺纹啮合,固定在蓝⾊滑块上,滑块上装有红⾊⼑具。
绿⾊换挡杆控制的青⾊离合器与蜗杆有滑动键连接。
棕⾊半离合器固定在车床底座上(静⽌)。
黄⾊半离合器固定在黄⾊齿轮上,接受车床进给齿轮箱的运动。
当车床主轴旋转时(未显⽰其传动系),红⾊⼑具沿着阿基⽶德螺线移动,以⾯向⼯件。
第一章轮式工程机械传动系在发动机与行走机构之间传递动力的所有构件组成传动系,所以,传动系的主要作用是将发动机的动力传递到驱动轮。
工作时发动机需要在空载情况下起动、也需要机器停止工作而发动机不熄火,因而传动系需要有接通、断开动力的功能。
负荷有大有小、设备也需要以不同的速度工作,为了充分发挥机器的工作能力,传动系也要有改变行驶速度和牵引力的能力。
机器工作中还需要后退,传动系要可以实现机器的这个功能。
机器工作时难免会超载,为了防止其损坏,传动系应有一定的过载保护能力。
许多机器(如:汽车、拖拉机、推土机等)的传动系还有动力输出功能。
第一节传动系的类型与组成一、机械传动图1-l为SDZl0型轮式装载机传动系简图。
它的传动系主要由主离合器2、变速箱3、驱动图1一1 SDZl0型轮式装载机传动系1一发动机,2一离台器,3一变速器,4一油泵。
5一驱动桥,6一传动轴,7~脱拆装置,8一手制动器桥5组成。
可以看出,在机械式传动系中,除了主离合器传动外,所有其它构件均为刚性传动。
机械式传动系有以下特点:1)优点:结构简单、便于维修、工作可靠、成本低廉、传动效率高,可以利用柴油机运动构件的惯性作业。
2)缺点:(1)发动机的振动冲击直接传到传动系,外负荷的冲击波动直接到达发动机,造成发动机功率下降.所有零部件的使用寿命降低。
(2)由于传动系没有自动适应能力,在传动系的传动比不变的条件下设备只能依靠发动机的调速特性适应外负荷的变化。
而发动机的调速特性的调整能力又十分有限,实际不可能适应工程机械的外负荷大范围变化。
为了解决这个问题,通常在传动系中设置变速箱,通过增加档位数拓宽机器的工作范围,使机械式传动系中变速箱的档位数目较多,换档过程复杂。
(3)为保证在负荷变化时机器有较高的生产率,超负荷时发动机不熄火,要求驾驶员有丰富的经验和熟练的技巧,同时频繁的换档动作会使驾驶员的劳动强度增加。
(4)换档过程中分离主离合器造成的动力中断,往往使工作中的工程机械停止前进,造成机器起步困难。
汽车传动系统——传动系的种类图解机械式传动系一般组成及布置示意图1-离合器2-变速器3-万向节4-驱动桥5-差速器6-半轴7-主减速器8-传动轴图为传统的发动机纵向安装在汽车前部,后桥驱动的4×2汽车布置示意图。
发动机发出的动力经离合器、变速器、万向传动装置传到驱动桥。
在驱动桥处,动力经过主减速器、差速器和半轴传给驱动车轮。
发动机前置、纵置,前轮驱动的布置示意图1-发动机2-离合器3-变速器4-变速器输入轴5-变速器输出轴6-差速器7-车速表驱动齿轮8-主减速器从动齿轮发动机前置、纵置,前桥驱动,使得变速器和主减速器连在一起,省掉了它们之间的万向传动装置。
典型液力机械传动示意图1-液力变矩器2-自动器变速器3-万向传动4-驱动桥5-主减速器6-传动轴液力传动(此处单指动液传动)是利用液体介质在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。
液力传动装置串联一个有级式机械变速器,这样的传动称为液力机械传动。
静液式传动系示意图1-离合器2-油泵3-控制阀4-液压马达5-驱动桥6-油管液压传动也叫静液传动,是通过液体传动介质静压力能的变化来传递能量。
主要由发动机驱动的油泵、液压马达和控制装置等组成。
混合式电动汽车采用的电传动1-离合器2-发电机3-控制器4-电动机5-驱动桥6-导线电传动是由发动机驱动发电机发电,再由电动机驱动驱动桥或由电动机直接驱动带有减速器的驱动轮。
汽车传动系统——离合器总成结构图解机械式离合器的动作原理1-飞轮2-从动盘3-压盘4-膜片弹簧离合器的主动部分和从动部分借接触面间的摩擦作用,使两者之间可以暂时分离,又可逐渐接合,在传动过程中又允许两部分相互转动。
液力离合器结构与动作原理1-叶轮2-输出轮3-油4-油的流向液力偶合器靠工作液(油液)传递转矩,外壳与泵轮连为一体,是主动件;涡轮与泵轮相对,是从动件。
当泵轮转速较低时,涡轮不能被带动,主动件与从动件之间处于分离状态;随着泵轮转速的提高,涡轮被带动,主动件与从动件之间处于接合状态.磁粉式电磁离合器的动作原理1-粉末2-输入侧3-输出侧4-激磁线圈5-线型粉末6-磁通电磁离合器靠线圈的通断电来控制离合器的接合与分离。
机械设计第10章机械传动系统及其传动比机械传动系统及其传动比案例导入:在实际的机械工程中,为了满足各种不同的工作需要,仅仅使用一对齿轮是不够的。
本章通过带式输送机、牛头刨床、汽车变速箱和差速器、自动进刀读数装置、滚齿机行星轮系等例子,介绍轮系的概念、分类、传动比的分析计算方法。
第一节定轴轮系的传动比计算在实际应用的机械中,为了满足各种需要,例如需要较大的传动比或作远距离传动等,常采用一系列互相啮合的齿轮来组成传动装置。
这种由一系列齿轮组成的传动装置称为齿轮系统,简称轮系。
一、轮系的分类轮系有两种基本类型:(1)定轴轮系。
如图10-1所示,在轮系运转时各齿轮几何轴线都是固定不变的,这种轮系称为定轴轮系。
(2)行星轮系。
如图10-2所示,在轮系运转时至少有一个齿轮的几何轴线绕另一几何轴线转动,这种轮系称为行星轮系。
图10-1 定轴轮系二、轮系的传动比1.轮系的传动比轮系中,输入轴(轮)与输出轴(轮)的转速或角速度之比,称为轮系的传动比,通常用i表示。
因为角速度或转速是矢量,所以,计算轮系传动比时,不仅要计算它的大小,而且还要确定输出轴(轮)的转动方向。
2.定轴轮系传动比的计算根据轮系传动比的定义,一对圆柱齿轮的传动比为nzi12 1 2 n2z1式中:“±”为输出轮的转动方向符号,图10-2行星轮系第十章机械传动系统及其传动比当输入轮和输出轮的转动方向相同时取“+”号、相反时取“-”号。
如图10-1a) 所示的一对外啮合直齿圆柱齿轮传动,两齿轮旋转方向相反,其传动比规定为负值,表示为:i=n1=n2z2 z1如图10-1b)所示为一对内啮合直齿圆柱齿轮传动,两齿轮的旋转方向相同,其传动比规定为正值,表示为:n1z2 i= =n2z1如图10-3所示的定轴轮系,齿轮1为输入轮,齿轮4为输出轮。
应该注意到齿轮2和2'是固定在同一根轴上的,即有n2=n2′。
此轮系的传图10-3定轴轮系传动比的计算动比i14可写为:nnn ni14 1 123 i12i2 3i***** z2z3z4 312上式表明,定轴轮系的总传动比等于各对啮合齿轮传动比的连乘积,其大小等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比,即m从1轮到k轮之间所有从动轮齿数n的连乘积i1k 1 1 (10-1) nk从1轮到k轮之间所有从主轮齿数的连乘积式中:m为平行轴外啮合圆柱齿轮的对数,用于确定全部由圆柱齿轮组成的定轴轮系中输出轮的转向。
机械臂转动及摆臂部分原理与设计为使控制部分简化,机械臂的转动采用蜗轮蜗杆传动,它有以下特点:1、可使整个机械臂三百六十度旋转;2、通过与小齿轮触碰的计数器计数实现转动角度的精确控制;3、转动平稳,齿轮较大,可承受整个机械臂的重量。
转动部分是机械臂三个自由度中较重要的部分,其设计过程也是整个设计过程较重要的一环。
蜗轮蜗杆传动分析电机通过蜗轮输出,蜗轮选择普通圆柱蜗杆考虑到齿轮齿条转速较低,承载不大,采用45号碳素钢调制处理,硬度为200300H B S :蜗杆传动的受力分析:蜗杆传动的受力分析和斜齿圆柱齿轮传动相似。
为简化起见,通常不考虑摩擦力的影响。
作用在蜗杆上的轴向力和蜗轮上的圆周力、蜗杆上的圆周力和蜗轮上的轴向力、蜗杆上的径向力和蜗轮上的径向力,分别大小相等而方向相反。
各力的大小分别为:11212t a T F F d ==- 21222a t T F F d =-=122tan r r t F F F α=-=12222cos cos cos cos cos cos a t n n n n F F T F d αγαγαγ===式中,1T 、2T ——蜗杆、蜗轮上的工作转矩(21T T i η=,i 为传动比,η为传动效率); 初步设计,由于蜗杆头数11z =,因而取0.7η=,传动比40i =。
21128T T i T η==1d 、2d ——蜗杆、蜗轮的分度圆直径; n a ——蜗杆法面压力角;γ——蜗杆分度圆导程角。
蜗轮接触齿面解除疲劳强度计算蜗杆的传动可以近似地看作齿条与斜齿圆柱齿轮的啮合传动。
以赫兹公式为原始公式,按照节点啮合的条件进行计算,作用在齿面上的最大接触应力按照式子计算,即caH EP Z σρ∑=式中,ca P ——齿面接触线单位长度上的计算载荷;ρ∑——综合曲率半径;E Z ——弹性系数。
1) 齿面接触线单位长度上的计算载荷ca Pn ca K F P L=式中,K ——载荷系数;L ——接触线长度。
目 录前言第一部分 常用基本机构介绍1.平面连杆机构1)铰链四杆机构2)单移动副四杆机构3)双移动副四杆机构2.凸轮机构1)凸轮机构的组成及特点2)凸轮机构的分类3.齿轮机构1)齿轮机构的组成2)齿轮机构的类型4.轮系1)定轴轮系2)周转轮系3)混合轮系第二部分 运动仿真应用实例例1 雨刷器例2 扇形齿轮做摇杆的停歇送料机构例3 搅拌撒草机构例4 插秧机例5 划桨机构例6 曲柄摇杆与曲柄滑块串接机构例7 齿轮副连接曲柄摇杆与摆动导杆机构例8 利用连杆上一点近似直线轨迹的皮革抛光机构例9 割草机驱动机构例10 双面刀刃割草机驱动机构例11 肘杆夹紧机构1例12 肘杆夹紧机构2例13 双肘杆联动夹紧机构例14 不自锁推拉夹紧机构例15 多轴钻例16 平行四杆机构用于带轮涨紧机构例17 电动机皮带轮涨紧机构例18 平行四杆机构做停歇送料机构例19 六组平行四杆机构例20 梨爪伸缩机构例21 孔销联轴器例22 十字滑块联轴器例23 可逆转坐席机构例24 砂箱翻转机构例25 开关炉门机构例26 前轮转向机构例27 卸料小车挡料板自动开启机构例28 转动导杆与摆动导杆串接机构例29 转动导杆与停歇运转的摆动导杆机构例30 转动导杆切纸机构例31 曲柄摇杆与正弦串接机构例32 曲柄摆动导杆与正弦串接机构例33 曲柄摇块滑块三级机构例34 曲柄摇杆滑块三级机构例35 双曲柄与曲柄滑块串接机构例36 斜直槽双移动副机构例37 摆动导杆与双滑块机构例38 曲柄双滑块机构用于金属丝(片)成型机构例39 偏置曲柄滑块机构(弓锯床运动机构)例40 曲柄滑块与转动导杆串接机构例41 增大滑块行程机构例42 曲柄摇块机构实现近似直线轨迹例43 输出摆杆有停歇的铰链连杆机构例44 双摇杆搬运机构例45 双曲柄与转动导杆串接机构例46 转动导杆机构应用实例例47 机架长度可调的摆动导杆机构例48 摆杆极限位置可调节的铰链六杆机构例49 深拉压力机例50 用转动导杆调节切纸速度的机构例51 输入/输出均为转动的导杆机构例52 输入/输出均为转动的导杆机构应用实例例53 直线运动机构例54 双连杆送料机构例55 可实现单侧停歇的摆动导杆机构例56 从动件在极限位置有较长时间停歇的机构例57 六杆压力机机构例58 双摇杆夹紧机构例59 组合夹紧机构例60 凸轮连杆组合输送薄板机构例61 热合联动机构例62 双凸轮与铰链四杆组合的步进输送机构例63 两个相同的曲柄摇杆组合的步进输送机构例64 输出构件做停歇摆动机构例65 等宽凸轮移动间歇机构例66 蜗轮蜗杆用于挑膜机构例67 齿轮齿条用于拉膜机构例68 风扇摇头机构例69 正反转销驱动摆杆机构例70 翻转机构例71 双偏心轮驱动导杆机构例72 凸轮与转动导杆组合机构例73 切膜(纸)机构例74 气钻行星齿轮机构例75 对开螺母机构例76 齿轮升降机构例77 凸轮调节锥齿轮周转轮系输出轴转速机构例78 凸轮调节输出轴转速机构例79 手动夹爪机构例80 量筒开盖落料机构例81 保持工件姿势不变的运转机构例82 手动搅拌器例83 开门机构例84 摆动式油泵例85 手动双联行星机构例86 双凸轮控制二维移动机构例87 增大凸轮升程角转动导杆机构例88 桨轮机构例89 转动导杆与正弦机构组合的机构例90 电磁夹紧机构例91 夯土机例92 抛光机构例93 四导杆机构例94 增大摆角的摆动导杆机构例95 凸轮齿轮机构例96 螺杆充填机例97 齿轮连杆组合机构例98 两偏心齿轮往复运动机构例99 一组锥齿轮传动机构例100 双发动机速度指示机构例101 后面夹紧机构例102 螺母驱动转动压板夹紧机构例103 翻转压板与楔夹紧机构例104 针孔传动机构例105 齿轮正弦机构例106 送膜机构例107 封膜机构例108 固定槽凸轮与摆动从动杆机构例109 移动夹紧机构例110 凸轮夹紧机构例111 可调行程的凸轮绕线机构例112 开袋热合机构例113 开锁机构例114 切膜机构例115 摆动齿轮行星减速机构例116 单万向联轴器例117 双万向联轴器例118 有缺口的齿轮传动机构例119 直线导轨组合机构例120 装载机例121 从动件在极限位置有较长停歇的机构例122 移动导杆有单侧停歇的机构例123 输出摆杆有双侧停歇的机构例124 连杆上一点直线轨迹平行于机架的四杆机构例125 车制椭圆机构例126 调整刀具车制八边形机构例127 加工卵形零件的车床夹具例128 机床尾座运动机构例129 双摆杆挠性件差动机构(抛磨机)例130 平衡吊直线引导机构例131 热合夹紧机构例132 实现精确直线行星轮系连杆机构例133 实现精确直线移动的双滑块机构例134 无导轨虎钳例135 主从动轴线重合的齿轮连杆机构例136 深拉压力机机构例137 齿轮-连杆组合机构例138 带轮驱动的导杆机构例139 带固定凸轮的凸轮连杆机构例140 移动导杆近似等速移动机构例141 锁扣眼机构例142 摆动式飞剪机构例143 封罐机例144 可变节距扭绞金属线机构例145 连轧机差动减速器例146 导杆行星齿轮组合机构例147 调位-对中机构例148 拉膜辊调节机构例149 齿轮-螺旋差动机构例150 用行星齿轮实现微量进给机构例151 宽三角带式机械无级调速器例152 直线引导机构例153 平行钳口的夹钳例154 简易平口钳例155 滑槽杠杆式抓取机构结构1例156 滑槽杠杆式抓取机构结构2例157 连杆杠杆式抓取机构结构1例158 连杆杠杆式抓取机构结构2例159 连杆杠杆式抓取机构结构3例160 平板式抓取机构例161 平面平行移动连杆式抓取机构例162 手臂伸屈机构例163 圆锥齿轮行星机构机械手1例164 圆锥齿轮行星机构机械手2例165 开袋机构机械设计实用机构运动仿真图解朱金生 凌云 编著電子工業出版社Publishing House of Electronics Industry 北京·BEIJING本书是作者多年实践经验的结晶,通过对精选的典型实用运动机构的三维仿真、图解、分析,让读者轻松、快速掌握其运动原理、特点,开拓设计思路,在工作中举一反三。
汽车传动系统——各类传动的结构图解
一。
机械式传动系一般组成及布置示意图
1-离合器 2-变速器 3—万向节 4-驱动桥 5-差速器 6-半轴 7—主减速器 8-传动轴
图为传统的发动机纵向安装在汽车前部,后桥驱动的4×2汽车布置示意图。
发动机发出的动力经离合器、变速器、万向传动装置传到驱动桥。
在驱动桥处,动力经过主减速器、差速器和半轴传给驱动车轮。
二。
发动机前置、纵置,前轮驱动的布置示意图
1—发动机 2—离合器 3—变速器 4—变速器输入轴 5—变速器输出轴 6—差速器 7—车速表驱动齿轮 8-主减速器从动齿轮
发动机前置、纵置,前桥驱动,使得变速器和主减速器连在一起,省掉了它们之间的万向传动装置。
三.典型液力机械传动示意图
1—液力变矩器 2—自动器变速器 3-万向传动 4-驱动桥 5-主减速器6-传动轴
液力传动(此处单指动液传动)是利用液体介质在主动元件和从动元件之间循环流动过程中动能的变化来传递动力.液力传动装置串联一个有级式机械变速器,这样的传动称为液力机械传动.
四。
静液式传动系示意图
1—离合器 2—油泵 3—控制阀 4—液压马达 5—驱动桥 6—油管
液压传动也叫静液传动,是通过液体传动介质静压力能的变化来传递能量。
主要由发动机驱动的油泵、液压马达和控制装置等组成。
五。
混合式电动汽车采用的电传动
1—离合器 2-发电机 3—控制器 4-电动机 5-驱动桥 6-导线
电传动是由发动机驱动发电机发电,再由电动机驱动驱动桥或由电动机直接驱动带有减速器的驱动轮。