高中数学空间点线面之间的位置关系的知识点总结
- 格式:doc
- 大小:624.50 KB
- 文档页数:6
高中空间点线面之间位置关系知识点总结第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22Srl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积 1)3V S S S S h =++⨯下下上上( ④球体的体积343V R π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
高中空间点线面之间位置关系知识点总结第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成45°,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母a、B、Y等表示,如平面a、平面B等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC平面ABCD等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为公理1作用:判断直线是否在平面内(2)公理2 :过不在一条直线上的三点,有且只有一个平面。
符号表示为:AB、C三点不共线=> 有且只有一个平面a, 使A€a、B€a、C€a。
公理2作用:确定一个平面的依据。
(3)公理3 :如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P€aQB => aPp =L,且P€ L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:f相交直线:同一平面内,有且只有一个公共点; 共面直线 Yl平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用公理4作用:判断空间两条直线平行的依据。
3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4注意点:①a'与b'所成的角的大小只由a、b的相互位置来确定,与0的选择无关,为简便,点0 —般取在两直线中的一条上;②两条异面直线所成的角(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a丄b;a//b2公理4:平行=>a //c④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角2.1.3 —2.1.4空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内一一有无数个公共点(2 )直线与平面相交一一有且只有一个公共点(3)直线在平面平行一一没有公共点指岀:直线与平面相交或平行的情况统称为直线在平面外,可用 a a来表示―a a a Qa =A a Ila2.2.直线、平面平行的判定及其性质2.2.1直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
高考空间几何知识点总结在高考中,几何是数学科目中一个重要的考点。
而在几何知识点中,空间几何是其中一项重要的内容。
本文将总结一些高考空间几何的知识点,帮助同学们复习备考。
一、点、线、面的位置关系在空间几何中,点、线、面是最基本的几何概念。
点代表着空间中的一个点;线由无数个点构成,可以延伸至无限远;面由无数个线构成,拥有无限的宽度和长度。
在几何学中,点、线、面之间的关系既可以是相交,也可以是平行。
二、平行与垂直平行和垂直是空间几何中重要的关系。
当两个直线或两个面中的线在空间中没有交点时,它们是平行的。
而当两个面、两个线、或者一条线和一条面,相互交于一个直角时,它们是垂直的。
在高考中,常常会考察各种几何体中的平行和垂直关系,例如平行四边形、正方体等。
三、空间几何体的计算在空间几何中,常常需要计算几何体的体积、表面积等。
各种几何体的计算公式是高考几何中的重点。
例如,立方体的体积可以通过边长的立方得到,而长方体的体积可以通过长乘以宽乘以高得到。
此外,圆柱、圆锥、球体等的计算公式也是需要牢记的。
四、平面与几何体的交点平面与几何体的交点常常被用来构建各种立体图形。
在高考中,同学们需要理解如何根据给定的平面方程与几何体求出交点,并利用这些交点进行计算。
例如,通过一个平面来截取一个立方体,可以得到一个截面图形。
这些几何体的交点也可以用于计算几何体的体积、表面积等。
五、空间几何与解析几何的联系空间几何与解析几何是密切相关的。
解析几何是利用代数方法研究几何问题的一种方法。
在解析几何中,通过点的坐标来表示几何体,在空间几何中,同样可以利用坐标系来确定几何体的位置。
通过解析几何的方法,可以简化空间几何的计算,提高解题的效率。
六、空间向量空间向量是空间几何中一个重要的概念。
向量由大小和方向组成,可以表示两个点之间的位移。
在空间几何中,我们常常使用向量来表示线段或者方向。
例如,利用向量可以确定几何体的位置和方向,计算几何体之间的距离等。
必修2 第二章《点、直线、平面之间的位置关系》知识点
编写人:元丽丽
第一讲 空间点、直线、平面之间的位置关系 1.四个公理
2.异面直线的概念:把 的两条直线叫做异面直线.
3.等角定理
空间中如果有两个角的两边分别对应平行,那么这两个角 或 . 4.两条异面直线所成的角(夹角)
(1)定义:已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或 角)叫异面直线,a b 所成的夹角. (2)异面直线所成角的范围:
5.空间两条直线的位置关系:
7.空间中平面与平面之间的位置关系
第二讲 直线、平面平行的判定及其性质
1.四个定理
第三讲直线、平面平垂直的判定及其性质
1.直线与平面垂直:
如果直线l与平面α内的一条直线都垂直,我们就说直线l与平面α垂直,记作 .
直线l叫做平面α的,平面α叫做直线l的 .直线与平面的公共点P叫做 .
2. 直线与平面所成的角:
过斜足上斜足以外的一点向平面平面引,过和的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的,叫做这条直线和这个平面所成的角.
角的取值范围: .
3.二面角。
高中数学必修2《点、直线、平面之间的位置关系》知识点第二章点、直线、平面之间的位置关系一、平面及其表示平面是指在三维空间中的一个无限大的平面,可以用点和直线来表示。
平面的基本性质可以通过三条公理来描述:①公理1:如果一个点A在直线l上,另一个点B也在直线l上,且A在平面α上,那么B也在平面α上。
②公理2:如果三个不共线的点A、B、C确定一个平面α,那么这三个点必在平面α上。
③公理3:如果一个点P在平面α上,又在平面β上,那么P一定在它们的交线l上。
二、点与面、直线位置关系1、点与平面有两种位置关系:①点A在平面α上;②点B不在平面α上。
2、点与直线有两种位置关系:①点A在直线l上;②点B不在直线l上。
三、空间中直线与直线之间的位置关系1、异面直线是指不在同一平面内的两条直线。
2、直线与直线的位置关系包括相交、共面和平行三种情况。
3、公理4和定理:如果两个角的两边分别对应平行,那么这两个角相等或互补。
四、空间中直线与平面之间的位置关系直线与平面的位置关系可以分为三种情况:直线在平面内、直线与平面相交、直线与平面平行。
五、空间中平面与平面之间的位置关系平面与平面的位置关系可以分为平行和相交两种情况。
其中,平行的两个平面没有公共点,而相交的两个平面有一条公共直线。
直线、平面平行的判定及其性质直线与平面平行的判定方法有三种:利用定义、利用判定定理、利用面面平行的性质。
其中,面面平行的性质可以推导出直线与平面平行的性质。
证明面面平行的常用方法有以下几种:①利用面面平行的定义,一般与反证法结合使用;②利用判定定理;③证明两个平面垂直于同一个平面;④证明两个平面同时平行于第三个平面。
直线与平面垂直的判定方法如下:若直线l与平面α所成角α∈(0,90),则PO⊥α,AO为___在平面α上的投影,故∠α为直线l与平面α所成角。
二面角α-l-β的平面角为∠___,其中BO⊥l,___。
线面垂直的判定方法如下:___⊥α,___α,且a∩b=A,则___⊥α。
2.1空间点、直线、平面之间的位置关系一、平面1 平面含义:2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
二、三个公理:三、空间直线、平面之间的位置关系D C BA α四、等角定理:五、异面直线所成的角1.定义:2.范围:3.图形表示4.垂直: 六、典型例题1.下面推理过程,错误的是( ) (A ) αα∉⇒∈A l A l ,//(B ) ααα⊂⇒∈∈∈l B A l A ,,(C ) AB B B A A =⋂⇒∈∈∈∈βαβαβα,,, (D ) βαβα=⇒∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( )(A )1个或3个 (B )1个或4个 (C )3个或4个 (D )1个、3个或4个 3.以下命题正确的有( )(1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面; (2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β; (4)分别和两条异面直线都相交的两条直线必定异面。
(A ) 1个 (B ) 2个 (C ) 3个 (D )4个4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12 5.以下命题中为真命题的个数是( )(1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α⊂b ,则a ∥α; (4)若直线a ∥b ,α⊂b ,则a 平行于平面α内的无数条直线。
空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45o,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:αBA βαABαβαβBAAβαBA a ∉ 点A 不在直线a 上A α∈ 点A 在平面α内A α∉点A 不在平面α内b a Aa b A =I直线a 、b 交于A 点a α⊂直线a 在平面α内a α=∅I 直线a 与平面α无公共点a A α=I 直线a 与平面α交于点Al αβ=I 平面α、β相交于直线l二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面;BA αA αAαA aaαaαa Aα推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭I 如图示: 或者:∵,A A αβ∈∈,∴,l A l αβ=∈I 公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。
高中空间点线面之间位置关系知识点总结第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的 2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3(1)公理符号表示为公理1(2)公理使A ∈α、公理2(3)公理公理32.1.212公理4强调:公理公理4作用:判断空间两条直线平行的依据。
3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4注意点:①a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ②两条异面直线所成的角θ∈(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3—2.1.4空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点D CBAα 共面直线2(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α2.2.直线、平面平行的判定及其性质2.2.1直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:=>a∥α2.2.212(1(2(32.2.3—1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
高中空间点线面之间位置关系知识点总结第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22Srl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积1)3V S S h =+⨯下上( ④球体的体积343V R π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
点线面之间位置关系第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。
高中空间点线面之间位置关系知识点总结第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积 1)3V S S S S h =++⨯下下上上( ④球体的体积343V R π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
高中数学空间点、直线、平面之间的位置关系解析!一、空间点、直线、平面之间的位置关系1、平面的基本性质的应用① 公理1:公理1② 公理2:公理2③ 公理3:2、平行公理主要用来证明空间中的线线平行 .3、公理 2 三推论:① 一条直线和直线外一点唯一确定一个平面;② 两条平行直线唯一确定一个平面;③ 两条相交直线唯一确定一个平面 .4、点共线、线共点、点线共面问题① 证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理 3 证明这些点都在这两个平面的交线上 .② 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上 .③ 证明点线共面问题的常用方法:方法一:先确定一个平面,再证明有关点、线在此平面内;方法二:先证明有关的点、线确定平面α ,再证明其余元素确定平面β,最后证明平面α,β 重合 .【例题1】如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD = ∠FAB = 90°,BC ∥且= ½ AD,BE ∥且= ½ FA,G , H 分别为 FA , FD 的中点 .(1) 证明:四边形 BCHG 是平行四边形;(2) C , D , F , E 四点是否共面?请说明理由 .例题1图【解析】(1) 证明:∵ G , H 分别为 FA , FD 的中点,∴ GH 是△FAD 的中位线,∴ GH ∥且= ½ AD ,又∵ BC ∥且= ½ AD,∴ GH ∥且 = BC,∴ 四边形 BCHG 是平行四边形 .(2) 证明:方法一:证明点 D 在 EF 和 CH 确定的平面内 .∵ BE ∥且= ½ FA,点 G 为 FA 的中点,∴ BE ∥且= FG,则四边形 BEFG 为平行四边形,∴ EF∥BG .由 (1) 可知BG∥CH,∴ EF∥CH,即 EF 与 CH 共面,又∵ D∈FH,∴ C , D , F , E 四点共面 .方法二:分别延长 FE 和 DC,交 AB 于点 M 和 M'',在证点 M 和 M’重合,从而 FE 和 DC 相交 .如上图所示,分别延长 FE 和 DC,交 AB 于点 M 和 M'',∵ BE ∥且= ½ FA,∴ 点 B 为 MA 的中点,∵ BC ∥且= ½ AD,∴ 点 B 为 M''A 的中点,∴ M 与 M'' 重合,即 FE 与 DC 相交于点 M (M'') ,∴ C , D , F , E 四点共面 .二、异面直线的判定(方法)1、定义法(不易操作);2、反证法先假设两条直线不是异面直线,即两直线平行或相交;再由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面 .假设法在异面直线的判定中会经常用到 .3、常用结论过平面外一点和平面内一点的直线,与平面内不过该点(A) 的直线是异面直线 .【例题2】如图所示,正方体 ABCD-A1B1C1D1 中,点 M , N 分别是 A1B1 , B1C1 的中点 .(1) AM 和 CN 是否是异面直线?请说明理由;(2) D1B 和 CC1 是否是异面直线?请说明理由 .例题2图【解析】(注:先给结论,再给理由,注意答题规范!)(1) AM 和 CN 不是异面直线 .理由:如图上图所示,分别连接 MN , A1C1 和 AC,∵ 点 M , N 分别是 A1B1 , B1C1 的中点,∴ MN∥A1C1 ,又∵ AA1∥且=CC1 ,∴ 四边形 AA1C1C 是平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ 点 A , M , N , C 在同一平面内,故 AM 和 CN 不是异面直线 .(2) D1B 和 CC1 是异面直线 .证明:∵ ABCD-A1B1C1D1 是正方体,∴ B , C , C1 , D1 四点不共面 .假设 D1B 和 CC1 不是异面直线,则存在平面α,使 D1Bㄷ平面α,CC1ㄷ平面α,∴ D1 , B , C , C1 ∈平面α,∴ 与ABCD-A1B1C1D1 是正方体矛盾,∴ 假设不成立,∴ D1B 和 CC1 是异面直线 .三、异面直线所成的角1、求异面直线所成角的方法关键是将其中一条直线平移到某个位置使其与令一条直线相交,或将两条直线同时平移到某个位置,使其相交 .2、求异面直线所成角的步骤① 通过作出平行线,得到相交直线;② 证明相交直线所成的角为异面直线所成的角;③ 通过解三角形求出该角的大小 .【例题3】如图所示,在空间四边形 ABCD 中,已知 AB = CD 且 AB 与 CD 所成的角为30°,点 E , F 分别是 BC 和 AD 的中点,求 EF 与 AB 所成角的大小 .例题3图【解析】要求 EF 与 AB 所成的角,可以经过某一点作两条直线的平行线,因为 E,F 都是中点,所以可以过点 E 或点 F 作 AB 的平行线找到异面直线所成的角 .取 AC 的中点,平移 AB 和 CD,使已知角和所求的角在同一个三角形中求解 .【解答过程】取 AC 的中点 G,分别连接 EG 和 FG ,则有EG∥AB,FG∥CD,∵ AB = CD ,∴ EG = FG ,∴ ∠GEF (或它的补角)为 EF 与 AB 所成的角,∠EGF (或它的补角)为 AB 与 CD 所成的角,又∵ AB 与 CD 所成的角为30°,∴ ∠EGF = 150° 或30°,由 EG = FG , 可知△GEF为等腰三角形,当∠EGF = 30° 时,∠GEF = 75°,当∠EGF = 150° 时,∠GEF = 15°,∴ EF 与 AB 所成的角为15° 或75° .。
高一数学下册《点线面之间的位置关系》常考知识点整理1.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,a∈α,ab⊥β,则abα.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若a∈a,a⊥b,a∈α,b⊥α,则aα.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若pα,p∈β,β∥α,p∈a,a∥α,则aβ.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,a∈α,a∈b,b∥a,则bα.2.存在*和唯一*定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.*影及有关*质(1)点在平面上的*影自一点向平面引垂线,垂足叫做这点在这个平面上的*影,点的*影还是点.(2)直线在平面上的*影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的*影.和*影面垂直的直线的*影是一个点;不与*影面垂直的直线的*影是一条直线.(3)图形在平面上的*影一个平面图形上所有的点在一个平面上的*影的*叫做这个平面图形在该平面上的*影.当图形所在平面与*影面垂直时,*影是一条线段;当图形所在平面不与*影面垂直时,*影仍是一个图形.(4)*影的有关*质从平面外一点向这个平面所引的垂线段和斜线段中:(i)*影相等的两条斜线段相等,*影较长的斜线段也较长;(ii)相等的斜线段的*影相等,较长的斜线段的*影也较长;(iii)垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点o,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.5.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的*影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法①作出斜线在平面上的*影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的*线,这两条*线所组成的角叫做二面角的平面角.如图,∠pcd是二面角α-ab-β的平面角.平面角∠pcd的大小与顶点c在棱ab上的位置无关.②二面角的平面角具有下列*质:(i)二面角的棱垂直于它的平面角所在的平面,即ab⊥平面pcd.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面pcd⊥α,平面pcd⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的*质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积*影定理s′=s·csα其中s为二面角一个面内平面图形的面积,s′是这个平面图形在另一个面上的*影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的*质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积v和所取三点构成三角形的面积s;③由v=s·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.8.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求*(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.9.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求*(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.10.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、*质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤*影法⑥公式法。
高中空间点线面之间位置关系知识点总结
2.1空间点、直线、平面之间的位置关系 2.1.1
1 平面含义:平面是无限延展的
2 平面的画法及表示
(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)
(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为
A ∈L
B ∈L => L α A ∈α B ∈α
公理1作用:判断直线是否在平面内
(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
D C
B
A
α L
A
·
α C ·
B
· A
· α
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线
a ∥
b
c ∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
4 注意点:
① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为
简便,点O 一般取在两直线中的一条上;
② 两条异面直线所成的角θ∈(0, );
③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;
P
· α
L
β
共面直线
=>a ∥c
2
④两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 —2.1.4 空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
(1)直线在平面内——有无数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a∩α=A a∥α
2.2.直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
a α
b β => a∥α
a∥b
2.2.2 平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
a β
b β
a∩b = P β∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)定义法;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2.2.3 —2.2.4直线与平面、平面与平面平行的性质
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a∥α
a β a∥b
α∩β= b
作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ= a a∥b
β∩γ= b
作用:可以由平面与平面平行得出直线与直线平行
2.3直线、平面垂直的判定及其性质
2.3.1直线与平面垂直的判定
1、定义
如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。
如图,直线与平面垂直时,它们唯一公共点P叫做垂足。
L
p
α
2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
注意点: a)定理中的“两条相交直线”这一条件不可忽视;
b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化
的数学思想。
2.3.2平面与平面垂直的判定
1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形
A
梭 l β
B
α
2、二面角的记法:二面角α-l-β或α-AB-β
3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
2.3.3 —2.3.4直线与平面、平面与平面垂直的性质
1、定理:垂直于同一个平面的两条直线平行。
2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
本章知识结构框图。