地下水向完整井的非稳定运动
- 格式:ppt
- 大小:1.02 MB
- 文档页数:41
第五章 地下水向完整井的非稳定运动一、填空题1. 泰斯公式的适用条件中含水层为_均指各向同性且等厚水平 的承压含水层;天然水力坡度近为零;抽水井为 完整井 、井径无限小,井流量为定流量;水流为非稳定达西流。
2. 在非稳定井流中,通过任一断面的流量_不相等 ,而沿着地下水流向流量是_逐渐增大 。
3. 在泰斯井流中,渗流速度随时间的增加而_增大 ,当01.04*2=Ttr μ时渗流速度就非常接近_稳定渗透速度_。
4. 定降深井流公式反映了抽水期间井中水位降深不变,而井外水位_随时间 逐渐减小 ,井流量随时间延续而_ 减小 的井流规律。
5. 潜水非稳定井流与承压井流比较,主要不同点有三点:⑴导水系数是_随距离和时间变化 ;⑵当降深较大时垂向分速度不可忽略;⑶从含水层中抽出的水量主要来自_含水层的重力疏干 。
6. 博尔顿第一模型主要是考虑了_井附近流速的垂直分量 ;第二模型主要考虑了_迟后排水 。
二、判断题1. 根据泰斯井流条件可知,抽取的地下水完全是消耗含水层的弹性贮量。
(√)2. 在非稳定井流中,沿流向断面流量逐渐增大,因为沿途不断得到弹性释放量的补给,或者是由于沿流向水力坡度不断增大的缘故。
(×)3. 泰斯井流的后期任一点的渗透速度时时都相等。
(×)4.当泰斯公式简化为雅可布公式时,则表明井流内各点的渗透速度已由不稳定而转变为稳定。
(×)5. 在进行非稳定流抽水时,无论井流量如何变化,都可将其概化成阶梯形流量后,再使用定流量的泰斯公式计算。
(√)6. 在相同条件下,越流系统井流的水位下降速度小于泰斯井流的水位下降速度。
(√)7. 泰斯公式能够直接用于潜水非稳定井流的计算。
(×)8. 在无越流补给的无限潜水层中进行抽水试验时,早期的水量主要来自含水层的弹性释放量,而后期的抽水主要来自疏干量。
(√)9. 泰斯公式既可用于计算抽水井影响范围内的水位降深,也可用来计算含水层的水文地质参数。
4 地下水向完整井的非稳定运动要点:本章主要介绍地下水非稳定井流的有关公式及应用。
非稳定井流公式主要包括承压井流泰斯(Theis )公式、雅柯布(Jacob )公式、流量呈阶梯状变化时计算公式、恢复水位公式、定降深公式、不同条件下的越流公式以及无外界补给的潜水井流的博尔顿( Boulton )及纽曼(Neuman )公式。
上述可以用于相应条件下的动态预报,以及利用抽水试验资料求含水层的水文地质参数等。
本章是全书重点之一。
要求学生掌握各公式及其适用条件,并能用来分析解决实际问题;掌握如何用抽水试验资料确定水文地质参数的方法。
4.1 无限分布的承压完整井流本节主要介绍泰斯公式及其求参数方法,如表4—1所示。
此外介绍均质各向异性岩层式中:y x T T T *称为等效导水系数;y x T T ,—分别为长、短轴主渗透方向上的导水系数;)(n u W —泰斯井函数;)4/(2*t T r u n n ,式中的T n 为与x (长)轴成)(n 夹角方向上的导水系数,其值为: )(sin )(cos 22n n xn T T(4-2) 式中:θ—第一条观测线(即第一观测孔与抽水井的联线)与x 轴(长轴方向)的夹角。
注:表中(W(u))、〔u〕、(s)、(t)等为配合点的坐标值;t0,P0,(t/r2)0为直线在相应横轴上的截距;t s、r s、、(t/r2)为直线在纵轴上截距为s0时的对应横坐标值,i为直线的斜率,s A、t A为曲线上任一点坐标值。
如图4-1(b)所示:a n —第n 条观测线与第一观测线的夹角;22222*sin )(sin )(cos cos )(n n n n v y x b b T T T T (4-3) n n T T b 1;由212T T b 和313T Tb 联立求解有: 3222233222232sin )1(2sin )1(sin )1(sin )1(22 b b b b tg (4-4) *2**T b a r T T a b T T b a T ss n n s s y s s x ;;s s b a 、—分别为椭圆长短主轴的长度。
《地下水动力学》习题集第1章 渗流理论基础习题1-1 渗流的基本概念一、填空题1. 地下水动力学是研究地下水在 、 和 中运动规律的科学。
通常把 称为多孔介质,而其中的岩石颗粒称为 。
多孔介质的特点是 、 、 和 。
2. 地下水在多孔介质中存在的主要形式有 、 、 、 和 ,而地下水动力学主要研究 的运动规律。
3. 在多孔介质中,不连通的或一端封闭的孔隙对地下水运动来说是 ,但对贮水来说却是 。
4. 假想水流的 、 、 以及 都与真实水流相同,假想水流充满 。
5. 地下水过水断面包括 和 所占据的面积。
渗流速度是 上的平均速度,而实际速度是 的平均速度。
6. 在渗流中,水头一般是指 ,不同数值的等水头面(线)永远 。
7. 在渗流场中,把大小等于 ,方向沿着 的法线,并指向水头 方向的矢量,称为水力坡度。
水力坡度在空间直角坐标系中的3个分量分别为 、 和 。
8. 渗流运动要素包括 、 、 和 等。
9. 根据地下水渗透速度 与 关系,将地下水运动分为一维、一维和三维运动。
二、判断及选择题10. 地下水在多孔介质中运动,因此可以说多孔介质就是含水层。
( )11. 地下水运动时的有效孔隙度等于排水(贮水)时的有效孔隙度。
( )12. 对含水层来说其压缩性主要表现在空隙和水的压缩上。
( )13. 贮水率)(βαρμn g s +=也适用于潜水含水层。
( )14. 贮水率只适用于三维流微分方程。
( )15. 贮水系数既适用于承压含水层,也适用于潜水含水层。
( )16. 在一定条件下,含水层的给水度可以是时间的函数,也可以是一个常数。
( )17. 潜水含水层的给水度就是贮水系数。
( )18. 在其他条件相同而只是岩性不同的两个潜水含水层中,在补给期时,给水度μ大,水位上升大;μ小,水位上升小。
在蒸发期时,μ大,水位下降大;μ小,水位下降小。
()19. 决定地下水流向的是()。
(1)压力的大小;(2)位置的高低;(3)水头的大小。