第九章 地下水向完整井的非稳定运动
- 格式:pdf
- 大小:1.29 MB
- 文档页数:22
内容主要有:(1)渗流理论基础;(2)地下水向河渠的稳定运动;(3)地下水向完整井的稳定运动;(4)地下水向完整井的非稳定运动;(5)地下水向边界附近井的稳定和非稳定运动。
重点考核地下水运动的基本概念、基本原理和方法。
题目类型有名词解释、判断题、作图题和计算题等,其中计算题占试题总分数的65%。
《地下水动力学》复习要点第一章 渗流理论基础一、基本内容1、基本概念:多孔介质、贮水率、贮水系数(弹性给水度)、渗流、渗流速度及与实际速度关系、水头(位置水头、测压管水头)、水力坡度、渗透系数、渗透率、导水系数、各向异性介质、各向同性介质、均质与非均质、水流折射原理、流网、dupuit 假设、第一类边界条件、第二类边界条件等2、基本定律:达西定律及适用范围3、描述地下水运动的方程:渗流连续性方程、承压水运动的基本微分方程、潜水运动的基本微分方程、越流含水层地下水非稳定流运动方程4、定解条件(初始条件、边界条件),数值方法基本思想二、要求1、理解并掌握上述概念和理论2、用达西定律分析水头线的变化或根据流网分析水文地质条件变化;3、给定水文地质条件,能正确画出反映地下水运动特点的流网图;4、给定水文地质模型和水文地质条件,写出反映地下水运动的基本方程(给定假设条件,建立数学模型,包括初始条件、边界条件)第二章 河间地块地下水的稳定运动一、基本内容有入渗时河间地块潜水的稳定运动问题(水文地质模型、假设条件、数学模型、流网、任意过水断面流量、分水岭移动规律、水头线)、无入渗时潜水的稳定运动、承压水的稳定运动,水在承压—无压含水层中的运动,非均质含水层中水的运动问题。
二、学习要求根据给定问题的水文地质条件,用相关公式计算过水断面流量或水位。
三、常用公式 1、承压含水层(达西定律) l H H m m kq 21212++= x lH H H H 211--= 2、无入渗潜水含水层(达西定律)l h h h h k q 21212-+= x lh h h h 2122212-+= 3、有入渗时潜水 wx wl l h h k q +--=2122221 )(22122212x lx kw x l h h h h -+-+= 4、分水岭位置 l h h w k l a 222221--= 5、其它流动问题(水平层状含水层、非均质含水层、承压—无压含水层、厚度或水流厚度沿流向变化等)第三章 地下水向完整井的稳定运动一、 基本概念:完整井、不完整井、水井及周围水位(水头)、稳定井流条件(定水头边界、越流、入渗补给)、井损与水跃、影响半径与引用影响半径、叠加原理、均匀流及平面或剖面流网二、学习要求1、掌握地下水向承压水井和潜水井运动问题的假设条件、数学模型、平面或剖面流网特征2、利用有关公式计算抽水量、降深或利用抽水试验资料(已知降深或水位),求含水层参数(导水系数或渗透系数)3、应用叠加原理地下水向完整井群的稳定运动问题。
供水水文地质整理供水水文地质整理By Guo Xinzhang绪论1、地下水:埋藏在地表以下岩石空隙中的水称之为地下水。
2、与地表水相比地下水供水水源具有优势:P11)地下水在地层中渗透经过天然过滤,水质良好,一般不需净化处理2)地下水(特别是深层地下水)因有上部岩层作为天然保障,一般不易受到污染,卫生条件较好3)地下水水温较低,常年变化不大,特别适宜于冷却和空调用水4)地下水取水构筑物可适当地靠近用水户,输水管道较短,构筑物较简单,基建费用较低,占地面积也小5)水量、水质受气候影响较小,一般能保持较稳定的供水能力,因此在很多缺少地表水的地区(如干旱半干旱的山前地区、沙漠、岩溶山地),地下水常常是唯一的供水水源6)可以利用含水层调蓄多余的地表水,增加有效水资源总量,工业上还可以利用含水层的保温盒隔热效应,开展地面水的回灌循环,达到节能、储水、节水的目的3、我国总人口的75%引用地下水第一章地质基础知识一、地球的构造与形态1、地球赤道半径6378.16km,极半径6356.755km,两者相差约21.4km2、地球内圈特征:地壳(莫霍面)地幔(古登堡面)地核P33、外圈特征:大气圈、水圈、生物圈P44、地壳表面特征:最高:喜马拉雅山的珠穆朗玛峰,海拔8844.43m最深:太平洋的马里亚纳海沟,海平面以下11034m5、陆地地形:山地,丘陵,平原,高原,盆地,洼地P56、海底地形:大陆架,大陆坡,大陆基,海沟,岛弧,深海(大洋)盆地,洋中脊等7、地壳中的主要成分的硅、铝的氧化物二、矿物与岩石1、矿物的主要物理性质:晶形、颜色、光泽、条痕、硬度、解理和断口、相对密度等详见P8表格2、岩石的分类:P9岩石是在各种地质条件下由一种或几种矿物组成的集合体。
1)岩浆岩:P9岩浆沿着地壳岩石的裂隙上升到地壳范围内或喷出地表,热量逐渐散失,最后冷却凝固而成的岩石就叫岩浆岩,又称火成岩。
岩浆上升侵入周围岩层中所形成的岩石称为侵入岩,侵入岩又可分为深成岩和浅成岩两大类。
地下水动力学地下水动力学主要是研究地下水在孔隙含水层,裂隙含水层及喀斯特含水层中运动规律的科学。
地下水动力学着重研究地下水向井的稳定运动和非稳定运动理论及地下水在含水层中的稳定运动和非稳定运动。
地下水运动特征及规律的研究是以数学,物理学及水力学等学科的成就为基础,应用数学分析和模拟试验等一系列的研究方法进行的。
地下水运动的实际速度总是大于其渗流速度渗透:地下水在空隙介质的空隙中运动,空隙介质是指由固体骨架和相互沟通的孔隙或裂隙(包括溶蚀裂隙等)两部分组成的整体。
地下水受重力作用在空隙介质中的运动称为渗透。
渗流:不考虑骨架,认为空隙及骨架所占的空间全都可为水流所充满;不考虑地下水实际运动途径的迂回曲折,运动方向多变,只考虑运动的总体方向,把这种概化了的假想水流称为渗流。
渗流量:单位时间通过过水断面的水量渗流速度:通过单位过水断面的流量流速水头:由液体的运动速度产生的水头高度。
研究地下水运动时,可略而不计水力坡度:J=—dLdH 渗流通过该点单位渗流途径长度上的水头损失。
(随着渗流途径增加,水头值减小,则水头值增量dH 沿渗流运动方向为负值)流线:在给定时刻,于渗流场中绘制的一些曲线,曲线上各点处的渗流速度向量均与该点处的曲线相切等水头线:渗流场中水头值相等的各点联成的面称为等水头面,在剖面上表现为等水头线 流网:在渗流场中,由流线和等水头线组成的网格称为流网一维流:在流线相互平行的渗流场中,可选择坐标系中任一坐标轴与渗流速度向量一致,此种情形下的渗流为一维流;二维流:各点的速度向量均与某一平面平行;三维流:又称空间流,各点的速度向量相互之间不平行渗透系数:表征含水介质透水性能的重要水文参数,是与空隙介质的结构特点(n 和d )及水的性质(γ和μ)相关的量K=n 322d μγ 渗透率:反应空隙介质本身的透水性能322nd渗透主方向:通常将渗透性能最强的方向与渗透性能最弱的方向称为渗透的主方向均质各向异性运动特征:在均质各向异性介质中任一点的流线相对于等水头线的法向要产生偏转,且偏向主渗透系数大的主方向。
习题1-11.地下水动力学是研究地下水在孔隙岩石、裂隙岩石和裂隙-岩溶岩石中运动规律的科学。
通常把具有连通性的含水岩石称为多孔介质,而其中的岩石颗粒称为骨架。
多孔介质的特点是多相性、孔隙性、连通性和压缩性。
2.地下水在多孔介质中存在的主要形式有吸着水、薄膜水、毛管水和重力水,而地下水动力学主要研究重力水的运动规律。
3.在多孔介质中,不连通的或一端封闭的孔隙对地下水运动来说是无效的,但对贮水来说却是有效的。
4.假想水流的密度、粘滞性、运动时在含水层中所受阻力以及流量和水头都与真实水流相通,假想水流充满整个含水层空间。
5.地下水过水断面包括空隙和岩石颗粒所占据的面积。
渗透速度是过水断面上的平均速度,而实际速度是空隙面积上的平均速度。
6.在渗流中,水头一般是指测压水头,不同数值的等水头面(线)永远不会相交。
7.在渗流场中,把大小等于水头梯度值,方向沿着等水头面的法线并指向水头降低方向的矢量,称为水力坡度。
水力坡度在空间直角坐标系中的3个分量分别为zH y H x H ∂∂-∂∂-∂∂-和、。
8.渗流运动要素包括流量Q 、渗流速度v 、压强p 和水头H 等。
9.根据地下水渗流速度矢量方向与空间坐标轴的关系,将地下水运动分为一维、二维和三维运动。
习题2-21.粘滞力占优势时液体运动服从达西定律,随着运动速度加快惯性力相应增大,当惯性力占优势时,达西定律就不适用了。
2.达西定律反应了渗流场中的能量守恒与转换。
3.渗流率只取决于多孔介质的性质,而与液体的性质无关,渗流率的单位为cm 2或da 。
4.当液体的动力粘滞系数为s pa 103-∙,压强差为101325pa 的情况下,通过面积为cm 21,长度为1cm ,岩样的流量为s 1cm 3时,岩样的渗流率为1da 。
1da 等于109-8697.9⨯cm 2。
5.渗流率是表征岩石渗透性能的参数,而渗透系数是表征岩层透水能力的参数,影响渗透系数大小的主要是岩层颗粒大小以及水的物理性质,随着地下水温度的升高,渗透系数增大。
地下水动力学习题主讲:肖长来教授卞建民博士3 地下水向完整井的稳定运动要点:本章是全书的重点之一,主要介绍地下水向完整井的稳定运动理论及相应计算公式,包括裘布依(Dupuit)公式、蒂姆(Thiem)公式、非线性层流井流公式、井流量与降深间的随机关系式以及均匀流中的井流公式。
通过本章习题的练习,要求学生在掌握稳定井流理论的基础上,能熟练利用计算公式确定相应条件下的水井涌水量(或水头)和含水层的渗透系数(或导水系数),提高分析和解决实际问题的能力。
表3—1给出了用稳定流抽水试验资料求渗透系数的公式。
3.1 井流习题3-l一、填空题1.根据揭露含水层的程度和进水条件,抽水井可分为和两类。
2.承压水井和潜水井是根据来划分的。
3.从井中抽水时,水位降深在处最大,而在处最小。
4.对于潜水井,抽出的水量主要来自含水层的疏干,它等于。
而对于承压水井,抽出的水量则主要来自含水层的弹性释水,它等于。
5.对承压完整井来说,水位降深s是的函数。
而对承压不完整井,井流附近的水位降深s是的函数。
6.对潜水井来说,测压管进水口处的水头测压管所在位置的潜水位。
7.填砾的承压完整抽水井,其井管外面的测压水头要井管里面的测压水头。
8. 有效井半径是指。
二、判断题9.在下有过滤器的承压含水层中抽水时,井壁内外水位不同的主要原因是由于存在井损的缘故。
()10.凡是存在井损的抽水井也就必定存在水跃。
()11.在无限含水层中,当含水层的导水系数相同时,开采同样多的水在承压含水层中形成的降落漏斗体积要比潜水含水层大。
()12.抽水井附近渗透性的增大会导致井中及其附近的水位降深也随之增大。
()13.在过滤器周围填砾的抽水井中,其水位降深要小于相同条件下未填砾抽水井的水位降深。
()三、分析题14.在潜水流中某一断面的不同深度设置三根测压管(图3-1)。
管a的进水口位于潜水面附近,管b的进水口位于含水层中部,管c则位于隔水底板附近。
试问各测压管水位是否相同?若不同,哪根测压管水位最高,哪根最低?为什么?图3—13.2 含水层中的完整井流例题3-1:在承压含水层中进行抽水试验。
4 地下水向完整井的非稳定运动要点:本章主要介绍地下水非稳定井流的有关公式及应用。
非稳定井流公式主要包括承压井流泰斯(Theis )公式、雅柯布(Jacob )公式、流量呈阶梯状变化时计算公式、恢复水位公式、定降深公式、不同条件下的越流公式以及无外界补给的潜水井流的博尔顿( Boulton )及纽曼(Neuman )公式。
上述可以用于相应条件下的动态预报,以及利用抽水试验资料求含水层的水文地质参数等。
本章是全书重点之一。
要求学生掌握各公式及其适用条件,并能用来分析解决实际问题;掌握如何用抽水试验资料确定水文地质参数的方法。
4.1 无限分布的承压完整井流本节主要介绍泰斯公式及其求参数方法,如表4—1所示。
此外介绍均质各向异性岩层式中:y x T T T *称为等效导水系数;y x T T ,—分别为长、短轴主渗透方向上的导水系数;)(n u W —泰斯井函数;)4/(2*t T r u n n ,式中的T n 为与x (长)轴成)(n 夹角方向上的导水系数,其值为: )(sin )(cos 22n n xn T T(4-2) 式中:θ—第一条观测线(即第一观测孔与抽水井的联线)与x 轴(长轴方向)的夹角。
注:表中(W(u))、〔u〕、(s)、(t)等为配合点的坐标值;t0,P0,(t/r2)0为直线在相应横轴上的截距;t s、r s、、(t/r2)为直线在纵轴上截距为s0时的对应横坐标值,i为直线的斜率,s A、t A为曲线上任一点坐标值。
如图4-1(b)所示:a n —第n 条观测线与第一观测线的夹角;22222*sin )(sin )(cos cos )(n n n n v y x b b T T T T (4-3) n n T T b 1;由212T T b 和313T Tb 联立求解有: 3222233222232sin )1(2sin )1(sin )1(sin )1(22 b b b b tg (4-4) *2**T b a r T T a b T T b a T ss n n s s y s s x ;;s s b a 、—分别为椭圆长短主轴的长度。
第九章地下水向不完整井运动Groundwater flow to partially penetrated well9.1地下水向不完整井运动的特点9.2地下水向不完整井的稳定运动9.3地下水向承压不完整井的非稳定运动地下水动力学-非完整井流29.1地下水向不完整井运动的特点井底进水井壁进水井底井壁同时进水地下水动力学-非完整井流3不完整井流特点(1)地下水流向不完整井的流网特征与完整井不同。
如地下水流向承压完整井的水流为平面径向流,流线是对称井轴的径向直线;而流向承压不完整井的流线在井附近有很大弯曲,垂向分速度不可忽略,流向不完整井的地下水流为三维流。
在比值r/M<1.5~2.0范围内,流线有明显弯曲,离不完整井愈近,弯曲愈厉害,形成三维流区。
在r/M>1.5~ 2.0范围,流线趋于平行层面,垂向分速度很小,由三维流逐渐过渡为平面径向流。
地下水动力学-非完整井流4地下水动力学-非完整井流5在其它条件相同时,不完整井流量小于完整井的流量 设l 为不完整井过滤器长度,M 为含水层厚度。
试验表明,不完整井流量随比值l/M 的增大而增大,随l/M 值的减小而减小。
当l/M =1时,变成完整井,流量达到该情况下的最大值。
不完整井流特点(2)地下水动力学-非完整井流6不完整井流特点(3)过滤器在含水层中的位置和顶底板对水流状态有明显影响。
如果含水层很厚,则可近似地忽略隔水底板对水流的影响,按半无限厚含水层来处理;否则,应当同时考虑顶、底板的影响,作有限含水层处理。
地下水动力学-非完整井流7地下水动力学-非完整井流89.2地下水向不完整井的稳定运动9.2.1 井底进水的承压水不完整井井底形状为半球形,则流线为径向直线,等水头面是半个同心球面。
在球坐标系中则为一维流。
这种不完整井流可用空间汇点来求解。
地下水动力学-非完整井流9源汇在均质含水层中,如果渗流以一定强度从各个方面沿径向流向一点,则称该点为汇点。