概率算法
- 格式:ppt
- 大小:335.00 KB
- 文档页数:41
抽奖概率-三种算法最近接触到⼀个抽奖需求,加上平时玩的暗⿊3很少掉暗⾦装备,就抽空学习下这类概率问题,暂时按⽹络称为掉宝类型概率。
例如游戏中打败⼀个boss,会掉落下⾯其中⼀个物品,⽽每个物品都有⼀定概率:1. 靴⼦ 20%2. 披风 25%3. 饰品 10%4. 双⼿剑 5%5. ⾦币袋 40%现在的问题就是如何根据概率掉落⼀个物品给玩家。
⼀. ⼀般:⽣成⼀个列表,分成⼏个区间,例如列表长度100,1-20是靴⼦的区间,21-45是披风的区间等,然后随机从100取出⼀个数,看落在哪个区间。
算法时间复杂度:预处理O(MN),随机数⽣成O(1),空间复杂度O(MN),其中N代表物品种类,M则由最低概率决定。
⼆、离散算法:也就是上⾯的改进,竟然1-20都是靴⼦,21-45都是披风,那抽象成⼩于等于20的是靴⼦,⼤于20且⼩于等于45是披风,就变成⼏个点[20,45,55,60,100],然后也是从1到99随机取⼀个数R,按顺序在这些点进⾏⽐较,知道找到第⼀个⽐R⼤的数的下标,⽐⼀般算法减少占⽤空间,还可以采⽤⼆分法找出R,这样,预处理O(N),随机数⽣成O(logN),空间复杂度O(N)。
请点击查看详细:三、Alias MethodAlias Method就不太好理解,实现很巧妙,推荐先看看这篇⽂章:⼤致意思:把N种可能性拼装成⼀个⽅形(整体),分成N列,每列⾼度为1且最多两种可能性,可能性抽象为某种颜⾊,即每列最多有两种颜⾊,且第n列中必有第n种可能性,这⾥将第n种可能性称为原⾊。
想象抛出⼀个硬币,会落在其中⼀列,并且是落在列上的⼀种颜⾊。
这样就得到两个数组:⼀个记录落在原⾊的概率是多少,记为Prob数组,另⼀个记录列上⾮原⾊的颜⾊名称,记为Alias数组,若该列只有原⾊则记为null。
之前的例⼦,为了便于演⽰换成分数1. 靴⼦ 20% -> 1/42. 披风 25% -> 1/53. 饰品 10% -> 1/104. 双⼿剑 5% -> 1/205. ⾦币袋 40% -> 2/5然后每个都乘以5(使每列⾼度为1),再拼凑成⽅形拼凑原则:每次都从⼤于等于1的⽅块分出⼀⼩块,与⼩于1的⽅块合成⾼度为1由上图⽅形可得到两个数组:Prob: [3/4, 1/4, 1/2, 1/4, 1]Alias: [4, 4, 0, 1, null] (记录⾮原⾊的下标)之后就根据Prob和Alias获取其中⼀个物品随机产⽣⼀列C,再随机产⽣⼀个数R,通过与Prob[C]⽐较,R较⼤则返回C,反之返回Alias[C]。
概率公式算法
概率公式是用来计算概率的数学公式。
常用的概率公式有:
贝叶斯公式:P(A|B) = P(B|A) * P(A) / P(B)
高斯公式:P(x|u,s) = 1 / (sqrt(2 * pi) * s) * e^(-1/2 * ((x - u) / s)^2)
条件概率公式:P(A|B) = P(A,B) / P(B)
独立性公式:P(A,B) = P(A) * P(B)
这些公式可以用来计算不同情况下的概率,在机器学习、数据分析等领域有广泛应用。
除了上面提到的几个常用的概率公式,还有其他一些常用的概率公式,如:
概率密度函数(PDF):用来描述连续型随机变量的概率密度。
概率质量函数(PMF):用来描述离散型随机变量的概率密度。
狄利克雷公式:用来计算组合概率。
随机变量转移矩阵:用来描述随机变量之间的转移关系。
多项式公式:用来计算多项式的概率分布。
期望值公式:用来计算随机变量的期望值。
这些公式都有着独特的应用领域,在统计学、概率论、数学建模等领域有着重要的作用。
1到10牛牛各种概率计算1、52张牌,每人派5张牌。
5张牌中,其中3张加起来点数为10的倍数的,为牛,而另外2张加起来,取个位数为点数。
J、Q、K都当10点。
如K,3,7,6,8 就是K,3,7为牛,6,8为4点。
2、把纸牌按点数分为1,2,3,4,5,6,7,8,9,10,10种类型。
KQJ10为一种。
3、胜负方式,有点算点数,点数相同算最大的牌。
没点都牌大。
10点为牛牛。
分情况计算:1)五张都为10的情况:C5/16=0.0016806722689076;2)四张为10,一张为1~9的情况:C4/16*C1/36=0.0252100840336134;3)三张为10,二张为1~9的情况:C3/16*C2/36=0.135746606334842;4)二张为10,三张为1~9的情况:C2/16*C3/36=0.32967032967033;5)一张为10,四张为1~9的情况:C1/16*C4/36=0.3626373626373626;6)五张都为1~9的情况:C5/36=0.1450549450549451.分析:其中1),2),3)至少有3张为10,所以肯定有牛。
4)当中的三张和为10,20或者二张和为10。
5)当中四张1~9当中3张和为10,20或者2张和为10。
6)当中:三张加起来等于10或者20的情况。
和为10的有:118,127,136,145,226,235,334 ,442。
和为20的有:992,983,974,965,884,875,776,668。
将这16种情况按是否有重号重新分类:118,226,334,442,992,884,776,668 重号的有8种。
每种个有24种情况1;127,136,145,235,983,974,965,875不重号的有8种。
每种个有64种情况2;19,28,37,46,55 2个和为10。
情况3。
4)三张为1~9, 3张中选2张和为10,或者3张和为10,20,情况1,2的共有(24+64)*8*(16*15/2)=84480种。
九年级概率算法知识点归纳总结概率算法是概率论与数学算法结合的一门学科,主要研究与应用概率相关的数学方法与计算机算法。
它在现代科学与工程中具有广泛的应用,包括人工智能、数据挖掘、生物信息学等领域。
在初中九年级的数学学习中,概率算法也是一个重要的知识点。
本文将对九年级概率算法的相关知识进行归纳总结,以帮助同学们更好地理解与掌握。
一、概率的基本概念与性质1.样本空间与事件:样本空间是指一个随机试验所有可能结果的集合,事件是样本空间的子集。
概率的计算是建立在样本空间与事件的基础上的。
2.概率的基本性质:概率介于0与1之间,对于必然事件,概率为1;对于不可能事件,概率为0。
3.等可能原则:在一些随机试验中,如果每一个结果发生的概率相等,那么事件A发生的概率可用A中的有利结果数除以样本空间中所有可能结果的数目来计算。
二、概率的运算规则1.加法规则:对于两个互不相容事件A和B,即事件A和B不可能同时发生,其和事件发生的概率等于事件A和事件B分别发生的概率之和。
2.减法规则:对于事件A和事件B,其差事件A-B的概率等于事件A发生的概率减去事件A和事件B同时发生的概率。
3.乘法规则:对于两个独立事件A和B,即事件A的发生不影响事件B的发生,其交事件发生的概率等于事件A发生的概率乘以事件B在事件A发生的条件下发生的概率。
4.全概率公式:对于一组互不相容的事件A1, A2, ..., An,它们构成了样本空间的划分,即它们的和事件为样本空间,那么对于任一事件B,其概率可以由每个事件和事件B的交集的概率之和来计算。
三、条件概率与贝叶斯定理1.条件概率:在事件A发生的条件下事件B发生的概率记作P(B|A),表示已知事件A发生,在A的前提下事件B发生的可能性大小。
2.乘法定理:根据条件概率的定义,可以得到P(A∩B) = P(B|A) *P(A),其中P(A∩B)表示事件A和事件B同时发生的概率。
3.贝叶斯定理:根据乘法定理,可以得到贝叶斯定理的表达式,它表达了在已知事件A发生的条件下,事件B发生的概率与在已知事件B发生的条件下,事件A发生的概率之间的关系。
1、概率算法:允许算法在执行的过程中随机的选择下一个计算步骤。
2、在多数情况下,当算法在执行过程中面临一个选择是:随机性选择常比最优选择省时,因此概率算法可在很大程度上降低算法复杂性。
3、概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果(所需时间或计算结果)。
4、概率算法包括:▪数值概率算法:求解数值问题的近似解,精度随计算时间增加而不断提高▪舍伍德算法:消除算法最坏情形行为与特定势力之间的关联性,并不提高平均性能,也不是刻意避免算法的最坏情况行为▪拉斯维加斯算法:求解问题的正确解,但可能找不到解▪蒙特卡罗算法:求解问题的准确解,但这个解未必正确,且一般情况下无法有效判定正确性5、随机数:随机数在概率算法设计中扮演着十分重要的角色。
在现实计算机上无法产生真正的随机数,因此在概率算法中使用的随机数都是一定程度上随机的,即伪随机数。
6、线性同余法是产生伪随机数的最常用的方法。
7、数值概率算法:通常用于数值问题的求解中,求解数值问题的近似解,精度随计算时间增加而不断提高例如:设有一半径为r的圆及其外切四边形。
向该正方形随机地投掷n个点。
设落入圆内的点数为k。
由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为224rr∏。
所以当n足够大,4kn∏=程序一:double Darts(int n){ // 用随机投点法计算π值static RandomNumber dart; int k=0;for (int i=1;i <=n;i++) {double x=dart.fRandom(); double y=dart.fRandom(); if ((x*x+y*y)<=1) k++;}return 4*k/double(n);}计算定积分,同样的道理可以阐述到10()I f x dx=⎰表示曲线以下面积,那么落入曲线下面积的概率为()11000{()}()f xrP y f x dydx f x dx≤==⎰⎰⎰,即可知I mn≈8、舍伍德算法:设A 是一个确定性算法,当它的输入实例为x 时所需的计算时间记为tA(x)。
先验概率预测算法标题:先验概率预测算法:理论与应用引言概述:先验概率预测算法是一种基于统计学原理的预测方法,通过利用已知的先验概率信息,结合观测数据,对未来事件的发生概率进行预测。
本文将从理论与应用两个方面,详细阐述先验概率预测算法的原理、优势以及在实际应用中的具体应用场景。
正文内容:1. 先验概率预测算法的原理1.1 概率论基础- 介绍概率论的基本概念,如样本空间、事件、概率等。
- 解释条件概率和贝叶斯定理的概念与作用。
1.2 先验概率- 解释先验概率的含义和计算方法。
- 引用实际案例,说明先验概率在预测中的作用。
2. 先验概率预测算法的优势2.1 基于统计学原理- 说明先验概率预测算法是基于统计学原理的有效方法。
- 指出其相对于其他预测方法的优势,如适用性广、可解释性强等。
2.2 考虑先验信息- 强调先验概率预测算法能够充分利用已知的先验信息,提高预测准确性。
- 举例说明先验信息对预测结果的影响。
3. 先验概率预测算法的应用场景3.1 金融市场预测- 分析先验概率预测算法在股市、外汇市场等金融领域的应用。
- 引用相关研究成果,验证先验概率预测算法在金融市场中的有效性。
3.2 自然灾害预测- 探讨先验概率预测算法在地震、洪水等自然灾害预测中的应用。
- 讨论该算法对减轻灾害影响的潜在作用。
3.3 产品销量预测- 说明先验概率预测算法在销售预测中的应用价值。
- 提供实际案例,展示该算法在产品销量预测中的准确性和实用性。
总结:通过对先验概率预测算法的原理、优势和应用场景的详细阐述,我们可以得出以下结论:- 先验概率预测算法是一种基于统计学原理的有效预测方法,能够充分利用先验信息提高预测准确性。
- 该算法在金融市场、自然灾害预测和产品销量预测等领域具有广泛的应用价值。
- 进一步研究和应用先验概率预测算法,有助于提升预测准确性,减少不确定性,为决策者提供更可靠的预测结果。
总之,先验概率预测算法在理论和实际应用中都具有重要意义,其能够为我们提供准确的预测结果,帮助我们做出更明智的决策。
通过直观和经验就能知道概率的几个基本命题,也可以说是公理,苏联的数学家柯尔莫哥洛夫总结了3条概率公理。
1. 事件发生的概率不小于02. 集合中的事件必有一件发生,则发生的概率之和等于13. 集合中事件互相不容,没有交集,则发生至少一个的概率等于每个事件概率之和。
概率计算方法一:频次算法即分别考虑每种事件发生的频次,单个事件频次除总频次,即是概率值,或者单个事件频次除以其他事件频次,然后再转化为概率值。
例如:邮件箱中收到大量邮件,有诈骗邮件,有正常邮件。
根据统计,诈骗邮件中出现文字:“中奖”占30%,出现“www.”占40%;正常邮件出现“中奖”占1%,出现“www.”占2%。
数据统计显示邮箱中诈骗邮件占比为20%,随机抽取一封邮件发现含有“中奖”和“www.”,这封邮件是诈骗邮件的概率是多少。
想直接列出概率算式有点难度,通过频次计算就比较简单。
这封邮件要么是诈骗邮件,要么是正常邮件。
先考虑含有“中奖”和“www.”的正常邮件有多少:(1-20%) x 1% x 2% = 160 %%%再考虑含有“中奖”和“www.”的诈骗邮件有多少20% x 30% x 40% = 240%%%两者比值160 :240 = 2:3因为这封邮件不是正常邮件就是诈骗邮件,两者的概率之和是1,所以诈骗邮件的概率就是:3 :(2+3)= 60%。
从这个例子中可以看出,用频次计算概率,就是分别考虑所有情况发生的频次,然后算出比值,然后再看总概率等于多少,若是互斥事件,总概率就是1,所以频次比就可以转化为概率值。
这样用分别考虑各自的频次的方法就能降低思考难度。
再举个取球的例子,两个盒子,甲盒子装有70个白球30个红球,乙盒子装有20个白球80个红球。
随意拿出一个盒子,取出一个球看颜色,再放回,连续取20次,发现10个白球10个红球。
问拿出的盒子是甲的概率多少。
用频次算法极为简单,分别算频次。
甲盒子中拿出10个白球和10个红球的频次是0.7^10 x 0.3^10 乙盒子同样算法0.2^10 x 0.8^10频次之比就是概率之比,因为是概率之和等于1,就很容易把频次比转化为概率。
概率算法概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果。
这两次求解问题所需的时间甚至所得到的结果可能会有相当大的差别。
一般情况下,可将概率算法大致分为四类:数值概率算法,蒙特卡罗算法,拉斯维加斯算法和舍伍德算法。
一、数值概率算法常用于数值问题的求解。
这类算法所得到的往往是近似解。
而且近似解的精度随计算时间的增加不断提高。
在许多情况下,要计算出问题的精确解是不可能或没有必要的,因此用数值概率算法可得到相当满意的解。
1、用随机投点法计算π值设有一半径为r 的圆及其外切四边形。
向该正方形随机地投掷n 个点。
设落入圆内的点数为k 。
由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为4422ππ=r r 。
所以当n 足够大n k 4≈π(n k≈4π)2、计算定积分设f(x)是[0,1]上的连续函数,且0≤f(x) ≤ 1。
需要计算的积分为⎰=1)(dx x f I , 积分I 等于图中的面积G在图所示单位正方形内均匀地作投点试验,则随机点落在曲线下面的概率为⎰⎰⎰==≤10)(01)()}({x f r dx x f dydx x f y P 假设向单位正方形内随机地投入 n 个点(xi,yi)。
如果有m 个点落入G 内,则随机点落入G 内的概率nm ≈I 3、解非线性方程组求解下面的非线性方程组⎪⎪⎩⎪⎪⎨⎧===0),,,(0),,,(0),,,(21212211n n n n x x x f x x x f x x x f 其中,x 1, x 2, …, x n 是实变量,fi 是未知量x1,x2,…,xn 的非线性实函数。
要求确定上述方程组在指定求根范围内的一组解x 1*, x 2*, …, x n * 。
在指定求根区域D 内,选定一个随机点x0作为随机搜索的出发点。
在算法的搜索过程中,假设第j 步随机搜索得到的随机搜索点为xj 。
在第j+1步,计算出下一步的随机搜索增量∆xj 。
求概率的算法
求概率的算法有很多种,一种常见的是基于概率分布的公式进行计算。
如正态分布的公式为
f(x)=(1/(2^(k/2)*Γ(k/2)))*(x^(k/2-1)*e^(-x/2)),其中k为自
由度参数;泊松分布的公式为f(x)=e^(-λx);指数分布的公式为
f(x)=λe^(-λx)。
这些公式都可以通过特定的参数(如均值和标准差)来描述。
另一种方法是基于采样的方法,即利用随机数生成器,对事件的不同状态进行多次抽样,从而求得其概率。
蒙特卡罗模拟就是这样一种技术,它是一种用于估计复杂系统中不同结果概率的方法。
还有一种基于概率论知识和条件概率的方法,可以用来求解复杂的概率问题。
例如,在马尔可夫链中,利用转移概率矩阵和初始状态概率分布,就可以求出任意状态的概率。
此外,哈希函数映射到数组的每一个不同位置的概率相等的情况下,可以利用特定的算法和程序进行计算。
例如,BIASED-RANDOM随机过程可以输出0与1的概率为1/2,而且插入元素后数组中任意某一位仍然为0和未被置1的概率,也可以通过相关算法来求解。
无论使用哪种方法,概率计算的核心都是建立模型,利用特定的公式或程序求解,最后得到所求事件的概率。