概率计算方法全攻略
- 格式:doc
- 大小:61.50 KB
- 文档页数:2
考研数学概率论备考重点公式与解题思路整理概率论是考研数学中的一大重点,掌握好概率论的基本公式和解题思路对于备考考研数学非常重要。
本文将对考研数学概率论的备考重点公式和解题思路进行整理,帮助考生更好地备考概率论。
一、基本概率公式1.1 事件的概率公式对于一个随机试验,其所有样本点组成的样本空间为S,一个事件A是样本空间S的一个子集。
那么,事件A发生的概率P(A)定义为: P(A) = n(A) / n(S)其中,n(A)表示事件A包含的样本点的个数,n(S)表示样本空间S 中所有样本点的个数。
1.2 事件的互斥与独立若两个事件A和B满足以下条件之一,则称事件A和事件B是互斥的:- 事件A和事件B不可能同时发生,即A∩B = ∅- 事件A和事件B的概率相加等于1,即P(A∪B) = P(A) + P(B)若两个事件A和B满足以下条件之一,则称事件A和事件B是独立的:- 事件A和事件B发生的概率等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) * P(B)二、常用的概率公式2.1 全概率公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到全概率公式:P(B) = P(A₁) * P(B|A₁) + P(A₂) * P(B|A₂) + ... + P(An) * P(B|An)其中,P(Ai)表示事件Ai发生的概率,P(B|Ai)表示在事件Ai发生的条件下事件B发生的概率。
2.2 贝叶斯公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到贝叶斯公式:P(Ai|B) = P(Ai) * P(B|Ai) / (P(A₁) * P(B|A₁) + P(A₂) *P(B|A₂) + ... + P(An) * P(B|An))其中,P(Ai|B)表示在事件B发生的条件下事件Ai发生的概率。
初中数学知识归纳概率与概率的计算方法概率是数学中的一个重要概念,它用于描述某个事件发生的可能性。
在初中数学中,学生们需要学习并掌握概率的基本概念和计算方法。
本文将对初中数学中与概率相关的知识进行归纳总结,包括概率的定义、概率的计算方法以及与概率相关的常见问题。
一、概率的定义概率是指某个事件发生的可能性大小。
通常用一个介于0到1之间的数值来表示概率,其中0表示不可能发生,1表示必然发生。
在实际问题中,概率的取值也可以是一个百分比,例如50%表示事件发生的可能性为一半。
二、概率的计算方法1. 等可能事件的概率计算如果一个事件中的每个结果发生的可能性相同且互不影响,我们称这些事件为等可能事件。
对于等可能事件,其概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本点个数,n(S)表示样本空间中的样本点总数。
2. 有限样本空间的概率计算对于有限样本空间的事件,我们可以先计算出每个样本点发生的概率,再根据事件包含的样本点的概率之和计算事件发生的概率。
3. 独立事件的概率计算如果两个事件A和B同时发生的可能性与事件A发生的可能性以及事件B发生的可能性之乘积相等,我们称这两个事件为独立事件。
对于独立事件,其概率的计算公式为:P(A ∩ B) = P(A) × P(B)4. 互斥事件的概率计算如果两个事件A和B不能同时发生,那么我们称这两个事件为互斥事件。
对于互斥事件,其概率的计算公式为:P(A ∪ B) = P(A) + P(B)三、与概率相关的常见问题1. 排列组合问题在概率计算中,常常涉及到排列组合问题,例如从一组数中选择若干个数的不同排列情况。
在解决这类问题时,我们可以使用排列组合公式来计算可能的情况数,进而计算概率。
2. 抽样问题在实际问题中,经常需要进行抽样调查来获取数据。
在计算概率时,我们需要根据抽样的结果来计算概率的估计值,从而对总体的情况进行推断。
数学解决概率问题的常用方法和技巧概率问题是数学中常见的一类问题,涉及到随机事件的发生与可能性的计算。
在解决概率问题时,我们可以采用一些常用的方法和技巧,以提高解题效率和准确性。
本文将介绍几种常用的数学解决概率问题的方法和技巧。
一、频率法频率法是一种通过大量实验来计算概率的方法。
我们可以进行多次重复实验,记录事件发生的次数,然后计算事件发生的频率。
当实验次数足够多时,频率会逐渐接近于真实概率。
频率法适用于实验重复次数较多的情况,可以较为准确地估计概率。
二、古典概型古典概型是一种基于等可能性原则的概率计算方法。
在古典概型中,我们假设所有可能的结果具有相同的概率,根据事件的数量和总体的数量来计算概率。
例如,一个骰子有6个面,每个面的点数是等概率出现的,那么掷出一个骰子点数为3的概率就是1/6。
三、条件概率条件概率是指在已知一定条件下,某个事件发生的概率。
条件概率的计算方法是根据已知条件来确定样本空间和事件发生可能性的比例。
条件概率的计算可以帮助我们更准确地估计概率,并解决一些与条件相关的概率问题。
四、加法公式加法公式是一种用于求解复合事件概率的方法。
当两个事件互斥(即同时不能发生)时,可以使用加法公式计算两个事件中至少发生一个的概率。
加法公式的计算公式是P(A或B) = P(A) + P(B) - P(A且B)。
五、乘法公式乘法公式是一种用于求解独立事件概率的方法。
当两个事件是相互独立的(即一个事件的发生不影响另一个事件的发生)时,可以使用乘法公式计算两个事件同时发生的概率。
乘法公式的计算公式是P(A且B) = P(A) × P(B)。
六、贝叶斯定理贝叶斯定理是一种在已知后验概率的情况下,计算先验概率的方法。
贝叶斯定理可以在新的证据出现后,根据观测到的事件来调整之前的概率判断。
贝叶斯定理在处理具有隐含条件和先验概率的问题方面有着广泛的应用。
综上所述,数学解决概率问题的常用方法和技巧包括频率法、古典概型、条件概率、加法公式、乘法公式和贝叶斯定理。
概率的计算方法总结概率是数学中一个重要的概念,用于描述随机事件发生的可能性。
在许多领域中,概率的计算方法都扮演着重要的角色,如统计学、金融学、工程学等。
本文将总结一些常见的概率计算方法,包括经典概率、条件概率、贝叶斯定理和概率分布函数等。
一、经典概率经典概率又称为古典概率,用于描述在确定条件下,各个可能事件发生的概率相等的情况。
计算经典概率的方法是通过所求事件的对数除以样本空间的对数,即 P(A) = N(A)/N(S),其中 P(A) 表示事件 A 发生的概率,N(A) 表示事件 A 发生的次数,N(S) 表示样本空间的大小。
例如,一枚均匀的硬币抛掷,正面和反面的可能性相等。
则正面朝上的概率为 1/2,反面朝上的概率也为 1/2。
二、条件概率条件概率是指在给定某个条件下,事件发生的概率。
计算条件概率的方法是通过已知条件下所求事件的概率与已知条件的概率之比,即P(A|B) = P(A∩B)/P(B),其中 P(A|B) 表示在事件 B 已经发生的条件下,事件 A 发生的概率,P(A∩B) 表示事件 A 和事件 B 同时发生的概率,P(B) 表示事件 B 发生的概率。
例如,一个骰子,求在投掷的结果为奇数的条件下,投掷结果为3的概率。
已知条件为奇数,即样本空间为{1, 3, 5},而事件 A 为投掷结果为3。
则条件概率为P(A|B) = P(A∩B)/P(B) = 1/3。
三、贝叶斯定理贝叶斯定理是基于条件概率的一种概率计算方法。
它描述了在得到新的信息后,对之前的概率进行修正的过程。
贝叶斯定理的计算公式为 P(A|B) = P(B|A)P(A)/P(B),其中 P(A|B) 表示在事件 B 已经发生的条件下,事件 A 发生的概率,P(B|A) 表示在事件 A 已经发生的条件下,事件 B 发生的概率,P(A) 和 P(B) 分别表示事件 A 和事件 B 发生的概率。
贝叶斯定理在统计学、人工智能、医学等领域有广泛的应用。
概率计算方法全攻略概率计算方法全攻略在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下:一.公式法P(随机事件)=的结果数随机事件所有可能出现果数随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0<P(随机事件)<1.例1 (07河北)图1中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为________.解析: 本题考查用公式法求概率,在随机翻动木牌过程中,一共有6种可能的翻牌结果,其中有2种为中奖,所以P(中奖)=3162 . 说明: 本题采用了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对随机事件发生概率值的计算. 二.面积法例2 如图2是地板格的一部分,一只图1蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_______.解析:因为四块地板的面积各不相同,故应分别求出阴影部分的面积为2×1+2×3=8,总面积为:2×1+2×2+2×3+1×5=17,面积之比即为所求概率. 所以P(随意停留在阴影部分)=178.评注:几何概型也就是概率的大小与面积大小有关,事件发生的概率等于此事件所有可能结果所组成的图形面积除以所有可能结果组成的图形的面积.三.树形图法例3 不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12 .(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次摸到都是白球的概率.解析:⑴设蓝球个数为x 个 .由题意得21122=++x ∴x=1 答:蓝球有1个 (2)树状图如下:∴两次摸到都是白球的概率 =61122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的.本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 四.列表法例4 (07山西)如图3,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?黄白2白1蓝黄白1蓝黄白2(2)从四张卡片中随机抽取一张贴在如图4所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.解析:(1)所求概率是.2142= (2)解法一(树形图):共有12种可能的结果(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3).其中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是.61122= 解法二(列表法):12 3图图3第一次抽取12 3 第二次抽取 21 3 31 2 41 2 1共有12种可能的结果(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3).其中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是.61122 评注:本题考查学生对用树状图或列表法求概率的掌握情况,用树状图法或列表法列举出的结果一目了然,当事件要经过多次步骤(三步以上)完成时,用这两种方法求事件的概率很有效.概率计算一个20面体,每个面都是等边三角形,如果截去所有的顶角,它将成为多少面体?共有多少个顶点?共有多少条棱?1条件概率 P(A|B)=Nab/Nb=P(AB)/P(B)=AB包含的基本事件数/B包含的基本事件数相对独立事件 P(A*B)=P(A)*P(B) 事件A发生与事件B的发生没有关系独立重复事件 P=C(n,k)P(k次方)(1-p)(n-k次方)【本讲教育信息】一. 教学内容:概率计算二. 重点、难点:1. 古典概型∴2. A、B互斥,则3. A的对立事件,4. A、B独立,则【典型例题】[例1] 从5双不同的鞋中任取四只,求至少配成一双的概率。
如何迅速计算复杂的概率问题概率问题在数学和统计学中扮演着重要的角色,但是对于一些复杂的概率问题,我们可能会感到头疼。
然而,有一些技巧和方法可以帮助我们迅速计算复杂的概率问题。
本文将介绍一些这样的方法,以帮助您更好地解决概率问题。
一、理解问题的要求在解决任何概率问题之前,我们首先需要清楚地理解问题的要求。
我们需要弄清楚问题中涉及到的事件、概率和相关的条件。
通过仔细阅读问题,理解问题的核心要求,可以帮助我们更好地解决问题。
二、使用基本的概率公式对于一些简单的概率问题,我们可以使用基本的概率公式来计算。
例如,如果我们要计算一个事件发生的概率,可以使用下面的公式:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A中有利的结果的个数,n(S)表示样本空间中的总结果数。
通过使用这个公式,我们可以计算出事件发生的概率,从而解决一些简单的概率问题。
三、使用排列组合对于一些涉及到顺序和组合的概率问题,我们可以使用排列组合的方法来解决。
排列指的是从一组元素中选取一部分元素的顺序排列的方法;组合指的是从一组元素中选取一部分元素的组合方式。
例如,如果我们要计算从10个不同的球中选取3个球的排列数,可以使用排列公式:P(n,r) = n! / (n-r)!其中,P(n,r)表示从n个元素中选取r个元素的排列数,!表示阶乘。
同样地,如果我们要计算从10个不同的球中选取3个球的组合数,可以使用组合公式:C(n,r) = n! / (r!(n-r)!)通过使用排列组合的方法,我们可以快速计算出一些涉及到顺序和组合的概率问题。
四、使用条件概率和贝叶斯定理在一些复杂的概率问题中,我们可能需要考虑到条件概率和贝叶斯定理。
条件概率是指在发生了某个事件的条件下,另一个事件发生的概率。
贝叶斯定理是一个重要的概率公式,可以用于计算在给定一些条件下的事件发生的概率。
条件概率和贝叶斯定理可以帮助我们解决一些复杂的概率问题,尤其是当涉及到多个事件和条件时。
概率的计算方法概率是描述随机事件发生可能性的数学工具,它在各个领域都有着重要的应用。
在实际生活中,我们经常需要计算概率来做出决策或者预测结果。
本文将介绍概率的计算方法,包括基本概率、条件概率和贝叶斯定理等内容。
首先,我们来看基本概率的计算方法。
对于一个随机事件A,它发生的概率可以用如下公式来表示:P(A) = N(A) / N(S)。
其中,P(A)表示事件A发生的概率,N(A)表示事件A发生的次数,N(S)表示样本空间S中事件发生的总次数。
通过这个公式,我们可以计算出事件A的概率。
接下来,我们介绍条件概率的计算方法。
条件概率是指在另一个事件B已经发生的条件下,事件A发生的概率。
它的计算公式为:P(A|B) = P(A∩B) / P(B)。
其中,P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
通过这个公式,我们可以计算出在事件B已经发生的条件下,事件A发生的概率。
最后,我们介绍贝叶斯定理的计算方法。
贝叶斯定理是一种通过已知信息来更新概率的方法。
它的计算公式为:P(A|B) = P(B|A) P(A) / P(B)。
其中,P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
通过这个公式,我们可以根据已知信息来更新事件A的概率。
综上所述,概率的计算方法包括基本概率、条件概率和贝叶斯定理等内容。
通过这些方法,我们可以计算出事件发生的概率,从而在实际生活中做出合理的决策和预测。
希望本文能够帮助读者更好地理解概率的计算方法,并在实际应用中发挥作用。
概率与事件的计算方法概率与事件的计算方法是概率论中的重要内容,它描述了事件发生的可能性大小。
在解决实际问题时,我们经常需要计算概率和事件的相关性,以便做出合理的决策。
本文将介绍一些常用的概率计算方法,并通过实例进行说明。
一、概率基础知识回顾在深入了解概率计算方法之前,我们需要对概率的基础知识进行回顾。
概率用于描述某个事件在所有可能事件中的相对可能性大小。
在概率论中,将事件的发生称为随机试验,而事件的每个结果称为样本点。
概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
二、概率计算方法1. 经典概率法经典概率法适用于所有可能结果等概率出现的情况。
具体计算公式为:事件发生的可能性 = 有利于事件发生的样本点数 / 所有样本点数。
例如,有一个标准52张扑克牌的纸牌盒,那么从中抽取一张牌的概率可以使用经典概率法计算。
在这个案例中,有利于抽到黑桃A的样本点数为1,而所有样本点数为52,因此概率为1/52。
2. 相对频率法相对频率法是通过大量重复实验计算概率的方法。
具体操作是进行大量的实验,然后统计事件发生的次数与实验总次数之比。
例如,为了计算抛硬币正面朝上的概率,我们可以抛100次硬币并记录正面朝上的次数。
如果正面朝上的次数为50次,那么概率即为50/100=0.5。
3. 主观概率法主观概率法是基于主观判断和经验来估计概率的方法。
这种方法常用于无法具体统计和实验的情况下。
例如,假设要判断明天下雨的概率,我们可以依据天气预报、云的形状、气氛等因素来进行主观估计。
这种方法没有明确的计算公式,只能根据个人主观判断来得出概率。
三、概率与事件的相关性概率与事件的相关性是指两个或多个事件之间的相关性。
在概率计算中,我们经常需要计算事件的交集、并集以及互斥性等相关性。
1. 事件的交集事件的交集指的是两个或多个事件同时发生的情况。
计算事件的交集概率时,可以使用相对频率法或者数学模型进行计算。
例如,假设有一个箱子里装有10颗红色和10颗蓝色的球,从中随机取出一颗球,同时颜色是红色和蓝色的概率可以使用相对频率法进行计算。
概率计算方法全攻略概率是数学的一个分支,用来研究随机事件在一系列试验中发生的可能性。
概率计算方法是利用数学模型来计算事件的概率。
本文将系统地介绍概率计算的常见方法。
首先,我们需要了解一些基本概念。
1.试验:指的是一次随机现象发生的过程。
例如,掷一枚硬币、掷一个骰子等。
2.样本空间:指的是试验的所有可能结果组成的集合。
例如,掷一枚硬币的样本空间是{正面,反面}。
3.事件:指的是样本空间的一个子集,表示我们关心的一些结果。
例如,掷一枚硬币出现正面的事件。
下面介绍一些概率计算的常见方法。
1.古典概率:也称为经典概率,适用于试验的样本空间有限且各个结果发生的概率相等的情况。
计算公式为P(A)=N(A)/N(S),其中P(A)表示事件A发生的概率,N(A)表示事件A包含的有利结果的个数,N(S)表示样本空间的结果个数。
2.几何概率:适用于试验的样本空间可以用一个几何模型表示的情况。
例如,随机选择一个点落在一个圆内的概率可以通过计算圆的面积与正方形的面积之比得到。
3.统计概率:适用于试验的样本空间不能直接观察到,而是需要通过统计方法估算的情况。
例如,通过随机抽样估计一个群体中其中一种特征存在的概率。
4.条件概率:指的是在已知一些事件发生的条件下,另一个事件发生的概率。
计算公式为P(A,B)=P(A∩B)/P(B),其中P(A,B)表示在事件B已经发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
5.独立事件:指的是两个事件的发生与否互不影响的情况。
对于独立事件,有P(A∩B)=P(A)*P(B)。
6.互斥事件:指的是两个事件不可能同时发生的情况。
对于互斥事件,有P(A∪B)=P(A)+P(B)。
除了上述常见的概率计算方法,还有一些高级方法,如贝叶斯定理、排列组合等。
贝叶斯定理可以用于计算在已知一些条件下,事件的概率。
排列组合可以用于计算从一个集合中选择元素的不同方式的个数。
简单的概率与可能性计算在现实生活中,我们经常需要进行概率与可能性的计算,以便更好地做出决策或者判断事件的发生概率。
尽管概率与可能性计算听上去可能有些复杂,但其实对于一些简单的情况,我们只需要掌握几个基本概念和计算方法即可。
一、概率的基本概念概率是指某个事件发生的可能性,通常用一个介于0和1之间的数值来表示。
0表示不可能发生,1表示必然发生。
在实际应用中,我们可以使用分数、小数或者百分数来表示概率。
二、概率计算方法1. 经典概率经典概率适用于所有可能性相等的情况。
计算方法是将某个事件发生的可能性的数量除以所有可能性的数量。
例如,投掷一个六面骰子,想知道投出1的概率是多少,就是1除以6,即1/6。
2. 相对频率概率相对频率概率是通过实验来估计某个事件发生的可能性。
计算方法是将该事件发生的次数除以总实验次数。
例如,抛掷一枚硬币,我们可以多次抛掷来统计正面朝上的次数,然后将统计结果除以总实验次数得到概率。
3. 主观概率主观概率是通过主观判断或者经验来估计某个事件发生的可能性。
这种概率没有明确的计算方法,取决于个人的主观意见和经验。
三、可能性的计算方法可能性是指事件发生的程度或者程度大小的可能性。
可能性一般用词语如"不可能"、"可能"、"很可能"、"必然"等来进行描述。
与概率不同,可能性没有明确的数值来表示。
四、举例说明为了更好地理解概率与可能性的计算,我们通过一个实例来说明。
假设有个袋子里有3个红球和2个蓝球,我们需要计算从袋子中随机取出一个球后是红色的概率和可能性。
根据经典概率的计算方法,红球的概率等于红球的数量除以总球的数量:3/(3+2)=3/5=0.6。
因此,根据经典概率,取出的球是红色的概率为0.6。
根据反复实验的相对频率概率计算方法,我们可以多次随机取球,统计红球出现的次数,然后将红球出现的次数除以总实验次数。
假设我们实施了100次实验,其中红球出现了60次,那么红球的概率约为60/100=0.6。
概率计算方法全攻略
在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=
的结果数
随机事件所有可能出现果数
随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)
=0;0<P(随机事件)<1.
例1 (07河北)图1中每一个标有数字的方块均是可以翻动的木牌,其中
只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为
________.
解析: 本题考查用公式法求概率,在随机翻动木牌过程中,一共有6种可能的翻牌结果,其中有2种为中奖,所以P(中奖)=
3
162=. 说明: 本题采用了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对随机事件发生概率值的计算. 二.面积法
例2 如图2是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_______.
解析:因为四块地板的面积各不相同,故应分别求出阴影部分的面积为
2×1+2×3=8,总面积为:2×1+2×2+2×3+1×5=17,面积之比即为所求概率. 所以P(随意停留在阴影部分)=
17
8
. 评注:几何概型也就是概率的大小与面积大小有关,事件发生的概率等于此事件所有可能结果所组成的图形面积除以所有可能结果组成的图形的面积. 三.树形图法
例3 不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12
.
(1)试求袋中蓝球的个数.
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次摸到都是白球的概率.
解析:⑴设蓝球个数为x 个 . 由题意得
2
1
122=++x ∴x=1
答:蓝球有1个 (2)树状图如下:
图1 图2
黄
白2蓝白2白1蓝黄白1蓝
黄白2
∴ 两次摸到都是白球的概率 =
6
1
122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的. 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 四.列表法
例4 (07山西)如图3,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.
(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?
(2)从四张卡片中随机抽取一张贴在如图4所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.
解析:(1)所求概率是.2
142= (2)解法一(树形图):
共有12种可能的结果(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3).其
中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是.6
1
122=
解法二(列表法):
共有12种可能的结果(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3).其中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是
.6
1122= 评注:本题考查学生对用树状图或列表法求概率的掌握情况,用树状图法或列表法列举出的结果一目了然,当事件要经过多次步骤(三步以上)完成时,用这两种方法求事件的概率很有效.
1 2 3
图4
图3 第一次抽取
1
第二次抽取 2
3
4
1
1。