计量经济学-时间序列中的ARMA模型
- 格式:ppt
- 大小:822.50 KB
- 文档页数:38
第9章、ARMA模型和ARIMA模型计量经济学的重点在于解释,而不是预测。
但是,对于某些具体的问题,人们对预测的兴趣仍然很大。
如对GDP、人口等宏观经济变量的预测:什么时候超英赶美。
常见的4种预测模型为:1.单方程回归模型2.联立方程回归模型3.ARIMA模型(自回归积分移动平均模型)4.V AR模型(向量自回归模型)前面两种预测模型的特点:优点:经济学理论作为计量分析的基础。
缺点:Lucas批判(Lucas Critique)指出,使用历史数据估计的计量模型的参数依赖于历史的宏观经济政策。
如果宏观经济政策发生变动,这些参数也会变动。
据此而实施的预测必然误差很大,特别是长期预测。
例子:根据过去几年数据建立的IS-LM模型,难以预测中国宏观调控后和利率提高后的宏观经济。
后面两种预测模型的特点:优点:Box-Jenkins方法的重点不是寻找解释y的解释变量,而是使用滞后的y来构造生产y的动力系统。
所使用的y是平稳序列,即y的均值、方差和自协方差与时间的绝对水平无关,那么分布特征不变,可以适用不同经济环境。
短期预测能力较强。
缺点:为预测而预测。
是泛理论的(a-theoretic),缺乏经济理论基础,很难解释计量结果的经济含义。
当然可以整合这两类方法的优点。
ARMAX模型。
§1、ARIMA模型ARIMA模型(自回归积分移动平均模型,autoregressive integrated movingaverage) 推广了如下模型:AR 模型、MA 模型和ARMA 模型。
1、AR 模型 (1)定义称平稳序列y t 服从AR(p)模型,如果可以表示为11...t t p t p t y y y μααε−−=++++其中t ε是白噪声(均值为0,同方差,无自相关)。
AR 模型的特点:除了滞后的y 之外,没有其他的解释变量。
(2)AR 模型的平稳条件记L 为滞后算子(lag operator),Ly t =y t -1。
时间序列模型时间序列分析是现代计量经济学的重要内容,是研究经济变量的动态特征和周期特征及其相关关系的重要工具,被广泛应用经济分析和预测中。
时间序列按其平稳性与否又分为平稳时间序列和非平稳时间序列。
1.ARMA与ARCH模型2.协整与误差修正模型3.向量自回归模型1第五讲ARMA与ARCH模型本讲中将讨论时间序列的平稳性(stationary)概念及自回归模型(Autoregressive models)、移动平均模型(Moving average models)、自回归移动平均模型(Autoregressive moving average models)、自回归条件异方差模型(Autoregressivec conditional Heteroscedasticity models)的识别、估计、检验、应用。
23一、时间序列的平稳性(一)平稳时间序列所谓时间序列的平稳性,是指时间序列的统计规律不会随着时间的推移而发生变化。
严格地讲,如果一个随机时间序列,对于任何时间,都满足下列条件:t y t Ⅰ)均值;()t E y μ=∞ Ⅱ)方差,是与时间无关的常数;22()()t t Var y E y μσ=-=t Ⅲ)自协方差,是只与时期间隔有关,{}(,)t t k t t k k Cov y y E y y μμγ--=--=()()k 与时间无关的常数。
t4则称该随机时间序列是平稳的。
生成该序列的随机过程是平稳过程。
例5.1.一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:= ~该序列常被称为是一个白噪声(white noise )。
t y t εt ε2(0,)iid σ 由于具有相同的均值与方差,且协方差为零,满足平稳性条件,是平稳的。
t y 例5.2.另一个简单的随机时间列序被称为随机游走(random walk ):~,是一个白噪声。
1t t t y y ε-=+t ε2(0,)iid σ 容易判断该序列有相同的均值:,但是方差,即1()()t t E y E y -=2()t Var y t σ=的方差与时间t 有关而非常数,它是一非平稳序列。
初计量经济学之时间序列分析1. 引言时间序列分析是计量经济学中的一个重要领域,研究的是时间序列数据的性质、模式和预测方法。
时间序列数据是按照时间顺序排列的一系列观测值,包括经济指标、股票价格、气象数据等。
时间序列分析可以帮助我们理解和预测经济现象的发展趋势,为政府和企业决策提供科学依据。
本文将介绍时间序列分析的基本概念、方法和应用。
首先,我们将介绍时间序列分析的基本步骤和基本假设。
然后,我们将介绍时间序列模型的常用类型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)。
最后,我们将介绍时间序列的应用领域,包括经济预测、金融风险管理和气象预测。
2. 时间序列分析的基本步骤时间序列分析的基本步骤包括数据的收集和准备、数据的探索性分析、模型的选择和估计、模型的诊断和预测。
下面将对每个步骤进行详细介绍。
2.1 数据的收集和准备数据的收集和准备是时间序列分析的第一步。
我们需要收集时间序列数据,并进行数据清洗和预处理。
数据清洗包括删除缺失值、处理异常值和去除趋势。
数据预处理包括对数据进行平滑处理、差分和变换。
2.2 数据的探索性分析数据的探索性分析是时间序列分析的第二步。
我们需要对时间序列数据进行可视化和统计分析,以了解数据的基本性质和模式。
可视化方法包括绘制时间序列图、自相关图和偏自相关图。
统计分析方法包括计算统计指标、分析趋势、季节性和周期性。
2.3 模型的选择和估计模型的选择和估计是时间序列分析的第三步。
我们需要选择合适的时间序列模型,并进行参数估计。
常用的时间序列模型包括自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)和季节性模型。
2.4 模型的诊断和预测模型的诊断和预测是时间序列分析的最后一步。
我们需要对模型进行诊断,检验模型的拟合程度和残差的平稳性、独立性和正态性。
然后,我们可以使用模型进行未来值的预测。
3. 时间序列模型时间序列模型是描述和预测时间序列数据的数学模型。
计量经济学试题时间序列模型与ARIMA模型时间序列是指按照时间顺序排列的一组数据。
在计量经济学中,时间序列分析是一种重要的研究方法,它可以帮助我们理解和预测经济现象的发展趋势。
本文将介绍时间序列模型以及其中的一种常用模型——自回归滑动平均移动平均自回归(ARIMA)模型。
一、时间序列模型的基本概念时间序列模型是根据时间序列数据的特点建立的数学模型。
它假设时间序列的变动是由多个因素引起的,这些因素可以是趋势、季节性、周期性等。
时间序列模型可以帮助我们从数据中分离出这些因素,以便更好地理解和预测未来的变动。
二、自回归滑动平均移动平均自回归(ARIMA)模型ARIMA模型是一种广泛应用于时间序列分析的模型,它结合了自回归(AR)模型、滑动平均(MA)模型和差分运算的方法。
ARIMA模型可以描述时间序列的自相关性、滞后差分的影响以及移动平均误差的影响。
ARIMA模型可以从以下三个方面描述一个时间序列:1. 自回归(AR)部分:用于描述过去时间点的观测值对当前值的影响,通过延迟观测值来预测当前值。
2. 差分(I)部分:通过对时间序列进行差分运算,可以消除其非平稳性,提高模型的拟合度和预测准确性。
3. 滑动平均(MA)部分:用于描述序列中随机波动的影响,通过滞后误差预测当前值。
ARIMA模型的表示方式为ARIMA(p, d, q),其中p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。
通过对历史数据的拟合,我们可以得到模型的参数估计,从而进行未来值的预测。
三、ARIMA模型的应用ARIMA模型在经济领域有广泛的应用,其中包括销售预测、股票价格预测、宏观经济指标预测等。
它通过分析历史数据中的规律性和趋势性,将其应用于未来的预测中。
ARIMA模型的建立和应用过程可以分为以下几个步骤:1. 数据收集和准备:收集相关的时间序列数据,并对其进行清洗和格式化,以便于后续的分析和建模。
2. 模型选择和拟合:通过计算模型选择准则(AIC、BIC等)来确定模型的阶数,并使用最小二乘法或极大似然法对模型进行参数估计。
计量模型公式计量模型公式是指数学模型中所使用的数学公式。
计量模型是指用数学方法对经济现象进行描述、分析和预测的方法。
计量模型公式是计量模型中最基本的部分,它为计量模型提供了数学基础。
计量模型公式主要包括线性回归模型公式、时间序列模型公式、面板数据模型公式等。
这些公式是计量经济学的基础,也是计量经济学的核心内容。
一、线性回归模型公式线性回归模型是计量经济学中最常用的模型之一,它可以用来描述两个或多个变量之间的关系。
线性回归模型的一般形式为:y = β0 + β1x1 + β2x2 + … + βkxk + ε其中,y表示被解释变量,x1,x2,…,xk表示解释变量,β0,β1,β2,…,βk表示系数,ε表示误差项。
线性回归模型的公式包括估计系数的公式和误差项的公式。
估计系数的公式为:β = (XTX)-1XTY其中,β表示系数向量,X表示自变量矩阵,Y表示因变量向量,T表示矩阵的转置,-1表示矩阵的逆。
误差项的公式为:ε = Y - Xβ其中,ε表示误差向量,Y表示因变量向量,X表示自变量矩阵,β表示系数向量。
二、时间序列模型公式时间序列模型是计量经济学中用来描述时间序列数据的模型。
时间序列数据是指一组按时间顺序排列的数据。
时间序列模型的一般形式为:Yt = f(Yt-1, Yt-2, …, Yt-p) + εt其中,Yt表示t时刻的观测值,f表示时间序列的函数形式,p 表示滞后期数,εt表示误差项。
时间序列模型的公式包括自回归模型的公式、移动平均模型的公式和ARMA模型的公式等。
自回归模型的公式为:Yt = α + β1Yt-1 + β2Yt-2 + … + βpYt-p + εt 其中,α表示常数项,β1,β2,…,βp表示系数,εt表示误差项。
移动平均模型的公式为:Yt = α + εt + θ1εt-1 + θ2εt-2 + … + θqεt-q 其中,θ1,θ2,…,θq表示移动平均系数,εt表示误差项。
基于ARMA模型的我国国内生产总值的预测研究摘要:国内生产总值(Gross Domestic Product,GDP)是衡量一个国家经济总量和增长的重要指标。
本文基于ARMA模型,对我国GDP进行预测研究。
首先,通过对我国GDP的时间序列数据进行平稳性检验,确定其是否需要进行差分操作。
其次,在确定了差分次数后,使用自相关图和偏自相关图选择ARMA模型的阶数,并通过最小二乘法估计模型参数。
最后,使用选定的ARMA模型对未来几年的GDP进行预测,并对模型的拟合精度进行评估。
关键词:ARMA模型;国内生产总值;预测1.引言国内生产总值是一个国家经济发展的核心指标,对于制定经济政策和监测经济状况具有重要意义。
因此,对GDP的准确预测对于国家和企业的决策非常重要。
自上世纪80年代以来,时间序列分析作为一种主要的预测方法被广泛应用于经济领域。
ARMA模型是一种常用的时间序列预测模型,结合了自回归模型(AR)和移动平均模型(MA),能够较好地拟合和预测时间序列数据。
2.数据描述3.平稳性检验在进行时间序列预测之前,需要对数据进行平稳性检验。
平稳性检验的目的是判断时间序列中是否存在趋势或季节性等非平稳性因素。
本研究使用ADF单位根检验对GDP数据进行平稳性检验。
4.差分操作如果平稳性检验中发现数据存在非平稳性,需要对数据进行差分操作。
差分操作的目的是消除数据中的趋势或季节性等非平稳性因素。
采用一阶差分的方式进行处理。
5.模型选择使用自相关图和偏自相关图帮助选择ARMA模型的阶数。
自相关图展示了时间序列与其延迟值之间的相关性,偏自相关图展示了时间序列与其延迟值之间的纯粹相关性。
通过观察图示,可以初步确定ARMA模型的p和q的值。
6.参数估计与模型拟合通过最小二乘法对ARMA模型的参数进行估计。
利用已知的GDP数据拟合ARMA模型,并计算模型的拟合精度。
一般使用残差的均方根误差(RMSE)作为评估模型拟合精度的指标。
时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。
该模型基于时间序列数据,即经济变量在一段时间内的观测值。
时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。
其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。
自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。
该模型以过去的观测值和随机项为输入,预测当前观测值。
ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。
自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。
该模型通过引入一个条件异方差项,模拟经济变量中的波动性。
ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。
季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。
这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。
在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。
识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。
模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。
时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。
它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。
时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。
它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。
本文将进一步探讨时间序列计量经济学模型的相关概念和应用。
在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。
时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。