计量经济学第七讲时间序列分析
- 格式:ppt
- 大小:2.44 MB
- 文档页数:81
时间序列期末论文安徽财经大学姓名:鲍志祥班级:093财管二班学号:20093069073企业商品价格总指数的时间序列分析摘要利用Eviews软件判断企业商品价格总指数序列为非平稳序列且为非白噪声序列,对非平稳序列进行一阶差分后得到平稳序列,分析运用一阶自回归AR(1)模型拟合时间序列,由于总指数序列值之间密切的相关关系,且历史数据对未来的发展有一定影响,利用Forecast 命令预测未来4个月的企业商品价格总指数。
关键词:Eviews;平稳序列;AR(p)模型;一阶差分理论准备:拿到一个观察值序列之后,首先要判断它的平稳性.通过平稳性检验,序列可分为平稳序列和非平稳序列两大类.对于平稳序列,由于它不具有二阶矩形平稳的性质,所以对它的统计分析要周折一些,通常要进行进一步的检验、变换或处理之后,才能确定适当的拟和模型。
如果序列平稳,建模比较容易,但并不是所有的平稳序列都值得建模。
只有那些序列值之间具有密切的相关关系,历史数据对未来的发展有一定影响的序列,才值得我们花时间去挖掘历史数据中的有效信息,用于预测序列未来的发展。
如果序列值彼此之间没有任何相关性,那就意味着该序列是一个没有任何记忆的序列,过去的行为对将来的发展没有丝毫影响,这种序列我们称之为纯随机序列。
从统计分析的角度而言,纯随机序列是没有任何分析价值的序列。
如果序列xt是均值非平稳的,对其进行d次差分后,变成了平稳的序列Δdxt,这个差分后的平稳序列的适应性模型为ARMA(p,q) ,此时就称对原始序列xt建立了ARIMA(p,d,q)模型。
问题:判断企业商品价格总指数序列的平稳性与纯随机性,处理数据并利用拟合模型,预测未来4个月的企业商品价格总指数。
表1企业商品价格总指数数据(来源:东方财富网)图1企业商品价格总指数序列{x i}的时序图由图1我们可以看出序列在上下波动比较大,大致判断不具有平稳性。
图2 序列{x i}的自相关图由图2可知,自相关图呈正弦波指数衰减,为不平稳时间序列。
计量经济学--时间序列数据分析时间序列数据的计量分析方法1.时间序列平稳性问题及处理方案1.1序列平稳性的定义从平稳时间序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。
平稳时间序列要求所有序列间任何相邻两项之间的相关关系有相同的性质。
1.2不平稳序列的后果可能两个变量本身不存在关系而仅仅因为有相似的时间趋势而得出它有关系,也就是出现伪回归;破坏回归分析的假设条件,使得回归结果和各种检验结果不可信。
1.3平稳性检验方法:ADF 检验1.3.1ADF 检验的假设:辅助回归方程:11t t it i t i Y Y t Y ραργβμ--==+++?+∑(是否有截距和时间趋势项在做检验时要做选择)原假设:H 0:p=0,存在单位根备择假设:H 1:P<0,不存在单位根结果识别方法:ADF Test Statistic 值小于显著性水平的临界值,或者P 值小于显著性水平则拒绝原假设并得出结论:所检测序列不存在单位根,即序列是平稳序列。
1.3.2实例对1978年2008年的中国GDP 数据进行ADF 检验,结果如表一。
表一 ADF 检验结果Augmented Dickey-Fuller test statistic t-Statistic Prob.* 3.063621 1 Test critical values: 1% level -3.699871 5% level -2.976263 10% level -2.62742从结果可以看出,ADF 的t 统计量值大于10%显著性水平上的临界值,P 值为1,接受原假设,说明所检测的GDP 数据是不平稳序列。
1.4不平稳序列的处理方法1.4.1方法如果所要分析的数据是不平稳序列,可以对序列进行差分使其变成平稳序列,但是这样做的后果是使新得出的数据丧失了许多原序列的特征,我们能从数据中得到的信息会变少,通常差分的次数不能超过两次。
1. 已知MA(2)模型:120.70.4t t t t X εεε--=-+,2.(1)计算自相关系数(1)k k ρ≥;(2)计算偏相关系数(1,2,3)kk k ϕ=;解:(1)1212[0.70.4)(0.70.4)]t t k t t t t k t k t k EX X E εεεεεε--------=-+-+(所以:2220120,(1)k εγθθσ==++,211121,(),k εγθθθσ==-+2122,k εγθσ==-,3,0k k γ≥=,所以:112122120.591θθθρθθ-+==-++2222120.241θρθθ-==++0,3k k ρ=≥(2)1110ρϕρ=即111ϕρ=,所以110.59ϕ≈-当2k =时,产生偏相关系数的相关序列为2122{,}ϕϕ,相应Yule-Wolker 方程为:0121110222ρρϕρρρϕρ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 所以220.166ϕ≈-当3k =时,产生偏相关系数的相关序列为313233{,,}ϕϕϕ,相应Yule-Wolker 方程为:123111132221333111ρρϕρρρϕρρρϕρ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以330.047ϕ≈2.题:考虑MA (2)模型yt=εt –θ1εt-1 –θ2εt-2(1) 求出yt 序列的均值与方差(2) 推导出以下理论自相关函数 ρ1=(1+θ12++θ22)−1(θ1θ2-θ1)ρ2=-θ2(1+θ12++θ22)−1ρj = 0 , j > 2(3) 在什么条件下该模型为平稳时间序列模型?该模型可逆的条件是什么?答案:(1)μ=E (yt )=E (εt –θ1εt-1 –θ2εt-2)= 0 σy 2= E (yt−μ)2= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22) E (εt 2) =(1+θ12+θ22)σε2(2)γ0=E(ytyt )= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22)σε2γ1=E(ytyt −1) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-2 –θ2εt-3) =(θ1θ2-θ1)σε2γ2=E(ytyt −2) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-23–θ2εt-4) =-θ2σε2所以,ρ1=γ1/γ0=(1+θ12++θ22)−1(θ1θ2-θ1) ρ2=γ2/γ0=-θ2(1+θ12++θ22)−1(3)该模型在任何情况下都是平稳的,因为其右边是一系列的白噪音过程的叠加。
计量经济学——时间序列课程论文题目:第三产业产值的影响因素分析学院财会学院_专业会计专硕班级会计专硕1501 课程名称计量经济学(课程设计)学号学生姓名 60指导教师赵卫亚成绩二○一五年十二月作为研究样本,数据见表1。
年份 第三产业产值(Y t ) GDP 国内生产总值(X 1t) 全国城乡居民储蓄(X 2t ) 1990 5888.40 18667.82 7119.60 1991 7337.10 21781.50 9244.90 1992 9357.40 26923.48 11757.30 1993 11915.70 35333.92 15203.50 1994 16179.80 48197.86 21518.80 1995 19978.50 60793.73 29662.30 1996 23326.20 71176.59 38520.80 1997 26988.10 78973.03 46279.80 1998 30580.50 84402.28 53407.47 1999 33873.40 89677.05 59621.83 2000 38714.00 99214.55 64332.38 2001 44361.60 109655.20 73762.43 2002 49898.90 120332.70 86910.65 2003 56004.70 135822.80 103617.65 2004 64561.30 159878.30 119555.39 2005 74919.30 184937.40 141050.99 2006 88554.90 216314.40 161587.30 2007 111351.90 265810.30 172534.19 2008 131340.00 314045.40 217885.35 2009 148038.00 340506.90 260771.66 2010 173087.00 397983.00 303302.49(二)图形分析通过对样本数据做散点图(图1、图2)发现,Y t 与X 1t 、X 2t 呈近似直线关系,根据图3的趋势图,三者同趋势变化,考虑时间序列模型,初步判断其不平稳,存在二阶可能性。