高等工程数学
- 格式:ppt
- 大小:176.00 KB
- 文档页数:13
第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。
高等工程数学难度排名
高等工程数学的难度排名可能因人而异,但通常来说,以下是高等工程数学中一些科目的难度排名:
1. 微积分:作为高等工程数学的基础,微积分的难度相对较低,但概念较多,需要理解和运用。
2. 线性代数:线性代数的概念相对抽象,但难度适中,掌握了基本概念和方法后,可以轻松应对。
3. 概率论与数理统计:概率论与数理统计的难度相对较高,需要对概念有深入的理解,并能熟练运用各种概率分布和统计方法。
4. 微分方程:微分方程涉及到函数的导数和微分,以及各种类型的方程,难度相对较高。
需要注意的是,以上排名并不是绝对的,难度也与个人基础和兴趣有关。
在学习高等工程数学时,需要耐心和努力,多做练习和思考,才能掌握好这些科目。
1.线性变换定义、例子、表示矩阵求法、作用
2.线性变换特征值、特征向量、定义、求法
3.范数定义、向量、矩阵常见范数、求范数
4.矩阵对角化——对角化方法与Jordan标准型的关系、矩阵Jordan标准型的求法
5.子空间定义、常见字空间的构造、直和子空间、分解为直和
6.矩阵的零空间、R n在零空间下的直和分解
7.矩阵的域空间
8.代数精度的定义
9.Newton-Cotes求积公式中节点的定义、性质、与代数精度的关系
10.Newton迭代法的构造及构造原理
11.牛顿插值的定义、差商的定义、性质
12.代数线性方程组的几何数值计算方法
13.主元的定义、类型、在算法中的作用
14.线性方程组中的迭代解法中有关收敛的结论
15.插值多项式构造方法——拉格朗日、牛顿、埃尔米特插值
16.插值余项的定义、构造
17.正态总体下抽样分布的结论
18.t-、x2-、F- 分布有关构造结论
19.单正态总体有关参考数区间估计的结论
20.距估计定义、求法
21.极大似然估计定义、求法、性质(微分法、定义法)
22.常见分布:(0-1)、β(n,p),P(λ),G(p),U(a,b),E(λ),N(µ,σ2)
23.X2-拟合优度检验
24.单因素方差分析、条件、结论、算法、方差分析表
25.回归分析定义、科学意义、条件(G-M条件)、最小二乘法算法、性质、一元线性回归
方程的求法、应用。
第六章7、设X 1,X 2,…X n 为总体X~N (μ,σ2)的样本,求E[21)(x x ni i-∑=],D[21)(∑=-ni ix x ]。
解:E[21)(x x ni i -∑=]=(n-1)E[11-n 21)(x x ni i-∑=]=(n-1)σ2因为)1(~)(2212--∑=n X x xni iσ所以 D[21)(∑=-ni ix x ]=])([212σ∑=-ni ix xD =σ22(n-1)8、设X 1,X 2,…X 5为总体X~N (0,1)的样本,(1)试确定常数c 1、d 1,使得)(~)()(2254312211n x x x d x x c χ++++并求出n ;(2)试确定常数c 2、d 2,使得),(~)()(2543222212n m F x x x d x x c +++。
解:(1)212)(1x x n S n i i -=∑=且总体为X~N (0,1),所以c 1=21,d 1=31因为2χ分布具有可加性,即若X i ~2χ(i=1,……k ),且各样本相互独立,则)(~121∑∑==ki i ki in xχ,所以n=2。
(2)因为)2,0(~21N x x +,)3,0(~)(543N x x x ++,)1,0(~221N x x +, )1,0(~3543N x x x ++且相互独立, 所以221]2[x x ++2543]3[x x x ++)2(~2χ 因为)2(~22221χx x +,)1(~3)(22543χx x x ++ 所以)1,2(~)(2)(325432221F x x x x x +++,所以)1,2(,2322F d c =10、设X 1,X 2,…X n ,X n+1为总体X~N (μ,σ2)的样本的容量为n+1的样本,)(11~,1221x x n s x n x i n i i --==∑=试证:(1))1(~~1ˆ1---=+n t sxx n n T n (2))1,0(~21σn n N x x n +-+ (3))1,0(~21σnn N x x -- 证明:(1)因为),(~),1(~~)1(),,(~212222σμχσσμN x n s n n N x n +-- 所以)1,0(~1),1,0(~121N nn xx n n N x x n n +-+-++σσ 所以)1(~)1(~)1(1221---+-+n t n sn n n x x n σσ,即)1(~~1ˆ1---=+n t s x x n n T n (2)因为),(~),,(~212σμσμN x nN x n + 所以)1,0(~21σnn N x x n +-+ (3)因为∑∑==--=-=-ni i n i i x n x n n x n x x x 21111111,011)(1)(1)11(22121=--=--=--∑∑∑===ni n i i n i i n n n x E n x E n n x n x n n E μμ2222221121)1()11(σσσnn nn n x n x n n D ni n i i -=+-=--∑∑== 所以)1,0(~21σnn N x x --15、设X 1,X 2,…X n ,1为总体X 的样本,如果X 具有下列密度函数(其中参数均未知)试分别求这些参数的矩估计量与极大似然估计量。
课程编号:A080007课程名称:高等工程数学英文名称:Advanced Engineering Mathematics开课单位:理学院开课学期:秋课内学时:32 教学方式:讲授适用专业及层次:工科各专业硕士考核方式:考试预修课程:线性代数、高等数学一、教学目标与要求λ矩阵与矩本课程较全面、系统地介绍矩阵的基本理论、方法和某些应用,基本内容有-阵的Jordan标准形、初等矩阵与矩阵的因子分解、Hermite矩阵与正定矩阵、向量与矩阵的范数、矩阵函数与矩阵值函数、广义逆矩阵与线性方程组的解,算子范数等概念。
通过本课程基本概念和基本定理的阐述和论证,培养研究生的抽象思维与逻辑推理能力,提高研究生的数学素养。
在重视数学论证的同时,强调数学概念的物理、力学等实际背景,培养研究生应用数学知识解决实际工程技术问题的能力。
通过本课程的学习,要求研究生掌握矩阵的基本理论和方法,为学习后继课程、开展科学研究打好基础。
二、课程内容与学时分配第一章λ-矩阵与矩阵的Jordan标准形(8学时)1.1 一元多项式1.2 λ-矩阵及其在相抵下的标准形1.3 λ-矩阵的行列式因子和初等因子1.4 矩阵相似的条件1.5 矩阵的Jordan标准形1.6 Cayley-Hamilton定理与最小多项式第二章矩阵的因子分解(5学时)2.1 初等矩阵2.2 满秩分解2.3 三角分解2.4 QR分解2.5 Schur 分解与正规矩阵2.6 奇异值分解及其推广第三章Hermite矩阵与正定矩阵(6学时)3.1 Hermite矩阵与Hermite二次型3.2 Hermite正定(非负定)矩阵3.3 矩阵不等式3.4 Hermite矩阵的特征值* 第四章范数与极限(6学时)4.1 向量范数4.2 矩阵范数4.3 矩阵序列与矩阵级数第五章矩阵函数与矩阵值函数(2学时)5.1 矩阵函数5.2 矩阵值函数5.3 矩阵值函数在微分方程组中的应用第六章广义逆矩阵(5学时)6.1 广义逆矩阵的概念6.2 广义逆矩阵A-与线性方程组的解A-与相容方程组的极小范数解6.3 极小范数广义逆mA-与矛盾方程组的最小二乘解6.4 最小二乘广义逆l6.5 广义逆矩阵A+与线性方程组的极小最小二乘解三、教材戴华,矩阵论,科学出版社,2001主要参考书1.北京大学,高等代数,高等教育出版社,第二版,19882.Lancaster P. and Tismenetsky M. The Theory of Matrices with Applications,Academic Press, 1985.3.史荣昌,矩阵分析,北京理工大学出版社,19964.罗家洪,矩阵分析引论,华南理工大学出版社,19925.张明淳,工程矩阵理论,东南大学出版社,19956.程云鹏,矩阵论,西北工业大学出版社,1999大纲撰写负责人:杨秀绘杨熙授课教师:杨秀绘杨熙。
摘要高等工程数学是工程类硕士研究生的一门重要的数学基础课程,在研究生数学素养的训练、创新能力的提高方面具有重要作用。
内容包含矩阵论、数值计算方法和数理统计三部分,其主要内容有:先行空间与线性变换、内积空间、矩阵的标准型、数理统计的基本概念与抽样分布、参数估计、假设检验、回归分析与方差分析。
关键词:线性空间、假设检验、方差分析一、线性空间的综述简单的说,线性空间是这样一种集合,其中任意两元素相加可构成此集合内的另一元素,任意元素与任意数(可以是实数也可以是复数,也可以是任意给定域中的元素)相乘后得到此集合内的另一元素。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
1.1 数域的概念设P是一个非空数集,且至少含有非零的数,若P中任意两个数的和、差、积、商(除分母为零外)仍属于该集合,则称P是一个数域。
容易验证有理数集合Q、实数集合R与复数集合C都是数域,分别称为有理数域、实数域与复数域。
1.2 线性空间定义设V是一个非空集合,P是一个数域,如果:(1)在集合V上定义一个二维运算(通常称为加法),即对V中任意两个元素x,y经过这个运算后得到的结果,仍是集合V中唯一确定的元素,该元素称为x 与y的和记作x+y.(2)在数域P与集合V的元素之间还定义了一种运算,叫做数量乘法,即对于P任意数λ与V中任意元素x,经过这一运算后所得到的结果,仍是V中唯一确定的元素,称为唯一确定的元素,称为λ与x的数量乘积,记作λ x。
如果加法和数量乘法还满足下述规则,则称V为数域P上的线性空间。
1.3线性空间的运算(1)对任意x,y∈V,x+y=y+x;(2)对任意x,y,z∈V,(x+y)+z=x+(y+z);(3)V中存在一个零元素,记作θ,对任意x∈V,都有x+θ=x;(4)对任意x∈V,都有y∈V,使得x+y=θ,元素y称为x的负元素,记作-x;(5)对任意x∈V,都有1x=x;对任何λ,μ∈P,x,y∈V。
高等工程数学课程评价方案一、引言高等工程数学是工程专业的重要基础课程,它涉及到高等数学、线性代数、概率论与数理统计等知识,是工科生必修的一门课程。
为了确保学生能够充分掌握课程要求的知识和技能,对于高等工程数学课程的评价应该更加全面、科学、客观。
因此,我们需要建立一套科学客观的高等工程数学课程评价方案,以便为学生的学习提供有效的指导和促进。
二、目标与内容1. 评价目标高等工程数学课程的评价目标应当是全面客观的,既要充分考察学生在知识掌握和应用能力上的表现,又要考察学生的学习态度和思维能力。
具体包括以下几个方面:(1)学生能够熟练掌握高等数学、线性代数、概率论与数理统计等基本理论和方法。
(2)学生能够运用所学知识解决实际工程问题。
(3)学生具有较强的数学分析和推理能力。
(4)学生具有较强的自主学习能力和团队合作意识。
2. 评价内容高等工程数学课程的评价内容主要包括以下几个方面:(1)考试和测验:包括期中考试、期末考试和平时小测验。
主要考察学生对于课程所学知识的掌握程度和应用能力。
(2)实验和作业:包括实验报告和课堂作业。
主要考察学生的实际动手能力和解决问题的能力。
(3)学习表现:包括参与度、课堂表现等。
主要考察学生的学习态度和团队合作意识。
三、评价方法1. 传统评价方法传统的评价方法主要包括考试、测验和作业,要求学生在限定的时间内,回答一定数量的问题,从而考察学生对所学知识的掌握和理解程度。
这种方法的优点是客观、公正,能够准确反映学生的学习状况。
但是,它也存在一些缺点,比如不能全面考察学生的知识、技能和能力。
2. 综合评价方法综合评价方法是一种将不同的评价方法进行综合考虑,从而更加全面客观地评价学生的学习状况。
比如可以采用以下综合评价方法:(1)成绩评价:将考试、测验、作业等成绩进行综合计算,得出学生的最终成绩。
(2)学习表现评价:考察学生的学习态度、团队合作意识等。
(3)实践能力评价:考察学生的实际动手能力和解决问题的能力。
高等工程数学南京理工大学智慧树知到答案2024年第一章测试1.有限维线性空间上范数1,范数2之间的关系是A:2强于1 B:等价 C:1强于2 D:无法比较答案:B2.赋范线性空间成为Banach空间,需要范数足?A:完备性 B:可加性 C:不变性 D:非负性答案:A3.标准正交系是一个完全正交系的充要条件是满足Parseval等式A:错 B:对答案:B4.在内积空间中,可以从一组线性无关向量得到一列标准正交系A:对 B:错答案:A5.矩阵的F范数不满足酉不变性A:错 B:对答案:A6.与任何向量范数相容的矩阵范数是?A:F范数 B:极大行范数 C:算子范数 D:极大列范数答案:C7.正规矩阵的谱半径与矩阵何种范数一致A:极大行范数 B:极大列范数 C:矩阵2范数 D:算子范数答案:C8.矩阵收敛,则该矩阵的谱半径A:无从判断 B:大于1 C:小于1 D:等于1答案:C9.矩阵幂级数收敛,则该矩阵的谱半径A:等于1 B:大于1 C:无从判断 D:小于1答案:D10.正规矩阵的条件数等于其最大特征值的模与最小特征值的模之商A:错 B:对答案:B第二章测试1.l矩阵不变因子的个数等于( )A:矩阵的列数 B:矩阵的秩 C:行数和列数的最小值 D:矩阵的行数答案:B2.Jordan标准形中Jordan块的个数等于( )A:矩阵的秩 B:行列式因子的个数 C:不变因子的个数 D:初等因子的个数答案:D3.Jordan块的对角元等于其( )A:初等因子的零点 B:初等因子的次数 C:不变因子的个数 D:行列式因子的个数答案:A4.n阶矩阵A的特征多项式等于( )A:A的n个不变因子的乘积 B:A的n阶行列式因子 C:A的行列式因子的乘积 D:A的次数最高的初等因子答案:AB5.下述条件中,幂迭代法能够成功处理的有( )A:主特征值有两个,是一对共轭的复特征值 B:主特征值有两个,是一对相反的实数 C:主特征值是实r重的 D:主特征值只有一个答案:ABCD6.n阶矩阵A的特征值在( )A:A的n个行盖尔圆构成的并集与n个列盖尔圆构成的并集的交集中 B:A的n个列盖尔圆构成的并集中 C:A的n个行盖尔圆构成的并集中 D:都不对答案:ABC7.不变因子是首项系数为1的多项式A:错 B:对答案:B8.任意具有互异特征值的矩阵,其盖尔圆均能分隔开A:对 B:错答案:B9.特征值在两个或两个以上的盖尔圆构成的连通部分中分布是平均的A:错 B:对答案:A10.规范化幂迭代法中,向量序列uk不收敛A:对 B:错答案:B第三章测试1.二阶方阵可作Doolittle分解A:错 B:对答案:A2.若矩阵A可作满秩分解A=FG,则F的列数为A的()A:列数B:都不对C:秩D:行数答案:C3.矩阵的满秩分解不唯一.A:错 B:对答案:B4.酉等价矩阵有相同的奇异值.A:对 B:错答案:A5.求矩阵A的加号逆的方法有()A:满秩分解 B:Greville递推法 C:奇异值分解 D:矩阵迭代法答案:ABCD6.若A为可逆方阵,则A:错 B:对答案:B7.用A的加号逆可以判断线性方程组Ax=b是否有解?A:对 B:错答案:A8.A的加号逆的秩与A的秩相等A:错 B:对答案:B9.若方阵A是Hermite正定矩阵,则A的Cholesky分解存在且唯一.A:错 B:对答案:B10.是Hermite标准形.A:错 B:对答案:A第四章测试1.()是利用Gauss消去法求解线性方程组的条件.A:系数矩阵的顺序主子式均不为0B:系数矩阵满秩C:所有主元均不为0D:都不对答案:AC2.关于求解线性方程组的迭代解法, 下面说法正确的是().A:J法和GS法的敛散性无相关性B:若迭代矩阵谱半径不大于1, 则迭代收敛C:若系数矩阵A对称正定, 则GS迭代法收敛D:都不对答案:AC3.如果不考虑舍入误差, ()最多经n步可迭代得到线性方程组的解.A:SOR法B:共轭梯度法C:最速下降法D:都是答案:B4.关于共轭梯度法, 下面说法正确的是()A:相邻两步的残量正交 B:相邻两步的搜索方向正交 C:搜索方向满足A共轭条件 D:B和C都对答案:D5.下面哪些是求解线性方程组的迭代解法().A:共轭梯度法 B:三角分解解法 C:ABC都对 D:最速下降法答案:AD6.若系数矩阵A对称正定, 则()A:J法和GS法均收敛B:都不对 C:可用Cholesky法求解线性方程组D:SOR法收敛答案:C7.任意线性方程组都可以通过三角分解法求解.A:错 B:对答案:A8.最速下降法和共轭梯度法的区别在于选取的搜索方向不同.A:错 B:对答案:B9.广义逆矩阵法可用于任意线性方程组的求解.A:对 B:错答案:A10.Gauss消去法和列主元素法的数值稳定性相当.A:错 B:对答案:A第五章测试1.对于凸规划,如果x为问题的KKT点,则其为原问题的全局极小点A:对 B:错答案:A2.对于无约束规划问题,如果海塞阵非正定,我们可采用哪种改进牛顿法求解原问题?A:难以处理 B:构造一对称正定矩阵来取代当前海塞阵,并一该矩阵的逆乘以当前梯度的负值作为方向 C:牛顿法 D:阻尼牛顿法答案:B3.共轭梯度法中,为A:FR公式 B:DY公式 C:DM公式 D:PRP公式答案:A4.内点罚函数法中常用的障碍函数有A:三种都可以B:二次函数C:倒数障碍函数D:对数障碍函数答案:CD5.广义乘子罚函数的优点是在罚因子适当大的情形下,通过修正拉格朗日乘子就可逐步逼近原问题的最优解?A:错 B:对答案:B6.分子停留在最低能量状态的概率随温度降低趋于( ).A:2 B:3 C:0 D:1答案:D7.模拟退火算法内循环终止准则可采用的方法.A:固定步数 B:温度很低时 C:接受概率很低时 D:由接受和拒绝的比率控制迭代步答案:AD8.背包问题是组合优化问题吗?A:错 B:对答案:B9.单纯形算法是求解线性规划问题的多项式时间算法.A:对 B:错答案:B10.对于难以确定初始基本可行解的线性规划问题,我们引入人工变量后,可采用哪些方法求解原问题?A:单纯形法 B:无法确定 C:两阶段法 D:大M法答案:CD第六章测试1.如果不限定插值多项式的次数,满足插值条件的插值多项式也是唯一的()A:错 B:对答案:A2.改变节点的排列顺序,差商的值不变()A:错 B:对答案:B3.Hermite插值只能用插值基函数的方法求解()A:错 B:对答案:A4.在最小二乘问题中,权系数越大表明相应的数据越重要()A:错 B:对答案:B5.加窗傅里叶变换时频窗的长宽比是信号自适应的()A:对 B:错答案:B6.傅里叶变换域的点和时间域上的点是一一对应的()A:对 B:错答案:B7.若f(t)的傅里叶变换为,则 f(2t)的傅里叶变换为 ( )A: B: C:答案:B8.小波函数对应了()A:低通滤波器 B:高通滤波器答案:B第七章测试1.有界区域上的弦振动方程定解问题可以用傅里叶积分变换法求解。