小学数学基础概念:比和比例
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
小学五年级数学教案:比和比例的概念与应用教学主题比和比例的概念与应用教学目标知识与技能:掌握比的概念及其基本性质,能够正确地表示和比较两个数的比。
理解比例的概念,学会设置和解比例,并应用比例解决实际问题。
学习比与比例在现实生活中的应用,如比例尺的使用、浓度的计算等。
过程与方法:通过具体例题和操作演示,帮助学生理解比和比例的概念及其应用。
通过实践操作,如使用比例尺绘图、配置溶液,培养学生的实际操作能力和数学应用意识。
通过小组合作和讨论,帮助学生解决涉及比和比例的实际问题,提升他们的数学应用意识。
情感态度与价值观:培养学生认真分析问题、正确计算的良好学习习惯。
鼓励学生在学习中多应用比和比例知识解决实际问题,增强他们的数学应用意识和团队合作精神。
教学重点比的概念及其表示方法。
比例的设置与解法。
比与比例在实际问题中的应用。
教学难点理解并正确设置和解比例。
比与比例在实际问题中的灵活应用。
教学准备教具:PPT课件、比和比例的演示材料、练习册、绘图工具(如尺子、比例尺)、白板与记号笔。
教学材料:与比和比例应用相关的实际问题(如地图比例尺的使用、配制溶液的浓度计算等)。
教学过程一、导入新课情境引入:提问:“在日常生活中,你们是否遇到过比较两个量大小的情况?比如,比较两种饮料的甜度,或者两个人的身高差距?”提问:“你们有没有使用过地图?知道地图上的距离和实际距离有什么关系吗?我们可以通过比和比例来解决这些问题。
”揭示课题:通过对实际问题的讨论,引出本节课的主题:“比和比例的概念与应用”,并强调比和比例在日常生活中的广泛应用。
二、新授课比的概念与表示方法比的定义:定义:比是表示两个数之间关系的数学表达式,如a比b记作a,读作“a比b”。
例题讲解:例题1:表示5和10的比,并简化这个比。
解答:5和10的比表示为5:10,简化为1:2。
比的性质:基本性质:比的前项和后项同时乘或除以相同的非零数,比值不变。
例题讲解:例题2:将比6:8简化,并证明比值不变。
【导语】⽐和⽐例既有联系,⼜有区别。
联系:⽐和⽐例有着密切联系。
⽐的意义是两个数相除⼜叫做两个数的⽐,⽽⽐例的意义是表⽰两个⽐相等的式⼦。
⽐是表⽰两个数相除,有两项;⽐例是⼀个等式,表⽰两个⽐相等,有四项。
以下是整理的《⼩学⽣奥数⽐和⽐例知识点及练习题》相关资料,希望帮助到您。
1.⼩学⽣奥数⽐和⽐例知识点 ⽐和⽐例: ⽐:两个数相除⼜叫两个数的⽐。
⽐号前⾯的数叫⽐的前项,⽐号后⾯的数叫⽐的后项。
⽐值:⽐的前项除以后项的商,叫做⽐值。
⽐的性质:⽐的前项和后项同时乘以或除以相同的数(零除外),⽐值不变。
⽐例:表⽰两个⽐相等的式⼦叫做⽐例。
a:b=c:d。
⽐例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。
正⽐例:若A扩⼤或缩⼩⼏倍,B也扩⼤或缩⼩⼏倍(AB的商不变时),则A与B成正⽐。
反⽐例:若A扩⼤或缩⼩⼏倍,B也缩⼩或扩⼤⼏倍(AB的积不变时),则A与B成反⽐。
⽐例尺:图上距离与实际距离的⽐叫做⽐例尺。
按⽐例分配:把⼏个数按⼀定⽐例分成⼏份,叫按⽐例分配。
2.⼩学⽣奥数⽐和⽐例练习题 1、乘坐某路汽车成年⼈票价3元,⼉童票价2元,残疾⼈票价1元,某天乘车的成年⼈、⼉童和残疾⼈的⼈数⽐是50:20:1,共收得票款26740元,这天乘车中成年⼈、⼉童和残疾⼈各有多少⼈? 提⽰:单价⽐:成年⼈:⼉童:残疾⼈=3:2:1 ⼈数⽐:50:20:1 2、“希望⼩学”搞了⼀次募捐活动,她们⽤募捐所得的钱购买了甲、⼄、丙三种商品,这三种商品的单价分别为30元、15元和10元。
已知购得的甲商品与⼄商品的数量之⽐为5:6,⼄商品与丙商品的数量之⽐为4:11,且购买丙商品⽐购买甲商品多花了210元。
提⽰:根据已知条件可先求三种商品的数量⽐。
3、A、B、C是三个顺次咬合的齿轮。
当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最⼩数分别是多少? 提⽰:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反⽐例。
八.比和比例239.“比”和“比值”这两个概念有什么联系和区别?在除法中,两个数相除时,就叫做两个数的比。
一般分为两种情况:(1)比较同类量的倍数关系,表示其中一个数是另一个数的几倍或几分之几。
例如:红光小学有女教师40人,男教师12人。
表示女教师与男教师人数的比是40∶12(或化简为10∶3),这也表示女教师人数是男教师人数(2)两个不同类量相比,是表示一个新的量。
例如:总价∶数量,表示单价。
路程∶时间,表示速度。
总产量∶亩数,表示亩产量。
“比”是由前项∶后项组成的,而“比值”是前项除以后项所得的商。
如:由此可以看出:“比”和“比值”这两个概念是有区别的。
但两者之间也是有联系的,因为没有前面的“比”,就不会有后面的“比值”。
就一般而言,“比”和“比值”都是一个完整比的组成部分。
除此之外,还要看到“比”和“比值”也有着一致性。
从广义上解释,两个数的比是两个数的商,这个商也是比值。
如:由于比中的比号相当于分数中的分数线,所以用比的形式表示,就是7∶240.比、除法、分数这三者之间,有什么联系和区别?在小学数学教材中,从除法到分数,又到比,这不仅是一个发展过程,三者之间也存在着内在的必然联系。
在比的教与学中,揭示它们之间的联系,是极其必要的。
比的前项相当于除法中的被除数,分数中的他子;后项相当于除法中的除数,分数中的分母;比号柑当于除法中的除号,分数中的分数线;比值相当于除法中的商,分数的分数值。
例如:在比中,前项÷后项=比值 a∶b=c在除法中,被除数÷除数=商 a÷b=c如上所述,比、除法、分数三者之间有着如此密切的联系,目的在于:有关比的运算,可以转化为除法运算或分数形式,而又需要重新建立比的运算法则。
它们之间的区别,从意义上区分有:“比”是表示两个数的倍数;“除法”表示的是一种运算;“分数”则是一个数。
241.“求比值”和“化简比”有区别吗?在比和比例中,求比值是常用的,但也需要把较复杂的整数比(不包括含有分数、小数的比),化成简单的整数比,这两者是有区别的。
小学数学思维导图第五章比和比例正比例和反比例比例正比例和反比例是数学中两个重要的概念,它们可以帮助我们理解和解决许多实际问题。
在这一章节中,我们将通过思维导图的方式,深入探讨正比例和反比例的概念、性质以及它们在实际中的应用。
一、正比例1. 定义:如果两个相关联的量,它们的比值(商)始终保持不变,那么它们就是成正比例的关系。
用数学公式表示,即 y = kx,其中 k 是常数,表示比例关系。
2. 性质:a. 当一个量增大时,另一个量也会相应地增大。
b. 当一个量减小时,另一个量也会相应地减小。
c. 两个量的比值始终保持不变。
3. 应用:a. 计算速度:速度 = 路程÷ 时间。
当路程固定时,速度和时间成正比。
b. 计算工资:工资 = 工作量× 单价。
当单价固定时,工资和工作量成正比。
二、反比例1. 定义:如果两个相关联的量,它们的乘积始终保持不变,那么它们就是成反比例的关系。
用数学公式表示,即 xy = k,其中 k 是常数,表示比例关系。
2. 性质:a. 当一个量增大时,另一个量会相应地减小。
b. 当一个量减小时,另一个量会相应地增大。
c. 两个量的乘积始终保持不变。
3. 应用:a. 计算速度:速度 = 路程÷ 时间。
当路程固定时,速度和时间成反比。
b. 计算工资:工资 = 工作量× 单价。
当工作量固定时,工资和单价成反比。
小学数学思维导图第五章比和比例正比例和反比例比例三、比例关系的识别1. 正比例关系的识别:观察两个量的变化趋势,如果它们同时增加或减少,且它们的比值保持不变,那么可以判断它们成正比例关系。
例如,在绘制图表时,如果数据点在一条通过原点的直线上,那么这些数据点就表示正比例关系。
2. 反比例关系的识别:同样地,观察两个量的变化趋势,如果它们一个增加而另一个减少,且它们的乘积保持不变,那么可以判断它们成反比例关系。
例如,在绘制图表时,如果数据点在一条双曲线上,那么这些数据点就表示反比例关系。
小升初毕业总复习模块四:比和比例比和比例的意义和性质考点一:比1.比的意义两个数相除又叫做两个数的比。
比的后项不能为0。
2.比值的意义比的前项除以后项所得的商叫做比值。
比值是一个数,可以是整数、分数或小数。
3.比与除法、分数的关系(1)比、除法和分数之间的关系:(1)比、除法和分数之间的区别比表示两个数量间的倍比关系;除法是一种运算;分数是一个数。
4.比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。
5.化简比和求比值考点二:比例1.比例的意义:表示两个比相等的式子叫做比例。
如:1:2=3∶62.组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
3.比例的基本性质:在比例里,两个外项的积等于两个内项的积。
4.解比例:根据比例的基本性质;如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例题精讲例1、(1)一辆汽车5小时行了300千米,这辆汽车行驶的路程和时间的比是( ),比值是( );这辆汽车行驶的时间和路程的比是( ),比值是( )。
(2)5:6=( )÷( )=( )。
(3)解比例:3∶x=4∶8。
针对训练1.(1)甲数是40,乙数是50,甲数和乙数的比是( ),比值是( );乙数和甲数的比是( ),比值是( )。
(2)8÷16=( ):( )=( )。
(3)解比例:x ∶15=10∶30例2、(1)一个比的前项是9,如果前项加上18,要使比值不变,后项应该( )。
(2)一项工程,甲队单独做要8天完成,乙队单独做要10天完成。
甲乙两队的工作效率之比是( )(3)如果甲比乙多0.8,甲:乙=4∶3,列出比例,并解比例。
针对训练1、(1)一个比的前项是6,如果前项加上24,要使比值不变,后项应该( )。
(2)一项工程,甲队单独做要5天完成,乙队单独做要6天完成。
甲乙两队的工作效率之比是( )。
比和比例的关系及应用比和比例是数学中常见的概念,它们描述了不同物体或量之间的关系。
比可以理解为两个数的比较,比例则表示两个相似图形或等比数列中的对应关系。
在现实生活和数学问题中,比和比例广泛应用于各个领域。
比的概念最早出现在古代的商业交易中,用来表示商品的价格和数量之间的关系。
比通常是两个数的商,例如3:1表示两个物体的数量比为3比1。
比的大小可以给出物体的数量关系,如比为1:2,表示第一个物体比第二个物体少一倍。
比的应用在商业中非常常见。
比如在超市购物时,商品的价格通常以比率的形式标示,例如“买一送一”就是指两个商品的价格的比例为1比1。
这种比例可以帮助我们快速计算出优惠的程度。
在投资领域,比例也被广泛用于计算收益率和利润的比率。
比的概念还在几何中得到应用。
在平面几何中,比可以用来表示线段的长度比例。
例如在一个长方形中,两个边的比为3:2,则表示一个边的长度是另一个边的2/3。
这种比例关系可以帮助我们计算出未知边的长度。
比例是一种更加广义的概念,它用来描述两个相似图形之间的对应关系。
在几何中,两个形状相似意味着它们的对应边长之间存在一个比例关系。
比例可以用来计算缩放图形的尺寸,或者计算相似图形的面积和体积。
比例还可以用来解决三角形的相似性问题,以及计算圆的周长和面积。
在数学问题中,比和比例也被广泛应用。
例如,在解决比例问题时,我们可以利用已知比例的两个数找到未知数。
比如题目中给出“男生和女生的比例为3:5,男生有120人,求女生的人数”。
我们可以先找到男生和女生总人数的比例,再通过代入已知男生的数量求出未知女生的数量。
比例还可以应用于解决比例方程。
比例方程是指含有未知比例的方程,可以用来解决一些实际问题,例如计算混合物中的成分比例。
比如题目中给出“一个杯子里的水和果汁的比例为2:5,杯子里一共有200毫升液体,求水和果汁的容量各是多少”。
我们可以设水的容量为2x,果汁的容量为5x,通过设立方程可以解得x=40,进而得到水和果汁的容量。
小升初专题:比与比例对于即将面临小升初的同学们来说,“比与比例”是数学学习中一个重要的知识点。
这部分内容不仅在小学阶段的数学考试中经常出现,也为今后初中数学的学习打下了基础。
接下来,让我们一起深入了解比与比例的奥秘。
首先,我们来聊聊“比”。
什么是比呢?简单来说,两个数相除就叫做这两个数的比。
比如说,6÷3 可以写成 6:3 的形式,“:”就是比号。
在比中,有前项和后项之分,6 是前项,3 是后项。
比是反映两个量之间的关系。
比有一些重要的性质。
比如,比的前项和后项同时乘或除以相同的数(0 除外),比值不变。
这就好比把一个蛋糕平均分成几份,不管是分成 2 份还是 4 份,每一份所占的比例是不变的。
再来说说比例。
比例是表示两个比相等的式子。
例如,2:3 = 4:6,这就是一个比例。
在比例中,有内项和外项。
在 2:3 = 4:6 中,2 和 6是外项,3 和 4 是内项。
而且,内项之积等于外项之积,这是判断两个比能否组成比例的重要依据。
比和比例在生活中有很多实际的应用。
比如说,我们在调配饮料时,如果要按照一定的比例来混合不同的成分,就需要用到比例的知识。
再比如,在地图上,会标明比例尺,通过比例尺,我们可以知道实际距离和图上距离的关系,从而计算出实际的距离。
在做比与比例相关的题目时,有一些常见的题型和解题方法。
一种常见的题型是化简比。
化简比就是把一个比化成最简整数比。
比如 12:18,我们可以找出 12 和 18 的最大公因数 6,然后同时除以 6,得到 2:3,这就是最简整数比。
另一种题型是解比例。
比如,已知 3:5 = x:15,我们可以根据比例的性质,得到 5x = 3×15,然后解方程求出 x 的值。
还有一种题型是根据已知条件求出比或者比例。
比如,小明有 10个苹果,小红有 15 个苹果,那么小明和小红拥有苹果数的比就是10:15,化简后为 2:3。
为了更好地掌握比与比例,同学们在学习的过程中要多做练习题,加深对概念的理解和运用。
小学数学基础概念:比和比例【百分数】表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率和百分比。
【利息】取款时银行多付的钱叫做利息。
【本金】存入银行的钱叫做本金。
【利率】利息与本金的百分比叫做利率。
利率由银行规定,有按年计算的,也有按月计算的。
【利息的计算公式】利息=本金×利率×时间【成数】几成就是十分之几,或者百分之几十。
例如三成就是十分之三,改写成百分数就是30% 。
【折扣】“几折”就表示十分之几,也就是百分之几十。
【比】两个数相除又叫做两个数的比。
【比号】比号用“:”表示,读作比。
【比的前项】比号前面的数叫做比的前项。
【比的后项】比号后面的数叫做比的后项。
【比值】比的前项除以后项所得的商,叫做比值。
【比例】表示两个比相等的式子叫做比例。
【比例的项】组成比例的四个数,叫做比例的项。
【比例的外项】组成比例的四个项中,两端的两项叫做比例的外项。
【比例的内项】组成比例的四个项中,中间的两项叫做比例的内项。
例如80:2=200:5,其中2和200是内项,80和5
是外项。
【解比例】根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。
求比例的未知项,叫做解比例。
例如:解比例3:8=15:x 解:3x=15×8 x=40 小学数学练习机49.0版最好的小学数学辅导和练习软件,自动出题,自动批改。
【比例尺】图上距离和实际距离的比,叫做这幅图的比例尺。
为了计算简便,通常把比例尺写成前项为1的比。
图上距离:实际距离=比例尺
【成正比例的量】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
例如路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。
【成反比例的量】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系。
【比的基本性质】比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。
这叫做比的基本性质。
【比例的基本性质】在比例中,两个外项的积等于两个内项的积。
这叫做比例的基本性质。
【百分数写法】百分数通常不写成分数的形式,而在原来
分子后面加上百分号“%”来表示。
例如百分之九十写成90% 【百分数与小数互化】把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
例如
0.25=25%,27%=0.27
【百分数与分数互化】把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
【整数比化简的方法】整数比的化简根据比的基本性质,把比的前项和后项同时除以比的前项和后项的最大公约数,得到最简比。
要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、
爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?
【小数比化简的方法】小数比的化简根据比的基本性质,把比的前项和后项同时扩大相同的倍数,化成整数比,再把整数化简。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
【分数比化简的方法】含有分数的比的化简,用分母的最小公倍数去乘比的前项和后项,把分数比化成整数比,再把整数比化简。