小学数学比和比例应用题 知识点全面
- 格式:doc
- 大小:49.50 KB
- 文档页数:4
复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
基本性质化简比的依据。
解比例的依据。
知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
(一定)k xy =反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
知识点精讲比例应用题一、简单比例关系应用题。
1. 已知甲、乙两数的比是5:3,甲数是25,求乙数。
- 解析:设乙数为x,因为甲、乙两数的比是5:3,即(甲)/(乙)=(5)/(3)。
已知甲数是25,则(25)/(x)=(5)/(3),交叉相乘得5x = 25×3,5x=75,解得x = 15。
2. 一种合金中铜和锌的比是2:3,现在有铜12克,需要多少克锌才能制成这种合金?- 解析:设需要锌x克,因为铜和锌的比是2:3,即(铜)/(锌)=(2)/(3)。
已知铜12克,则(12)/(x)=(2)/(3),交叉相乘得2x=12×3,2x = 36,解得x = 18克。
3. 某班男、女生人数比是4:5,男生有20人,这个班共有多少人?- 解析:设女生有x人,因为男、女生人数比是4:5,(男生人数)/(女生人数)=(4)/(5),已知男生20人,则(20)/(x)=(4)/(5),交叉相乘得4x=20×5,4x = 100,解得x = 25人。
那么这个班共有20 + 25=45人。
二、比例在工程问题中的应用。
4. 一项工程,甲、乙两队的工作效率比是3:4,甲队单独做需要12天完成,乙队单独做需要多少天完成?- 解析:工作总量 = 工作效率×工作时间。
设乙队单独做需要x天完成。
因为甲、乙两队的工作效率比是3:4,设甲队工作效率为3a,乙队工作效率为4a。
甲队单独做需要12天完成,工作总量为3a×12 = 36a。
乙队工作总量也为36a,工作效率为4a,则工作时间x=(36a)/(4a)=9天。
5. 甲、乙两个工程队合修一条路,甲、乙两队的工作效率比是5:3,两队合修6天完成,单独修甲队比乙队少用多少天?- 解析:设甲队工作效率为5a,乙队工作效率为3a,工作总量=(甲队工作效率 + 乙队工作效率)×工作时间=(5a + 3a)×6=48a。
比和比例知识点总结
嘿,朋友们!今天咱来好好聊聊比和比例这个超有意思的知识点!
咱先来说说比吧!就像你有 5 个苹果,我有 3 个苹果,那咱俩苹果数量的比就是 5:3 呀。
比就是表示两个数相除的关系呢!比如说,足球队里男生有 10 人,女生有 5 人,那男生和女生的人数比就是 10:5 啦。
再讲讲比例。
假如有个配方,说盐和面粉的比例是 1:4,那就是说每 1 份盐要搭配 4 份面粉哦。
就好像做蛋糕,得按照正确的比例来,不然味道可就不对喽!比如调和油漆的时候,颜色和稀释剂比例要是不对,那颜色可就没法达到想要的效果啦!
比和比例可是紧密相关的呢!比例不就是由两个或多个比组成的嘛。
想象一下,比赛跑步,你的速度和我的速度之比,再和别人的速度之比,如果能放在一起看,不就是个比例关系嘛。
那它们有啥用呢?用处可大啦!盖房子的时候,工人要根据设计图纸上的比例来施工,不然房子不就盖歪啦?还有做衣服,尺寸比例得拿捏得死死的,不然穿起来多别扭呀!
哎呀,比和比例真的超级重要,别小看它们哦!它们就像生活中的小魔法师,在各种地方发挥着神奇的作用。
大家一定要好好掌握呀,这样才能在生活和学习中游刃有余呢!咱可不能小瞧了这些知识点,它们能帮咱们解决好多实际问题呢,不是吗?。
六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
复习课:比和比例知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:〜 k (一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量, 就不成比例4、正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。
(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量总份数=平均每份的量(归一)",再用"一份的量各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出X。
2、用正、反比例知识解答应用题的步骤(1)分析数量关系。
判断成什么比例。
(2)找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
(3)解比例式。
设未知数为X,并代入等量关系式,得正比例式或反比例式。
(4)解比例。
(5)检验并写出答语。
精讲典型题例题1填空(1)一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是(): ()(2)把2米:4厘米化成最简单的整数比是(),比值是()。
六年级比和比例知识点在六年级的数学学习中,比和比例是一个重要的知识点。
它们可以帮助我们更好地理解和比较数值之间的关系,进而解决实际生活和数学问题。
本文将详细介绍六年级比和比例的相关知识点。
一、比的概念和表示方法比是用来比较两个或多个数值之间的关系的一种数学工具。
当两个数值之间的比例关系可以用分数表示时,我们就可以用比来描述它们之间的关系。
比的表示方法通常为“:”(冒号)或者“/”(斜杠),例如:1:2、3/5。
二、比的基本性质1. 相等比:当两个比的值相等时,它们之间的数值大小关系也是相等的。
例如,1:2和5:10表示的比是相等的。
2. 乘法公式:当一个比的两个数值分别乘以同一个数时,它们之间的关系仍保持不变。
例如,2:5乘以2得到4:10。
3. 除法公式:当一个比的两个数值分别除以同一个非零数时,它们之间的关系仍保持不变。
例如,4:10除以2得到2:5。
三、比的应用1. 比的比较:通过比的大小关系,我们可以判断数值的大小。
例如,比较1:2和3:4,我们可以发现3:4大于1:2,即3:4表示的数值更大。
2. 比的化简:当一个比的两个数值可以约分为最简形式时,我们可以将其化简。
例如,10:30可以化简为1:3。
3. 比的扩大和缩小:通过乘法公式,我们可以将一个比的两个数值同时乘以同一个数,将其扩大或缩小。
例如,2:3可以扩大为4:6,缩小为1:1.5。
四、比例的概念和表示方法比例是用来表示两个或更多相关数值之间的相对关系的一种数学工具。
比例通常以“:”或者“/”表示,例如:1:2或者1/2。
比例中的两个数值分别称为“比例项”。
五、比例的性质和应用1. 比例的基本性质:在一个比例中,四个比例项中的任意三个比例项之间,都可以用第四个比例项来表示它们之间的关系。
例如,在1:2=3:6中,我们可以使用等号将1:2和3:6互相替换。
2. 比例的比较:通过比例的大小关系,我们可以判断相关数值的大小关系。
例如,1:2和3:4,我们可以发现3:4大于1:2。
复习课 :比和比例知识点一 :比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9: 6=9:6=3: 2↑↑↑↑↑前项比号后项比值基本性质比的前项和后项同时乘或除在比例里,两个外项的积等于以相同的数(0 除外),比值两个内项的积。
不变。
化简比的依据。
解比例的依据。
知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的用前项除以后项一个数(是整数、分商数或小数)化简比把两个数的比化简成前项和后项同时乘或一个比最简单的整数比除以相同的数( 0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:y k(一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系名称不同点意义不相同正比例两种量中相对应的两个数的比值,也就是商一定反比例两种量中相对应的两个数的积一定变化方向不相同关系式不同一种量扩大(或yk (一定)缩小),另一种量x也随之扩大(或缩小)。
一种量扩大(或xy k (一定)缩小),另一种量也随之缩小(或扩大)。
六年级比和比例应用题一、比和比例的基础知识1. 比的意义- 两个数相除又叫做两个数的比。
例如:公式,其中公式是前项,公式是后项,公式是比号。
- 比值是比的前项除以后项所得的商,如公式的比值为公式。
2. 比例的意义- 表示两个比相等的式子叫做比例。
例如:公式,其中公式和公式是比例的外项,公式和公式是比例的内项。
- 比例的基本性质:在比例里,两个外项的积等于两个内项的积。
如在公式中,公式。
二、比和比例应用题类型及解析1. 按比例分配问题- 题目:学校把公式本图书按照公式分给四、五、六年级,每个年级各分得多少本图书?- 解析:- 首先求出总份数:公式(份)。
- 然后计算每份的本数:公式(本)。
- 四年级分得的本数:公式(本)。
- 五年级分得的本数:公式(本)。
- 六年级分得的本数:公式(本)。
2. 比例尺问题- 题目:在一幅比例尺为公式的地图上,量得甲、乙两地的距离是公式厘米,那么甲、乙两地的实际距离是多少千米?- 解析:- 根据比例尺的定义,图上距离与实际距离的比等于比例尺。
设甲、乙两地的实际距离是公式厘米。
- 可得公式,根据比例的基本性质公式厘米。
- 因为公式千米公式厘米,所以公式厘米公式千米。
3. 比例关系问题(正比例和反比例)- 正比例题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 因为速度一定,路程和时间成正比例关系。
设公式小时行驶公式千米。
- 速度公式路程公式时间,先求出速度为公式(千米/小时)。
- 可列出比例公式,根据比例的基本性质公式,解得公式千米。
- 反比例题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。
如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的,方砖的面积和所需块数成反比例关系。
- 边长为公式分米的方砖面积为公式平方分米,公式块的面积就是公式平方分米。
- 边长为公式分米的方砖面积为公式平方分米。
比和比例一、重要知识点比和比值:两个数相除又叫做两个数的比。
比的大小叫比值。
比的性质:比的前项和后项同乘以或除以相同的数(0除外),比值不变。
按比例分配:把一个量按一定比例分为几份,叫做按比例分配。
比例及其性质:表示两个比相等的式子叫做比例。
a :b=c :d 或b a = dc ,则ad=bc 。
比例尺:图上距离与实际距离的比叫做比例尺。
正比例:①两种相关联的量,一种量变化,另一种量也随着变化,②这两种量中相对应的两个数值的比值(商)一定,这两种量就叫做成正比例的量,他们的关系叫正比例关系。
[字母表示:x/y=к(一定)]反比例:①两种相关联的量,一种量变化,另一种量也随着变化,②这两种量中相对应的两个数值的积一定,这两种量就叫做成反比例的量,他们的关系叫反比例关系。
[字母表示:ху=к(一定)]二、经典例题知识点1、比和比的应用例1:王军行走的路程比陈晨多41,而陈晨行走的时间却比王军多101,求王军与陈晨的速度比。
学生自测:甲、乙两个长方形的周长相等,甲的长与宽的比是3:2,乙的长与宽的比是7:5,它们的面积的比是多少? ②甲仓有粮100吨,乙仓有粮80吨,从甲仓取出多少吨给乙仓,使甲、乙两仓粮食的吨数比是2:3?③A 、B 两地相距320千米,甲、乙两车分别从A 、B 两地同时相向而行,2小时相遇,已知甲乙速度比是3:5,乙每小时行多少千米?④有一块铜锌合金,其中铜和锌的比是2:3,现在加入锌6克,共得新合金36克。
求新合金中铜与锌的比。
知识点2、比与比例的基本性质例.甲商品的价钱是乙商品价格的7/3,如果这两种商品的价格分别上涨70元,那么它们的价格比就是7:4,这两种商品原来的价钱各是多少元?学生自测:①小明和小强原有的图纸之比是4:3,小明又买来15张,小强用掉了8张,他们现有的图纸之比是5:2,原来两人各有多少张图画纸?②学校原有跳绳36根,其中短跳绳根数与长跳绳根数比为7:2,又买进一批短跳绳后,短跳绳根数与长跳绳根数比是23:4,现在学校一共有跳绳多少根?③分数47/97,分子、分母分别加上、减去同一个数以后,约分后的最简分数为 3/5,求分子加上、分母减去的这个数。
小学比例知识点总结一、概念和基本概念1. 比例的概念比例是两个或两个以上的数量之间的相等关系。
例如,A:B=2:3表示“A和B之间的比是2:3”,表示A的数量是B的数量的2/3。
2. 比例的性质比例的三个性质是:1)比例是相等的;2)比例的交换性;3)比例的延伸性。
3. 比例的表示方法比例的表示有几种常用的方法,分别是:1)用冒号表示;2)用分数表示;3)用百分数表示;4)用小数表示。
4. 比率的概念比率是两个数量的比,通常用a: b表示。
二、比例的应用1. 比例的求解求解比例的问题主要有两种方法:一种是找出两个比例的比值,另一种是找出两个比例的全比值。
2. 比例的等价如果两个比例A:B和C:D之间相等,则称它们为等价比例。
等价比例的应用很广泛,可以用于解决很多实际问题。
3. 比例的变化比例的变化是指比例中各个部分的数量发生变化的情况。
对于比例的变化,可以通过等比例关系和比例求解的方法进行研究和应用。
4. 比例的计算在实际问题中,我们常常需要进行比例的计算,比如通过百分比计算出某一种物品在总物品中的量,或者根据已知比例计算出某一种物品的数量等。
三、实际问题中的比例1. 比例的应用比例在日常生活中有很多应用,例如:商业上的利润分成;食品的配方;地图的比例尺等都涉及到比例的应用。
2. 小数、分数和百分数在比例的计算中,常常需要将小数、分数和百分数相互转换。
对于这些数值的应用,我们需要了解它们的概念和运算规则。
3. 比例与图形比例与图形之间有着密切的关系。
比如,在地图上的比例尺就是地图长度和实际长度的比例,通过这个比例尺我们可以计算出地图上的实际距离。
4. 倍数在比例中,倍数是一个非常重要的概念。
比例的变化可以通过倍数来反映,另外在实际问题中,倍数的应用也非常广泛。
四、小学常见的比例问题1. 分成的比例常见的问题是:某个数按照一定的比例分成几部分,求出每部分的数量。
2. 推论的比例当已知若干个数的比例时,可以通过这个比例推论出某一个数的数量。
小学五年级数学解析:比和比例的概念与应用一、比的概念与表示方法1. 比的定义定义:比是表示两个数之间关系的数学表达式,如a比b记作a,读作“a比b”。
例题解析:例题1:表示5和10的比,并简化这个比。
解答:5:10,简化为1:2。
2. 比的性质基本性质:比的前项和后项同时乘或除以相同的非零数,比值不变。
例题解析:例题2:将比6:8简化,并证明比值不变。
解答:6:8 = 3:4,证明:6 ÷ 8 = 3 ÷ 4 = 0.75,比值不变。
二、比例的概念与解法1. 比例的定义定义:比例是表示两个比相等的数学表达式,如a= c,读作“a比b等于c比d”。
例题解析:例题3:判断6:9和10:15是否成比例。
解答:6 ÷ 9 = 0.666…,10 ÷ 15 = 0.666…,所以6:9与10:15成比例。
2. 解比例的方法交叉相乘法:若a= c,则a × d = b × c。
例题解析:例题4:已知比例3= 5:10,求x的值。
解答:3 × 10 = 5 × x,30 = 5x,x = 6。
三、比与比例的实际应用1. 比例尺的使用例题解析:题目:在一张地图上,比例尺为1:50000,测量两个城市的距离为2厘米,求实际距离。
解答:实际距离 = 2厘米× 50000 = 100000厘米 = 1公里。
2. 配制溶液的浓度计算例题解析:题目:配制一杯糖水,要求糖与水的比为1:4,若糖的质量为50克,求需要加多少水?解答:糖:水 = 1:4,糖的质量为50克,则水的质量为50克× 4 = 200克。
3. 日常生活中的比例问题例题解析:题目:某物品打七折后售价为140元,问原价是多少?解答:设原价为x元,则7/10x = 140,解得x = 200元。
四、练习题1. 比的计算问题1:将比9:12简化。
解答:9:12 = 3:4。
比和比例知识点整理六年级比和比例是数学中的重要概念,是数值之间的关系的一种表示方法。
在日常生活和学习中,我们常常会遇到比和比例的问题,比如购物打折、食谱的配料比例等等。
下面是比和比例的相关知识点整理。
一、比的概念及相关性质比是两个相同性质的量之间的大小关系的一种表示方法。
比的常见表示方法有: 使用冒号(:)表示,如a:b;使用分数表示,如$\dfrac{a}{b}$。
比的相关性质:1. 如果$a:b=c:d$,则可以得到$a:b::c:d$,即等比例关系。
2. 如果$a:b=c:d$,则$\dfrac{a}{c}=\dfrac{b}{d}$,即比的两个项比例相等。
3. 如果$a:b=c:d$,则有$a \times d = b \times c$,即比的两个项的乘积相等。
二、比例的概念及相关性质比例是比的推广形式,是两个或多个相同性质的量之间的大小关系的一种表示方法。
常用字母$A, B, C, D$表示,可以表示为$A:B::C:D$。
比例的相关性质:1. 如果$A:B=C:D$,则可以得到$A:B::C:D$,即等比例关系。
2. 如果$A:B=C:D$,则$\dfrac{A}{B}=\dfrac{C}{D}$,即比例的两个项比例相等。
3. 如果$A:B=C:D$,则有$A \times D = B \times C$,即比例的两个项的乘积相等。
4. 如果$A:B=C:D$,则也可以写成$\dfrac{A}{C}=\dfrac{B}{D}$,即比例的两个项的比也相等。
三、相似和全等图形中的比例在相似图形中,对应边的长度之间的比称为相似比或相似比例。
在全等图形中,对应边的长度相等,可以看作是相似比例的特殊情况。
四、比例的计算1. 已知比例中的三个量,可以通过乘法和除法来计算比例中的第四个量。
例如,已知$5:8=15:x$,可以通过等式$\dfrac{5}{8}=\dfrac{15}{x}$来计算$x$的值,得到$x=24$。
比和比例总结讲解+例题解析
本文将对比和比例进行总结讲解,并通过例题解析的方式帮助读者更好地理解这两个概念。
一、比的概念
比是指两个量的大小关系。
比可以用“:”或“/”表示,比如“2:3”或“2/3”,表示第一个数量是第二个数量的2/3倍。
二、比例的概念
比例指两个或多个比的关系。
如果两个比相等,我们就说它们成比例。
比例也可以用“:”或“/”表示,比如“2:3=4:6”或“2/3=4/6”,表示两个比成比例。
三、比例的性质
1. 比例的四个量中,如果已知其中三个量,可以求出第四个量。
2. 如果两个比成比例,它们的各项之比相等。
3. 如果两个比成比例,它们的倒数也成比例。
四、例题解析
例1:如果2:3=4:x,那么x的值是多少?
解析:因为2:3=4:x,所以2/3=4/x。
通过交叉相乘,得到2x=12,所以x=6。
例2:如果3:4=x:20,那么x的值是多少?
解析:因为3:4=x:20,所以3/4=x/20。
通过交叉相乘,得到3x=80,所以x=80/3。
通过以上例题的解析,我们可以发现比和比例的概念和性质十分
重要,掌握它们能够帮助我们解决实际问题,同时也是数学学习中的基础知识。
比和比例知识点归纳标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]比和比例知识点归纳1、比的意义和性质比的意义:两个数相除又叫做两个数的比。
例如:9 : 6 = 1.5前比后比项号项值比的基本性质:比的前项和后项都乘以或除以相同的数(零除外),比值不变。
应用比的基本性质可以化简比。
习题:一、判断。
1、比的前项和后项同时乘一个相同的数,比值不变。
()2、比的基本性质和商的基本性质是一致的。
()3、10克盐溶解在100克水中,这时盐和盐水的比是1:10. ()4、比的前项乘5,后项除以1/5,比值不变。
()5、男生比女生多2/5,男生人数与女生人数的比是7:5. ()6、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达不同。
()7、2/5既可以看做分数,也可以看做是比。
()二、应用题。
1.一项工程,甲单独做20天完成,乙单独做30天完成。
(1)写出甲、乙两队完成这项工程所用的时间比,并化简。
(2)写出甲、乙两队工作效率比,并化简。
2.育才小学参加运动会的男生人数和女生人数的比是5∶3,其中女生72人。
那么男生比女生多多少人3.食品店有白糖和红糖共360千克,红糖的质量是白糖的。
红糖和白糖各有多少千克4.甲、乙两个车间的平均人数是162人,两车间的人数比是5∶7。
甲、乙两车间各有多少人?5.有一块长方形地,周长100米,它的长与宽的比是3∶2。
这块地有多少平方米?6.建筑用混凝土是由水泥、沙、石子按5∶4∶3搅拌而成,某公司建住宅楼需混凝土2400吨,需水泥、沙、石子各多少吨?外项2、比例的意义和性质:比例的意义:表示两个比相等的式子叫做比例。
例如:9 :6 = 3 : 2内项比例的基本性质:在比例中两个内项的积等于两个外项的积。
应用比例的基本性质可以解比例。
3、比和分数、除法的关系:习题:一、填空(1)两个数相除又叫做两个数的()。
(2)在5:4中,比的前项是(),后项是(),比值是()(3)8:9读作:(),这个比还可以写成()。
完整版)小学数学比和比例应用题(小升初)
第3讲:比和比例、工程、路程等应用题
一、基础知识
比的定义:两个数的比实际上就是两个数的商。
可以化为
分数形式,如a:b=a÷b,也可以化为等式形式,如ac=bd,化
简后得到a:b=c:d。
连比的定义:三个数的比叫连比,如a:b:c,满足a:b:c=na:
正比例和反比例的定义:正比例关系为y=kx,反比例关
系为y·x=k(定值)或y=k/x。
应用举例:速度v一定时,路程s与时间t成正比例,即
s=vt;工作效率一定时,工作量与工作时间成正比例,即工作
量=工作效率×工作时间;浓度一定时,溶质重量与溶液重量
成正比例,即溶质重量=溶液重量×浓度。
二、典型例题
例1、已知a:b=53:74,求a:b的值。
例2、已知a:b=3:4,b:c=5:6,求a:b:c的值。
例3、甲、乙两个瓶子里装的酒精体积相等,甲瓶中与水的体积比是3:1,乙瓶中与水的体积比是4:1,混合后酒精和水的体积比是多少?
例4、甲、乙、丙三个数的比是6:7:8,已知这三个数的平均数是42,求甲、乙、丙三个数各是多少?
例5、甲、乙两个课外小组人数比是5:3,从甲组调9人去乙组后,甲、乙两组人数比是2:3,求甲、乙两组原来各有多少人。
例6、有两支同样质地的蜡烛,粗细、长短不同,一支能燃烧3.5小时,一支能燃烧5小时,当燃烧2小时的时候,两支蜡烛的长度恰好相同,这两支蜡烛长度之比是多少?
三、比和比例应用题随堂练
1、甲、乙两厂人数的比是7∶6.从甲厂调360人到乙厂后,甲、乙两厂人数比为2∶3,甲、乙两厂原有多少人?。
比和比例的知识点总结一、比的知识点。
1. 比的意义。
- 两个数相除又叫做两个数的比。
例如:3÷2,可以写成3:2。
其中“:”是比号,比号前面的数叫做比的前项(如3),比号后面的数叫做比的后项(如2),比的前项除以后项所得的商叫做比值(如3÷2 = 1.5,1.5就是比值)。
- 比表示两个数的关系,比值是一个数,可以是整数、小数或分数。
2. 比的基本性质。
- 比的前项和后项同时乘或除以相同的数(0除外),比值不变。
例如:2:3=(2×2):(3×2)=4:6;6:9=(6÷3):(9÷3)=2:3。
- 利用比的基本性质可以化简比。
3. 化简比。
- 整数比化简:把比的前项和后项同时除以它们的最大公因数。
例如:12:18=(12÷6):(18÷6)=2:3。
- 分数比化简:先把比的前项和后项同时乘它们分母的最小公倍数,转化成整数比,再化简。
例如:(2)/(3):(4)/(5)=((2)/(3)×15):((4)/(5)×15)=10:12 = 5:6。
- 小数比化简:先把比的前项和后项的小数点同时向右移动相同的位数,转化成整数比,再化简。
例如:0.6:0.9=(0.6×10):(0.9×10)=6:9 = 2:3。
4. 求比值与化简比的区别。
- 求比值是用比的前项除以后项,结果是一个数。
例如:3:4 = 3÷4=(3)/(4)。
- 化简比是把一个比化成最简形式,结果是一个比,即前项和后项互质。
例如:6:8化简后为3:4。
二、比例的知识点。
1. 比例的意义。
- 表示两个比相等的式子叫做比例。
例如:2:3 = 4:6,2、3、4、6这四个数组成了一个比例,组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项(如2和6),中间的两项叫做比例的内项(如3和4)。
2. 比例的基本性质。
比与比例知识点六年级比与比例是数学中的重要概念。
在六年级的学习中,掌握比与比例的概念及其应用是非常关键的。
本文将介绍比与比例的定义,以及在实际问题中的应用。
一、比的概念比是表示两个数量之间的大小关系的一种表示方式。
比通常用冒号“:”表示,读作“……与……的比”。
例如:2:3表示第一个数是第二个数的2/3倍。
3:5表示第一个数是第二个数的3/5倍。
1:2表示第一个数是第二个数的1/2倍。
二、比与比例的关系比例是基于比的概念而来的一种数学关系。
比例是指两个或多个相同类型的量之间的比的关系,用等号“=”表示。
例如:2:3=4:6表示2与3的比等于4与6的比。
三、比与比例的计算方法1. 比的计算:当已知一个比,并且要求另一个数时,我们可以使用以下的比例关系来计算:若已知 a:b=c:d ,则 b=c/a*d。
例如:已知3:5=9:15,求这个比中第一个数。
解:设第一个数为x,则有3:5=x:15,解得x=9。
2. 比例的计算:当已知一个比例,并且要求另一个数时,我们可以使用以下的比例关系来计算:若已知 a:b=c:d ,则 a/b=c/d。
例如:已知2:3=x:9,求这个比例中的x。
解:设这个比例中的x为y,则有2:3=y:9,解得y=6。
四、比与比例在实际问题中的应用比与比例在日常生活和工作中都有着广泛的应用。
以下是一些例子:1. 长度比例问题:小明画了一条长4厘米的线段,放大10倍之后,线段的长度是多少?解:原线段长度为4厘米,放大10倍后,线段的长度为4×10=40厘米。
2. 面积比例问题:一块正方形的面积是16平方厘米,放大4倍之后,新的正方形的面积是多少?解:原正方形的面积为16平方厘米,放大4倍后,新正方形的面积为16×4=64平方厘米。
3. 速度比例问题:甲乘自行车每小时骑行10千米,已知乙乘自行车的速度是甲的1.5倍,乙乘自行车的速度是多少?解:乙乘自行车的速度是甲的1.5倍,即1:1.5=10:15。
1.某班男生有8人,女生有10人,男生与女生人数之比是0.8。
()
2.甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。
()
3.在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。
()
4.两个圆的周长比是2∶3,面积之比是4∶9。
()
5、圆柱底面和圆柱的高成正比例关系()
二、选择题
1、固定电话先收座机费24元,以后按一定标准时间加收通话费,则每月应交电话费与通话时间()
A.成正比例
B.成反比例
C. 不成比例
三、解答应用题。
1、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。
2、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。
若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?
3、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。
现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?
4、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?
5、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?
6、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方砖,需要多用几块?
7、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?
8、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?
9、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?
10、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。
三个车间各有多少人?
11、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。
已知六年级分得56本,学校共购进图书多少本?
12、小明居住的院内有4家,上月付水费39.2元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?
13、某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?
%买入价
买入价卖出价赢利百分数100-⨯=1.一个因数不变,积与另一个因数成正比例.( )
2.长方形的长一定,宽和面积成正比例.( )
3.大米的总量一定,吃掉的和剩下的成反比例.( )
4.圆的半径和周长成正比例.( )
5.分数的分子一定,分数值和分母成反比例.( )
6.铺地面积一定,方砖的边长和所需块数成反比例.( )
7.铺地面积一定,方砖面积和所需块数成反比例.( ) 8.除数一定,被除数和商成正比例.( )
9、圆的面积和圆的半径成正比例。
( )
10、圆的面积和圆的半径的平方成正比例。
( )
11、圆的面积和圆的周长的平方成正比例。
( )
12、正方形的面积和边长成正比例。
( )
13、正方形的周长和边长成正比例。
( )
14、长方形的面积一定时,长和宽成反比例。
( )
15、长方形的周长一定时,长和宽成反比例。
( )
16、三角形的面积一定时,底和高成反比例。
( )
17、梯形的面积一定时,上底和下底的和与高成反比例。
( )
18、圆的周长和圆的半径成正比例。
( )
19、路程一定,速度和时间成正比例。
( )
20、一堆煤的总量不变,烧去的煤与剩下的煤成反比例。
( )
21、花生的出油率一定,花生的重量与榨出花生油的重量成正比例。
( )
22、平行四边形的面积不变,它的底与高成反比例。
( )
二、选择.
1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.( )
A .成正比例
B .成反比例
C .不成比例
2.和一定,加数和另一个加数.( )
A .成正比例
B .成反比例
C .不成比例
3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( ).
A .汽车每次运货吨数一定,运货次数和运货总吨数.
B .汽车运货次数一定,每次运货的吨数和运货总吨数.
C .汽车运货总吨数一定,每次运货的吨数和运货的次数. 4、a ÷b=c ,当c 一定时a 和b ( );当a 一定时b 和c ( );当b 一定时a 和c ( )。
A. 成正比例
B. 成反比例
5、长方形的_________________,它的长和面积成正比例。
A.周长一定
B.宽一定
C.面积一定
6、圆柱体体积一定,________________和高成反比例。
A.底面半径
B.底面积
C.表面积
六、应用题
(1)工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答)
(2)一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)
(3)两个同样容器中各装满盐水。
第一个容器中盐与水的比是2∶3,第二个容器中盐与水的比是3∶4,把这两个容器中的盐水混合起来,则混合溶液中盐与水的比是多少?
(4) 某电子产品去年按定价的80%出售,能获利20%,由于今年买入价降低,按同样定价的75%出售,却能获利25%,那么
是多少?去年买入价今年买入价
(5)甲、乙两包糖的重量比是4∶1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7∶5 那么两包糖重量的总和是多少克?
(6)甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合。
第二次将乙容器中的一部分混合液倒入甲容器。
这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是多少_升?
1.在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。
2.在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。
3.混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。
现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?
4.一批零件,每天做56个,28天完成,如果提前12天完成,每天应做多少个?
5.某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?
6.一间大厅,用边长4分米的方砖铺地,需用324块;若改铺边长3分米的方砖,需要多用几块?
7.一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?
8.一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?
9.一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?
10.羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。
三个车间各有多少人?
11.学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。
已知六年级分得56本,学校共购进图书多少本?
12.小明居住的院内有4家,上月付水费9.8元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?。