第五章+约束优化计算方法
- 格式:ppt
- 大小:1.23 MB
- 文档页数:78
第五章约束优化常见算法定义5.1设∈为一可行点, ∈,若存在 > 0, 使对∀∈[0, ]均有+ ∈, 则称是可行域在可行解处的可行方向, 可行域在可行解ˉ处的所有可行方向记为FD(, ), 简记为FD()定理5.1设是问题(5.1)的可行解,在点处有 =, > ,其中,则非零向量为处的可行方向的充要条件是≥0, = 0。
Zoutendijk方法:如果非零向量同时满足∇ < 0,≥0, = 0,则是在处的下降可行方向。
因此,Zoutendijk 法把确定搜索方向归结为求解线性规划问题:min ∇s.t ≥0= 0‖‖≤1.(5.2)其中增加约束条件‖‖≤1是为了获得一个有限解。
在(5.2)中,显然 = 0是可行解, 因此最优目标值小于或等于零.如果∇ < 0,则得到下降可行方向;如果最优值为零, 则有如下结果.定理5.2考虑问题(5.1),设是可行解,在点处有 = , > ,其中,则为Kuhn-Tucker点的充要条件是问题(5.2)的最优目标值为零。
Rosen投影梯度法定义5.2设为阶矩阵,若 =且= ,则称为投影矩阵。
定理5.3设是问题(5.1)的可行解,在点处,有1 = 1,2 > 2,其中,又设为行满秩矩阵,则 = −是一个投影矩阵, 且若∇()0,则 = − ∇()是下降可行方向.定理5.4设是问题(5.1)的一个可行解, ,,的定义同定理5.3, 且为行满秩矩阵,令= ∇() =其中和分别对应于和. 若 ∇() = 0,则1 如果≥0,那么是K-T点;2 如果中含有负分量,不妨设< 0,这时从1中去掉对应的行,得到,令,= −∇()那么为下降可行方向。
梯度投影法计算步骤1.给定给定初始可行点, 置 = 1。
2.在点处,将和分别分解成,和,, 使得 = ,> .3.令如果是空的,令 = (单位矩阵), 否则令 = −.4.令= − ∇ (). 若()0, 则转步6; 若() = 0,则进行步5.若是空的,则停止计算,得到;否则,令= ∇ () =如果≥0,则停止计算,为K-T点;如果中包含负分量,则选择一个负分量,比如,修正,去掉中对应的行,返回步3。