第5章约束优化
- 格式:ppt
- 大小:5.38 MB
- 文档页数:152
附件4:管理会计应用指引第504号——约束资源优化第一章总则第一条约束资源优化,是指企业通过识别制约其实现生产经营目标的瓶颈资源,并对相关资源进行改善和调整,以优化企业资源配置、提高企业资源使用效率的方法。
约束资源,是指企业拥有的实际资源能力小于需要的资源能力的资源,即制约企业实现生产经营目标的瓶颈资源,如流动资金、原材料、劳动力、生产设备、技术等要素及要素投入的时间安排等。
第二条约束资源优化一般适用于企业的投融资管理和营运管理等领域。
第二章应用环境第三条企业应用约束资源优化工具方法,约束资源的缺口一般应相对稳定。
第四条企业应用约束资源优化工具方法,相关数据一般应完整并可获取,必要时提供信息技术的支持。
第三章应用程序第五条企业应用约束资源优化工具方法,一般按照识别约束资源、寻找突破方法、协同非约束资源、评价实施效果等程序进行。
第六条企业应用约束资源优化工具方法,应识别出管理过程中制约既定目标实现的约束资源,并对约束资源进行定量分析。
在约束资源难以进行定量分析时,可以通过内部评审法、专家评价法等,识别出管理过程中的约束资源。
内部评审法,是指企业通过内部组织开展评议、审查识别约束资源的方法。
企业通常应组建满足约束资源识别所需的,由财务部门、生产部门和其他相关部门人员组成的内部评审小组或类似评审组织,通过集中研讨等方式,识别出管理过程中的约束资源。
专家评价法,是指利用专家的经验、知识等识别约束资源的方法。
对于企业既定目标的实现形成重大制约影响的约束资源,企业通常采用此方法进行综合评判。
第七条在识别约束资源的基础上,企业应比较约束资源的资源能力差距,搜集约束资源的相关数据等信息,系统分析约束资源形成的原因和涉及的实施责任主体,制定约束资源优化的实施方案,建立实现约束资源优化的长效机制,促进约束资源的资源能力提升。
(一)当约束资源是流动资金时,通常采取企业资金内部调剂、缩短应收账款回收周期、加快存货周转、延长付款周期等方法消除流动资金缺口,也可以通过外部融资扩大企业的资金来源,如债务融资、权益融资等。
`第五章综合的约束与优化综合的一个很重要的概念就是:单纯的映射是远远不够的,更重要的是设计的整体优化。
一方面设计工程师为综合规定必要的约束,例如对面积、速度、功耗的要求等,从而使优化有所依据;另一方面选择合适的综合器是优化程度的决定性因素。
同一个设计使用不同的综合器所得到的优化结果可以相差3~5倍。
第一节综合约束5-1-1 概述综合约束是对可测量的电路特性所定义的设计目标,比如面积、速度和电容等。
如果没有这些约束,Design Compiler工具将不能有效地对你的设计进行最优化。
在对设计进行优化时,Design Compiler支持两种类型的约束:●设计规则约束(Design rule constraints)●最优化约束(Optimization constraints)设计规则约束是固有的,在工艺库里定义;这些约束条件是为了保证设计的功能正确性,适用于使用工艺库的每一个设计;可以使这些约束比最优化约束更为严格。
最优化约束是外在的,由设计者自己定义;最优化约束描述设计指标,在整个dc_shell 工作期间应用于当前设计;它们必须接近于现实情况。
D esign Compiler试图同时满足设计规则约束和最优化约束,但设计规则约束必须首先被满足。
设计者可以以命令行形式交互式的指定约束或者在一个约束文件里指令约束。
图5.1显示了主要的设计规则约束和最优化约束,以及如何用dc_shell界面命令来设置这些约束。
图5.1 Major Design Compiler Constraints第二节设置设计规则约束这一节将讨论最常用的设计规则约束:•转换时间(Transition time)•扇出负载(Fanout load)•电容(Capacitance)Design Compiler给设计对象赋予属性来表示这些设计规则约束。
表5.1列出了每一个设计规则约束对应的属性名。
表5.1 设计规则属性Design Rule Constraint Attribute NameTransition time max_transitionFanout load max_fanoutCapacitance max_capacitancemin_capacitanceCell degradation cell_degradationConnection class connection_class 设计规则约束是工艺库里指定属性,你也可以明确地、随意地指定这些约束。
第5章 优化问题5.1 线性规划问题线性规划问题是目标函数和约束条件均为线性函数的问题,MA TLAB6.0解决的线性规划问题的标准形式为:min n R x x f ∈'sub.to :b x A ≤⋅b e q x A e q =⋅ub x lb ≤≤其中f 、x 、b 、beq 、lb 、ub 为向量,A 、Aeq 为矩阵。
其它形式的线性规划问题都可经过适当变换化为此标准形式。
在MA TLAB6.0版中,线性规划问题(Linear Programming )已用函数linprog 取代了MA TLAB5.x 版中的lp 函数。
当然,由于版本的向下兼容性,一般说来,低版本中的函数在6.0版中仍可使用。
函数 linprog格式 x = linprog(f,A,b) %求min f ' *x sub.to b x A ≤⋅线性规划的最优解。
x = linprog(f,A,b,Aeq,beq) %等式约束beq x Aeq =⋅,若没有不等式约束b x A ≤⋅,则A=[ ],b=[ ]。
x = linprog(f,A,b,Aeq,beq,lb,ub) %指定x 的范围ub x lb ≤≤,若没有等式约束beq x Aeq =⋅ ,则Aeq=[ ],beq=[ ]x = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定的优化参数[x,fval] = linprog(…) % 返回目标函数最优值,即fval= f ' *x 。
[x,lambda,exitflag] = linprog(…) % lambda 为解x 的Lagrange 乘子。
[x, lambda,fval,exitflag] = linprog(…) % exitflag 为终止迭代的错误条件。
《机械优化设计》教学大纲大纲说明课程代码:3335047总学时:48学时(讲课40学时,上机8学时)总学分:3课程类别:专业模块选修课适用专业:机械设计制造及其自动化专业预修要求:高等数学、线性代数、BASIC或其它适于科学计算的高级语言、工程力学、机械设计基础一、课程的性质、目的、任务:机械优化设计是在电子计算机广泛应用的基础上发展起来的一门先进技术.它是根据最优化原理和方法,以电子计算机为计算工具,寻求最优设计参数的一种现代设计方法。
该课程是为高年级设置的专业课,可供机械类或近机类专业的学生学习。
该课程的主要目的和任务在于培养学生:1)了解和基本掌握机械优化设计的基本知识2)扩大视野,并初步具有应用机械优化设计的基本理论和基本方法解决简单工程实际问题的素质。
二、课程教学的基本要求:课堂讲授:课堂讲授主要以导学式教学为主,启发引导学生的学习兴趣,通过实例及典型例题加深学生对课堂内容的理解。
实践性环节基本要求:本课程的实践性环节主要是上机编制和调试程序(8学时)1)目的和要求上机调试并通过教材上已有的或是自行编制的计算程序,达到巩固某些基本的重要算法的目的2)内容编制并调试一维收索方法、无约束优化方法、约束优化方法及机械零件设计优化计算程序,上机练习并输出计算结果。
课程考核要求:期末考试成绩占总成绩的60—70%,平时成绩占30-40%。
三、大纲的使用说明:课程总学时:课堂教学+上机时数 = 40+8大纲正文第一章绪论学时:1学时(讲课1学时)本章讲授要点:1)明确本课程的研究对象、内容、性质、任务;2)明确优化的含义、机械优化设计的内容及目的.重点:了解机械优化设计的一般过程。
难点:机械优化设计的一般步骤。
第二章优化设计概述学时:3学时(讲课3学时)本章讲授要点:通过机械设计优化问题示例,使学生了解机械优化设计的基本概念和基本术语、优化设计的数学模型、优化问题的几何描述、优化设计的基本方法。
重点:掌握可行域与非可行域、等值线(面)的概念及在优化方法中的重要意义。
第5章优化(Optimizer)工具的使用电路模拟(仿真)是非常重要的,它辅助工程师设计了各种电路。
但与期望的EDA还有距离,人们是从两方面解决这个问题。
一是基于数学的最优化算法;一是基于知识信息系统,二者都有很大发展。
PSpice/Optimizer是基于前者,这就需要读者了解一些数学的最优化算法,本章只做一些简介,主要是介绍优化(Optimizer)工具的使用方法。
5.1 优化(Optimizer)工具的工作流程优化(Optimizer)工具的工作流程如图5-1所示。
图5-1 优化工具(Optimizer)的工作流程图中:1.设置电路图(与第4章相同);2.调用PSpice进行电路特性模拟(与第4章相同);3.确定电路特性函数,(与第4章相同);4.检验电路特性函数模拟结果(与第4章相同);5.运行灵敏度分析,确定最关键的元器件(选作项目这与读者本身知识和经验有关);6.确定最关键的元器件的参数;7.设置优化特性函数,PSpice提供有53个电路特性函数(Measurement);8.确定优化目标函数;9.确定约束条件和目标函数的权重;10.选用优化引擎(Engine);11.运行优化工具;12.判断电路是否满足设计要求,有3项选择:13.否!调整优化过程;14.否!修改修改元器件参数或电路;15.是!已满足,依此,更新电路中元器件参数值;16.打印输出17.保存文件从流程图中可以看出,优化程序是在分析的基础上进行的,优化的方法涉及到了数学的最优化算法,下面先介绍有关优化算法的基本知识。
然后再按优化工作流程具体介绍优化(Optimizer)工具的使用方法。
5.2 优化的基本概念5.2.1 设计变量优化问题离不开设计变量、目标函数和约束条件等三个方面的问题。
而首当其冲的就是如何选择设计变量。
设计变量:就是在优化设计中出现的各个可以选择取值的变动参数。
例:一个RC单管放大电路如图-2所示。
在工作时,有一个100pf的寄生负载电容。