[所有分类]第五章 约束优化方法
- 格式:ppt
- 大小:3.50 MB
- 文档页数:113
约束优化方法
约束优化方法是一种常用的数学方法,用于解决在一定条件下优化问题的方法。
其核心思想是将优化问题中的约束条件纳入考虑范围,从而得出最优解。
这种方法在实际应用中具有广泛的适用性,如在工程设计、经济决策、物流规划等领域都有着重要的应用。
约束优化方法的具体实现包括线性规划、非线性规划、动态规划等多种方法。
其中,线性规划是最为常用的一种方法,其基本思想是在满足一定的约束条件下,最大化或最小化目标函数。
非线性规划则是在约束条件下,求解非线性目标函数的最优解。
动态规划则是一种递推算法,通过将大问题分解为小问题,逐步求解最优解。
约束优化方法的优点在于能够考虑到实际问题中的各种限制条件,从而得出更加符合实际的解决方案。
然而,这种方法也存在着一些局限性,如在求解复杂问题时,计算量较大,需要较高的计算能力和时间成本。
综上所述,约束优化方法是一种重要的数学方法,其应用范围广泛,能够解决各种实际问题。
在实际应用中,需要根据具体问题的特点选择合适的约束优化方法,并结合实际情况进行调整和优化,以得出更加符合实际的解决方案。
第五章约束优化常见算法定义5.1设∈为一可行点, ∈,若存在 > 0, 使对∀∈[0, ]均有+ ∈, 则称是可行域在可行解处的可行方向, 可行域在可行解ˉ处的所有可行方向记为FD(, ), 简记为FD()定理5.1设是问题(5.1)的可行解,在点处有 =, > ,其中,则非零向量为处的可行方向的充要条件是≥0, = 0。
Zoutendijk方法:如果非零向量同时满足∇ < 0,≥0, = 0,则是在处的下降可行方向。
因此,Zoutendijk 法把确定搜索方向归结为求解线性规划问题:min ∇s.t ≥0= 0‖‖≤1.(5.2)其中增加约束条件‖‖≤1是为了获得一个有限解。
在(5.2)中,显然 = 0是可行解, 因此最优目标值小于或等于零.如果∇ < 0,则得到下降可行方向;如果最优值为零, 则有如下结果.定理5.2考虑问题(5.1),设是可行解,在点处有 = , > ,其中,则为Kuhn-Tucker点的充要条件是问题(5.2)的最优目标值为零。
Rosen投影梯度法定义5.2设为阶矩阵,若 =且= ,则称为投影矩阵。
定理5.3设是问题(5.1)的可行解,在点处,有1 = 1,2 > 2,其中,又设为行满秩矩阵,则 = −是一个投影矩阵, 且若∇()0,则 = − ∇()是下降可行方向.定理5.4设是问题(5.1)的一个可行解, ,,的定义同定理5.3, 且为行满秩矩阵,令= ∇() =其中和分别对应于和. 若 ∇() = 0,则1 如果≥0,那么是K-T点;2 如果中含有负分量,不妨设< 0,这时从1中去掉对应的行,得到,令,= −∇()那么为下降可行方向。
梯度投影法计算步骤1.给定给定初始可行点, 置 = 1。
2.在点处,将和分别分解成,和,, 使得 = ,> .3.令如果是空的,令 = (单位矩阵), 否则令 = −.4.令= − ∇ (). 若()0, 则转步6; 若() = 0,则进行步5.若是空的,则停止计算,得到;否则,令= ∇ () =如果≥0,则停止计算,为K-T点;如果中包含负分量,则选择一个负分量,比如,修正,去掉中对应的行,返回步3。
约束优化的可行方法
约束优化是一种常见的优化方法,它通过对问题的约束条件进行限制,使得优化结果满足特定的要求。
在实际应用中,约束优化被广泛应用于各种领域,如工程设计、经济决策、物流规划等。
约束优化的可行方法主要包括以下几个方面:
1. 线性规划
线性规划是一种常见的约束优化方法,它通过线性函数的优化来求解问题。
线性规划的优点在于求解速度快,且可以处理大规模的问题。
在实际应用中,线性规划被广泛应用于生产计划、资源分配等领域。
2. 非线性规划
非线性规划是一种更加复杂的约束优化方法,它可以处理非线性函数的优化问题。
非线性规划的优点在于可以处理更加复杂的问题,但求解速度较慢。
在实际应用中,非线性规划被广泛应用于化学工程、金融风险管理等领域。
3. 整数规划
整数规划是一种特殊的约束优化方法,它要求优化结果必须是整数。
整数规划的优点在于可以处理离散问题,但求解速度较慢。
在实际应用中,整数规划被广泛应用于生产调度、物流规划等领域。
4. 动态规划
动态规划是一种递推算法,它可以处理具有重叠子问题的优化问题。
动态规划的优点在于可以处理复杂的问题,但求解速度较慢。
在实际应用中,动态规划被广泛应用于路径规划、序列比对等领域。
约束优化是一种非常重要的优化方法,它可以帮助我们解决各种实际问题。
在选择约束优化方法时,需要根据具体问题的特点来选择合适的方法,以获得最优的结果。
约束优化问题的求解方法约束优化问题(Constrained Optimization Problem)是指在一个给定的约束条件下,在所有可行的解中找到最优解的问题。
这类问题在现实中广泛存在,包括物流配送、资源分配、工程设计等领域。
如何有效地求解约束优化问题是科学研究和工程实践中的一个重要问题。
求解约束优化问题的基本方法是利用数学模型和优化算法。
数学模型是对问题的抽象和表达,它将问题中的各种因素、变量、约束、目标函数都用数学符号和方程式来描述。
优化算法则是根据数学模型对解进行求解的方法和技术。
具体来说,一个典型的约束优化问题可以描述为:$$\min f(\mathbf{x})$$$$s.t. \quad g_j(\mathbf{x}) \leq 0, j=1,2,...,m$$$$h_k(\mathbf{x})=0, k=1,2,...,p$$其中,$f(\mathbf{x})$是目标函数,$\mathbf{x} = [x_1, x_2, ..., x_n]$是决策变量向量,$g_j(\mathbf{x})$是不等式约束,$h_k(\mathbf{x})$是等式约束,$m$和$p$分别是不等式约束和等式约束的数量。
对于约束优化问题,大致有以下几种求解方法。
1. 等式约束和不等式约束均为线性约束的约束优化问题可以使用线性规划方法求解。
线性规划是指目标函数和所有约束均为线性函数的优化问题。
线性规划具有较好的求解效率且有高度的理论成熟度。
目前已经有很多线性规划求解器可供使用。
例如OpenSolver、Gurobi等。
2. 不等式约束为凸函数的约束优化问题可以使用凸优化方法求解。
凸优化问题是指其目标函数和不等式约束均为凸函数的优化问题。
凸优化具有全局最优性和求解效率高的特点,其求解方法有许多,例如基于梯度的方法、基于内点的方法等。
凸优化库MATLAB Optimization Toolbox和Python库CVXPY都提供了凸优化的求解工具。