材料分析方法 第六章b
- 格式:ppt
- 大小:7.47 MB
- 文档页数:59
第一章 X 射线物理学基础一、X 射线产生的主要装置和条件 主要装置:阳极靶材、阴极灯丝条件:a. 大量自由电子;b. 定向高速运动;c. 运动路径上遇到障碍(靶材)二、短波限一个电子在与阳极靶撞击时,把全部能量给予一个光子,这就是一个光量子所能获得的最大能量,即:h c/λ=eU ,此时光量子的波长即为短波限λSWL 。
三、连续X 射线(强度公式)大量电子在与靶材碰撞的过程中,能量不断减小,光子所获得的能量也不断减小,形成了一系列由短波限λSWL 向长波方向发展的连续波谱。
连续谱强度21iZU K I四、特征X 射线(莫塞莱定律)当X 射线管两端的电压增高到某一特定值U k 时,在连续谱的特定的波长位置上,会出现一系列强度很高,波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶材有严格恒定的数值,此波长可作为阳极靶材的标志或特征,所以称为特征谱或标识谱。
莫塞莱定律:Z K 21) U - U ( i K I m n 3 (Un 为临界激发电压,原子序数Z 越大,Un 越大)五、X 射线吸收(透射)公式——(质量吸收系数:单质、化合物(固溶体、混合物)) 单质 m tm m e I eI I 00化合物ni i mim w 1六、光电效应、荧光辐射、俄歇效应光电效应:当入射X 射线光量子能量等于或略大于吸收体原子某壳层电子的结合能时,电子易获得能量从内层逸出,成为自由电子,称为光电子,这种光子击出电子的现象称为光电效应。
荧光辐射:因光电效应处于相应的激发态的原子,将随之发生如前所述的外层电子向内层跃迁的过程,同时辐射出特征X 射线,称X 射线激发产生的特征辐射为二次特征辐射,称这种光致发光的现象为荧光效应。
俄歇效应:原子K 层电子被击出后, L 层一个电子跃入 K 层填补空位,而另一个L 层电子获得能量逸出原子成为俄歇电子,称这种一个K 层空位被两个 L 层空位代替的过程为俄歇效应。
光电效应——光电子荧光辐射——荧光X 射线(二次X 射线) 俄歇效应——俄歇电子七、吸收限及其两个应用:滤波片的选择、靶材的选择吸收限:欲激发原子产生K、L、M等线系的荧光辐射,入射X 射线光量子的能量必须大于或至少等于从原子中击出一个K、L、M层电子所需的能量W K、W L、W M,如,W K= h K = hc / K,式中, K、 K是产生K系荧光辐射时,入射X射线须具有的频率和波长的临界值。
材料分析方法课后练习题参考答案2015-1-4BY:二专业の学渣材料科学与工程学院3。
讨论下列各组概念的关系答案之一(1)同一物质的吸收谱和发射谱;答:λk吸收〈λkβ发射〈λkα发射(2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。
答:λkβ发射(靶)〈λk吸收(滤波片)<λkα发射(靶).任何材料对X射线的吸收都有一个Kα线和Kβ线。
如Ni 的吸收限为0.14869 nm。
也就是说它对0.14869nm波长及稍短波长的X射线有强烈的吸收。
而对比0.14869稍长的X射线吸收很小.Cu靶X射线:Kα=0。
15418nm Kβ=0。
13922nm。
(3)X射线管靶材的发射谱与被照射试样的吸收谱。
答:Z靶≤Z样品+1 或Z靶>〉Z样品X射线管靶材的发射谱稍大于被照射试样的吸收谱,或X射线管靶材的发射谱大大小于被照射试样的吸收谱.在进行衍射分析时,总希望试样对X射线应尽可能少被吸收,获得高的衍射强度和低的背底.答案之二1)同一物质的吸收谱和发射谱;答:当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。
吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。
2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。
答:可以选择λK刚好位于辐射源的Kα和Kβ之间的金属薄片作为滤光片,放在X射线源和试样之间。
这时滤光片对Kβ射线强烈吸收,而对Kα吸收却少。
6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少?答:eVk=hc/λVk=6。
626×10—34×2。
998×108/(1.602×10-19×0.71×10—10)=17。
46(kv)λ0=1.24/v(nm)=1.24/17。
第六章宏观残余应力的测定一、物体内应力的产生与分类残余应力是一种内应力,内应力是指产生应力的各种因素不复存在时(如外加载荷去除、加工完成、温度已均匀、相变过程中止等),由于形变、体积变化不均匀而存留在构件内部并自身保持平衡的应力。
目前公认的内应力分类方法是1979年由德国的马克劳赫﹒E提出的,他将内应力按其平衡范围分为三类:):在物体宏观体积内存在并平衡的内应力,此类应力的释放,第一类内应力(σⅠ会使物体的宏观体积或形状发生变化。
第一类内应力又称“宏观应力”或“残余应力”。
宏观应力的衍射效应是使衍射线位移。
图1(书上6-2)是宏观残余应力产生的实例。
一框架与置于其中的梁在焊接前无应力,当将梁的两端焊接在框架上后,梁受热升温,而框架基本上处于室温,梁冷却时,其收缩受框架的限制而受拉伸应力,框架两侧则受中心梁收缩的作用而被压缩,上下横梁则在弯曲应力的作用之下。
图1 宏观残余应力的产生(a)焊接前、b)焊接后)):在数个晶粒的范围内存在并平衡的内应力,其衍射效应主要第二类内应力(σⅡ是引起线形的变化。
在某些情况下,如在经受变形的双相合金中,各相处于不同的应力状态时,这种在晶粒间平衡的应力同时引起衍射线位移。
图2(书上6-3)表明第二类应力的产生,拉伸载荷作用在多晶体材料上,晶粒A、B上的平行线表示它们的滑移面,显然A晶粒处于易滑移方位,当载荷应力超过临界切应力将发生塑性变形,而晶粒B仅发生弹性变形,载荷去除后,晶粒B的变形要恢复,但晶粒A只发生部分恢复,它阻碍B的弹性收缩使其处于被拉伸的状态,A本身则被压缩,这种在晶粒间相互平衡的应力在X射线检测的体积内总是拉压成对的出现,且大小因晶粒间方位差不同而异,故引起衍射线的宽化。
图2 第二类应力的产生):在若干原子范围内存在并平衡的应力,如各种晶体缺陷(空第三类内应力(σⅢ位、间隙原子、位错等)周围的应力场。
此类应力的存在使衍射强度降低。
通常把第二类和第三类应力称为“微观应力”。
实验报告
实验名称材料分析方法B综合试验
实验一X射线衍射仪的结构、原理、基本操作和应用
一、实验目的
1、了解X射线衍射仪的构造、工作原理及样品制备。
2、掌握X射线衍射物相分析的原理和实验方法。
二、实验内容
1. 学习X射线衍射仪的使用,了解仪器的构造、工作原理和样品制备。
2. 利用X射线衍射仪测试样品,得出图片,并对图谱进行标定,掌握X射线衍射物相分析的原理和实验方法。
三、实验设备仪器
PANalytical X’Pert Powder X射线衍射仪是利用衍射原理,精确测定物质的晶体结构、织构及应力、进行物相定性和定量分析。
具有高强度分辨率,对样品无破坏性,快速简便等特点。
本仪器最大管压:60kV,最大管流:55mA,最大功率:2.2kW(Cu靶),角度重现性:±0.0001度,扫描方式:θ/θ扫描方式,探测器:X`Celerator超能探测器。
主要用于冶金、石油、化工、航空航天、科研、材料生产等领域。
X’Pert Powder X射线衍射仪
四、实验原理
晶体结构可以用三维点阵来表示。
每个点阵点代表晶体中的一个基本单元,如离子、原子或分子等。
空间点阵可以从各个方向予以划分,而成为许多组平行的平面点阵。
因此,晶体可以看成是由一系列具有相同晶面指数的平面按一定的距离分布而形成的。
各种晶体具有不同的基本单元、晶胞大小、对称性,因此,每一种晶体都必然存在着一系列特定的d值,可以用于表征不同的晶体。
②BSE分辨率:4.0 nm (30 kV);③放大倍率:×5~×300,000;④加速电压:0.3~30 kV。
现代材料分析方法第三章当一束聚焦电子沿一定方向射到样品上时,在样品物质原子的库仑电场作用下,入射电子方向将发生改变,称为散射。
原子对电子的散射还可以进一步分为弹性散射和非弹性散射。
在弹性散射中,电子只改变运动方向,基本上无能量变化。
在非弹性散射中,电子不但改变方向,能量也有下同程度的衰减,衰减部分转变为热、光、x射线、二次电子等。
原于中核外电子对入射电子的散射作用是一种非弹性散射,散射过程中入射电子所损失的能量部分转变为热,部分使物质中原子发生电离或形成自由载流子,并伴随着产生各种有用信息,如二次电子、俄歇电子、特征x射线、特征能量损失电子、阴极发光、电子感生电导等当入射电子与原子核外电子发生相互作用时,会使原子失掉电子而变成离子,这种现象称为电离,而这个脱离原子的电予称为二次电子。
二次电子是指被入射电子轰击出来的核外电子。
入射电子在样品内遭到散射,改变前进方向,在非弹性散射信况下,还会损失一部分能量。
在这种弹佳和非弹性散射过程中,有些入射电子累计散射角超过90o,这些电子将重新从样品表面逸出,称为背散射电子。
背散射电于是指被固体样品中的原子核反弹回来的一部分入射电子。
在电子显微分析仪器中利用背散射电子信号通常是指那些能量较高的电子,其中主要是能量等于或接近尽的电子,其特点如下。
1.对样品物质的原子序数敏感;2.分辨率及信号收隼率较低当样品较厚时,例如达到微米数量级,入射电子中的一部分在样品内经过多次非弹性散射后,能量耗尽,既无力穿透样品,也不能逸出表面,称为吸收电子。
具有特征能量值的电子称为俄歇电子(AUE)。
利用俄歇电子进行元素分析的仪器称谓俄歇电子能谱仪(AES)c。
如果原子内层电子能级跃迁过程中释放出来的能量 E不以X射线的形式释放,而是用该能量将核外另一电子打出,脱离原子变为二次电子,这种二次电子叫做俄歇电子。
俄歇电子具有以下特点l. 适于分析轻元素及超轻元素;因为这些元素的特征x射线产额很低,俄歇电子产额很高2.适于表面薄层分析真正能够保持其特征能量而逸出表面的俄歇电子只限子表层以下1nm以内的深度范围。
第一章一、选择题1.用来进行晶体结构分析的X射线学分支是()A.X射线透射学;B.X射线衍射学;C.X射线光谱学;D.其它2. M层电子回迁到K层后,多余的能量放出的特征X射线称()A.Kα;B. Kβ;C. Kγ;D. Lα。
3. 当X射线发生装置是Cu靶,滤波片应选()A.Cu;B. Fe;C. Ni;D. Mo。
4. 当电子把所有能量都转换为X射线时,该X射线波长称()A.短波限λ0;B. 激发限λk;C. 吸收限;D. 特征X射线5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生()(多选题)A.光电子;B. 二次荧光;C. 俄歇电子;D. (A+C)二、正误题1. 随X射线管的电压升高,λ0和λk都随之减小。
()2. 激发限与吸收限是一回事,只是从不同角度看问题。
()3. 经滤波后的X射线是相对的单色光。
()4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。
()5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。
()三、填空题1. 当X射线管电压超过临界电压就可以产生X射线和X射线。
2. X射线与物质相互作用可以产生、、、、、、、。
3. 经过厚度为H的物质后,X射线的强度为。
4. X射线的本质既是也是,具有性。
5. 短波长的X射线称,常用于;长波长的X射线称,常用于。
习题1.X射线学有几个分支?每个分支的研究对象是什么?2. 分析下列荧光辐射产生的可能性,为什么?(1)用CuK αX 射线激发CuK α荧光辐射;(2)用CuK βX 射线激发CuK α荧光辐射;(3)用CuK αX 射线激发CuL α荧光辐射。
3. 什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、“吸收谱”?4. X 射线的本质是什么?它与可见光、紫外线等电磁波的主要区别何在?用哪些物理量描述它?5. 产生X 射线需具备什么条件?6. Ⅹ射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中?7. 计算当管电压为50 kv 时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。
第一章 X 射线物理学基础3.讨论下列各组概念的关系答案之一(1)同一物质的吸收谱和发射谱;答:λk 吸收 〈λk β发射〈λk α发射(2)X 射线管靶材的发射谱与其配用的滤波片的吸收谱。
答:λk β发射(靶)〈λk 吸收(滤波片)〈λk α发射(靶)。
任何材料对X 射线的吸收都有一个K α线和K β线。
如 Ni 的吸收限为 nm 。
也就是说它对波长及稍短波长的X 射线有强烈的吸收。
而对比稍长的X 射线吸收很小。
Cu 靶X 射线:K α= K β=。
(3)X 射线管靶材的发射谱与被照射试样的吸收谱。
答:Z 靶≤Z 样品+1 或 Z 靶>>Z 样品X 射线管靶材的发射谱稍大于被照射试样的吸收谱,或X 射线管靶材的发射谱大大小于被照射试样的吸收谱。
在进行衍射分析时,总希望试样对X 射线应尽可能少被吸收,获得高的衍射强度和低的背底。
答案之二1)同一物质的吸收谱和发射谱;答:当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。
吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。
2)X 射线管靶材的发射谱与其配用的滤波片的吸收谱。
答:可以选择λK 刚好位于辐射源的K α和K β之间的金属薄片作为滤光片,放在X 射线源和试样之间。
这时滤光片对K β射线强烈吸收,而对K α吸收却少。
6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少?答:eVk=hc/λVk=×10-34××108/×10-19××10-10)=(kv)λ 0=v(nm)=(nm)=(nm)其中 h 为普郎克常数,其值等于×10-34e 为电子电荷,等于×10-19c故需加的最低管电压应≥(kv),所发射的荧光辐射波长是纳米。
材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。
20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。
2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。
(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。
3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。
(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。
4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。
关于它们的正确性,现有四种答案,正确答案是( D )。
(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。
5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。
τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。
(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。
(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。
绪论单元测试1.材料研究方法分为()A:物相分析B:成分价键分析C:组织形貌分析D:分子结构分析答案:ABCD2.材料科学的主要研究内容包括()A:材料的性能B:材料应用C:材料的制备与加工D:材料的成分结构答案:ACD3.下列哪些内容不属于材料表面与界面分析()A:晶粒大小、形态B:气体的吸附C:表面结构D:晶界组成、厚度答案:A4.下列哪些内容属于材料微区分析()A:晶格畸变B:裂纹大小C:位错D:晶粒取向答案:ABCD5.下列哪些内容不属于材料成分结构分析()A:晶界组成、厚度B:物相组成C:杂质含量D:晶粒大小、形态答案:AD第一章测试1.扫描电子显微镜的分辨率已经达到了()A:0.1 nmB:1.0 nmC:10 nmD:100 nm答案:B2.利用量子隧穿效应进行分析的仪器是A:原子力显微镜B:扫描电子显微镜C:扫描隧道显微镜D:扫描探针显微镜答案:C3.能够对样品形貌和物相结构进行分析的是透射电子显微镜。
A:错B:对答案:B4.扫描隧道显微镜的分辨率可以到达原子尺度级别。
A:对B:错答案:A5.图像的衬度是()A:任意两点探测到的电子信号强度差异B:任意两点探测到的光强差异C:任意两点存在的明暗程度差异D:任意两点探测到的信号强度差异答案:CD6.对材料进行组织形貌分析包含哪些内容()A:位错、点缺陷B:材料的外观形貌C:晶粒的大小D:材料的表面、界面结构信息答案:ABCD7.光学显微镜的最高分辨率为()A:0.5 μmB:0.2 μmC:1 μmD:0.1 μm答案:B8.下列说法错误的是()A:可供照明的紫外线波长为200~250 nm,可以作为显微镜的照明源B:X射线波长为0.05~10 nm,可以作为显微镜的照明源C:X射线不能直接被聚焦,不可以作为显微镜的照明源D:可见光波长为450~750 nm,比可见光波长短的光源有紫外线、X射线和γ射线答案:B9.1924年,()提出运动的电子、质子、中子等实物粒子都具有波动性质A:德布罗意B:狄拉克C:薛定谔D:布施答案:A10.电子束入射到样品表面后,会产生下列哪些信号()A:背散射电子B:俄歇电子C:特征X射线D:二次电子答案:ABCD第二章测试1.第一台光学显微镜是由哪位科学家发明的()A:惠更斯B:胡克C:詹森父子D:伽利略答案:C2.德国科学家恩斯特·阿贝有哪些贡献()A:解释了数值孔径等问题B:发明了油浸物镜C:阐明了光学显微镜的成像原理D:阐明了放大理论答案:ABCD3.光学显微镜包括()A:聚光镜B:目镜C:反光镜D:物镜答案:ABCD4.下列关于光波的衍射,错误的描述是()A:障碍物线度越小,衍射现象越明显B:遇到尺寸与光波波长相比或更小的障碍物时,光线将偏离直线传播C:光是电磁波,具有波动性质D:遇到尺寸与光波波长相比或更小的障碍物时,光线将沿直线传播答案:D5.下列说法正确的是()A:两个埃利斑靠得越近,越容易被分辨B:衍射现象可以用子波相干叠加的原理解释C:埃利斑半径与光源波长成反比,与透镜数值孔径成正比D:由于衍射效应,样品上每个物点通过透镜成像后会形成一个埃利斑答案:BD6.在狭缝衍射实验中,下列说法错误的是()A:在第一级衍射极大值处,狭缝上下边缘发出的光波波程差为1½波长B:子波之间相互干涉,在屏幕上形成衍射花样C:整个狭缝内发出的光波在中间点的波程差半波长,形成中央亮斑D:狭缝中间每一点可以看成一个点光源,发射子波答案:C7.下列关于阿贝成像原理的描述,正确的是()A:参与成像的衍射斑点越多,物像与物体的相似性越好。
第十四章1、波谱仪和能谱仪各有什么优缺点?优点:1)能谱仪探测X 射线的效率高。
2)在同一时间对分析点内所有元素X 射线光子的能量进行测定和计数,在几分钟内可得到定性分析结果,而波谱仪只能逐个测量每种元素特征波长。
3)结构简单,稳定性和重现性都很好4)不必聚焦,对样品表面无特殊要求,适于粗糙表面分析。
缺点:1)分辨率低。
2)能谱仪只能分析原子序数大于11的元素;而波谱仪可测定原子序数从4到92间的所有元素。
32答:(1)分析点的X(2)(3)X 3分析?答:(1成分。
(2)A a b 断裂断口,性断口。
c 、解理断口分析:由于相邻晶粒的位相不一样,因此解理断裂纹从一个晶粒扩展到相邻晶粒内部时,在晶界处开始形成河流花样即解理台阶。
解理断裂是脆性断裂,是沿着某特定的晶体学晶面产生的穿晶断裂。
d 、纤维增强复合材料断口分析:断口上有很多纤维拔出。
由于纤维断裂的位置不都是在基体主裂纹平面上,一些纤维与基体脱粘后断裂位置在基体中,所以断口山更大量露出的拔出纤维,同时还可看到纤维拔出后留下的孔洞。
B 、用能谱仪定性分析方法进行其化学成分的分析。
定点分析:对样品选定区进行定性分析.线分析:测定某特定元素的直线分布.面分析:测定某特定元素的面分布a 、定点分析方法:电子束照射分析区,波谱仪分析时,改变分光晶体和探测器位置.或用能谱仪,获取、E —I 谱线,根据谱线中各峰对应的特征波长值或特征能量值,确定照射区的元素组成; I--λb 、线分析方法:将谱仪固定在要测元素的特征X 射线波长值或特征能量值,使电子束沿着图像指定直线轨迹扫描.常用于测晶界、相界元素分布.常将元素分布谱与该微区组织形貌结合起来分析;c 、面分析方法:将谱仪固定在要测元素的特征X 射线波长值或特征能量值,使电子束在在样品微区作光栅扫描,此时在荧光屏上便得到该元素的微区分布,含量高则亮。
4、扫描电子显微镜是由电子光学系统,信号收集处理、图像显示和记录系统,真空系统三个基本部分组成。
材料分析方法
1. 目视观察法:通过裸眼观察材料的外观特征,包括颜色、形状、纹理等,以初步判断材料的性质。
2. 显微镜观察法:使用光学显微镜观察材料的微观结构和特征,包括晶体结构、颗粒形貌等,以评估材料的晶化程度、颗粒尺寸等。
3. 热分析法:通过对材料在不同温度下的热响应进行分析,包括热重分析(TGA)、差热分析(DSC)等,以确定材料的
热稳定性、相变温度等。
4. 光谱分析法:利用光的吸收、发射、散射等性质对材料进行分析,常见的光谱分析包括紫外可见光谱、红外光谱、拉曼光谱等,用于分析材料的化学组成、分子结构等。
5. 电子显微镜观察法:使用扫描电子显微镜(SEM)或透射
电子显微镜(TEM)对材料的表面形貌、晶体结构进行观察,以获取高分辨率的图像和微区成分分析。
6. X射线衍射方法:利用材料对入射X射线的衍射现象,分
析材料的晶体结构、结晶度等,常见的方法包括X射线粉末
衍射(XRD)和单晶X射线衍射(XRD)。
7. 磁学分析法:通过对材料的磁性进行测试与分析,包括磁滞回线测量、霍尔效应测量等,以判断材料的磁性、磁结构等。
8. 电化学分析法:通过测量材料在电化学条件下的电流、电压等性质,以研究材料的电化学性能、电极活性等。
9. 分子模拟与计算方法:运用计算机模拟技术对材料的分子结构、物理性质进行分析与计算,包括分子力场模拟、密度泛函理论等。
10. X射线能量色散谱分析法:通过对X射线入射材料的能量散射进行分析,以确定材料的元素成分和含量,用于材料的定性与定量分析。