Euler方法解初值问题
- 格式:doc
- 大小:50.00 KB
- 文档页数:5
常微分方程初值问题的数值解法在自然科学、工程技术、经济和医学等领域中,常常会遇到一阶常微分方程初值问题:(,),,(),y f x y a x b y a y '=≤≤⎧⎨=⎩ (1) 此处f 为,x y 的已知函数,0y 是给定的初始值。
本章讨论该问题的数值解法,要求f 在区域{(,)|,}G x y a x b y =≤≤<∞内连续,并对y 满足Lipschitz 条件,从而初值问题(1)有唯一的连续可微解()y y x =,且它是适定的。
1 几个简单的数值积分法1.1 Euler 方法(1)向前Euler 公式(显式Euler 公式)10(,),0,1,2,,(),n n n n y y hf x y n y y a +=+=⎧⎨=⎩(2) 其中h 为步长。
由此便可由初值0y 逐步算出一阶常微分方程初值问题(1)的解()y y x =在节点12,,x x 处的近似值12,,y y 。
该公式的局部截断误差为2()O h ,是一阶方法。
(2)向后Euler 公式(隐式Euler 公式)1110(,),0,1,2,,(),n n n n y y hf x y n y y a +++=+=⎧⎨=⎩(3) 这是一个隐格式,也是一阶方法。
这类隐格式的计算比显格式困难,一般采用迭代法求解。
首先用向前Euler 公式提供迭代初值,然后迭代计算:(0)1(1)()111(,),(,),0,1,2,n n n n k k n n n n y y hf x y y y hf x y k +++++⎧=+⎨=+=⎩ (4)1.2 梯形方法1110[(,)(,)],2(),(0,1,2,)n n n n n n h y y f x y f x y y y a n +++⎧=++⎪⎨⎪=⎩= (5) 这也是一个隐格式,是二阶方法。
一般也采用迭代法求解。
迭代公式如下:(0)1(1)()111(,),[(,)(,)],0,1,2,2n n n n k k n n n n n n y y hf x y h y y f x y f x y k +++++⎧=+⎪⎨=++=⎪⎩ (6)1.3 改进的Euler 方法11110(,),[(,)(,)],0,1,2,,2(),n n n n n n n n n n y y hf x y h y y f x y f x y n y y a ++++⎧=+⎪⎪=++=⎨⎪=⎪⎩(7) 为了便于上机编程计算,(7)可改写为110(,),(,),0,1,2,,1(),2(),p n n n cn n p n p c y y hf x y y y hf x y n y y y y y a ++=+⎧⎪=+⎪⎪=⎨=+⎪⎪=⎪⎩(8) 该格式是显式,也是二阶方法。
欧拉⽅法解决微分⽅程初值问题
微分⽅程初值问题
初值问题\begin{cases}y^{\prime}=f(x, y)\\ y(x_{0})=y_{0}\end{cases}的解y=y(x)代表通过点(x_0, y_0)的⼀条称为微分⽅程的积分曲线。
积分曲线上的每⼀个点(x, y)的切线斜率等于函数y^{\prime}在这点的值.
欧拉⽅法画出函数图像
在最⼀开始的(x_0, y_0)位置开始,每次我们都给x⼀个步长\Delta x,如果这个步长⽐较⼩我们就可以认为(x, g(x))和(x+\Delta x, g(x+\Delta x))两点构成的直线的斜率近似为函数在x处的导数。
这样每次都画出这样⼀条“线段”,然后x跳到x+\Delta x这个位置,重复上⾯的过程就可以近似的画出这条直线的图像。
代码实现
import matplotlib.pyplot as plt
x, y = 0.0, 1.0
step = 0.1
X, Y = [x], [y]
def f(x:float, y:float):
return y - 2 * x / y
while x < 10.0:
k = f(x, y)
y = y + k * step
x = x + step
X.append(x)
Y.append(y)
print(X, Y, sep='\n')
plt.plot(X, Y)
plt.show()
Processing math: 0%。
微分方程数值解法微分方程数值解法微分方程数值解法【1】摘要:本文结合数例详细阐述了最基本的解决常微分方程初值问题的数值法,即Euler方法、改进Euler法,并进行了对比,总结了它们各自的优点和缺点,为我们深入探究微分方程的其他解法打下了坚实的基础。
关键词:常微分方程数值解法 Euler方法改进Euler法1、Euler方法由微分方程的相关概念可知,初值问题的解就是一条过点的积分曲线,并且在该曲线上任一点处的切线斜率等于函数的值。
根据数值解法的基本思想,我们取等距节点,其中h为步长,在点处,以为斜率作直线交直线于点。
如果步长比较小,那么所作直线与曲线的偏差不会太大,所以可用的近似值,即:,再从点出发,以为斜率作直线,作为的近似值,即:重复上述步骤,就能逐步求出准确解在各节点处的近似值。
一般地,若为的近似值,则过点以为斜率的直线为:从而的近似值为:此公式就是Euler公式。
因为Euler方法的思想是用折线近似代替曲线,所以Euler方法又称Euler折线法。
Euler方法是初值问题数值解中最简单的一种方法,由于它的精度不高,当步数增多时,由于误差的积累,用Euler方法作出的折线可能会越来越偏离曲线。
举例说明:解: ,精确解为:1.2 -0.96 -1 0.041.4 -0.84 -0.933 0.9331.6 -0.64 -0.8 0.161.8 -0.36 -0.6 0.242.0 0 -0.333 0.332.2 0.44 0 0.44通过上表可以比较明显地看出误差随着计算在积累。
2、改进Euler法方法构造在常微分方程初值问题 ,对其从到进行定积分得:用梯形公式将右端的定积分进行近似计算得:用和来分别代替和得计算格式:这就是改进的Euler法。
解:解得:由于 ,是线形函数可以从隐式格式中解出问题的精确解是误差0.2 2.421403 2.422222 0.000813 0.021400.4 2.891825 2.893827 0.00200 0.051830.6 3.422119 3.425789 0.00367 0.094112.0 10.38906 10.43878 0.04872 1.1973通过比较上表的第四列与第五列就能非常明显看出改进Euler方法精度比Euler方法精度高。
第八章常微分方程数值解法8.1用改进的Euler 方法解初值问题:取步长h=0.1计算,并与准确解相比较。
⎩⎨⎧=≤<+=1)0(10,'y x y x y 12−−=x e y x 8.2用改进的Euler 方法解初值问题:取步长h=0.1计算y(0.5),并与准确解相比较。
⎩⎨⎧=−+=0)0('2y y x x y x e x x y −−+−=12习题8第八章常微分方程数值解法8.3对初值问题:证明Euler 公式和梯形公式求得的近似解分别为⎩⎨⎧=−=1)0('y y y ,)1(n n h y −=n n h h y ⎟⎠⎞⎜⎝⎛+−=22并证明当时,它们都收敛于准确解。
0→h x e x y −=)(8.4取h=0.2,用经典R-K 法求解下列初值问题:⎪⎩⎪⎨⎧=≤<+=1)0(10,13')2(y x x y y ⎩⎨⎧=≤<+=1)0(10,')1(y x y x y第八章常微分方程数值解法8.5证明对任意参数t ,下列R -K 公式是二阶的:))1(,)1((),(),()(213121321hK t y h t x f K thK y th x f K y x f K K K h y y n n n n n n n n −+−+=++==++=+8.6对试验方程,试证明如下方法给出的绝对稳定条件。
(2)经典R-K 公式:(1)改进的Euler 公式:1|2)(1|2≤++h h λλ)0('<=λλy y 1|24)(6)(2)(1|432≤++++h h h h λλλλ第八章常微分方程数值解法本节内容完毕,点击自动返回章目录!。
解常微分方程初值问题的euler方法的并行计算方法
euler数值解常微分方程(ODE)初值问题的并行计算技术是一种在不同进程之间有效分享计算资源的方法,可以帮助快速解决ODES初值问题。
随着计算机硬件和软件的快速发展,为了满足新兴应用,并行计算技术被广泛应用于各个领域,其中也包括ODE。
euler数值解常微分方程初值问题的并行计算方法是通过将计算任务分解为一系列的小任务,然后分配给多个处理器进行求解以节省计算时间,改善计算效率。
该技术能够在大规模系统内构建强大的计算能力,能够快速有效地解决ODEs初值问题,而不需要耗费太多的计算资源。
针对ODEs初值问题,常用的并行计算技术主要有基于迭代的分布式计算和基于消息传递的分布式计算。
基于迭代的分布式计算可以有效利用多处理器,通过连续地迭代求解ODEs,从而克服时间步骤的限制,增加求解的效率。
基于消息传递的分布式计算则将原始Ode分割为数个子问题,并通过网络技术在远程计算机上进行计算,从而减少求解时间步骤,改进求解效率。
总之,euler数值解常微分方程初值问题的并行计算方法,在不同进程之间有效分享计算资源的方法,可以有效地改进ODEs求解效率,减少求解时间,为实际应用提供有效的计算方案。
解常微分方程初值问题的隐式euler方法及并行计算方法在现代科学技术发展的今天,为了更加有效地求解复杂的微分方程,隐式Euler方法和并行计算技术都受到了极大的关注。
在本文中,我们将探讨解微分方程初值问题的隐式Euler方法及其并行计算方法。
一、隐式Euler方法
隐式Euler方法是一种数值分析技术,用于求解一类特殊的常微分方程的解。
它的主要思路是利用Euler公式,将微分方程离散化,然后将这个微分方程用某种数值近似方法求解。
在隐式Euler方法中,当我们知道离散生成的差分方程组的当前时刻的状态值时,利用Euler公式可以求出其下一个时刻的状态值。
隐式Euler方法的主要优点在于其具有稳定性,即当生成有限差分方程组后,使用Euler公式求解可以使产生的误差更小,从而更有效地求解问题。
二、并行计算方法
随着计算机的发展,越来越多的计算机资源可以用于解决复杂的模型问题,其中最重要的就是并行计算技术。
并行计算是一种在多台计算机上同时运行的技术,其目的是将一个大的计算任务分解成多个小的计算任务,由不同的计算机同时处理。
实现并行计算的关键是合理、有序地分解任务,使得多台计算机能够更有效地实现任务。
并行计算技术和隐式Euler方法有着很好的结合,可以从计算任务的平衡性和分解粒度等方面充分发挥优势,提高隐式euler方法求
解微分方程的效率。
三、结论
本文介绍了隐式Euler方法和并行计算技术可以更有效地解决微分方程初值问题。
隐式Euler方法具有稳定性,而并行计算技术可以实现任务分解,提高求解效率。
因此,将这两种技术结合,可以大大提高复杂微分方程的求解效率。