网络计划六参数图解法
- 格式:ppt
- 大小:329.00 KB
- 文档页数:3
双代号网络计划图计算方法口诀简述文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)一、一般双代号网络图(没有时标)6个时间参数的计算方法(图上计算法)6时间参数示意图:(左上)最早开始时间 | (右上)最迟开始时间 | 总时差(左下)最早完成时间 | (右下)最迟完成时间 | 自由时差计算步骤:1、先计算“最早开始时间”和“最早完成时间”(口诀:早开加持续):计算方法:起始工作默认“0”为“最早开始时间”,然后从左向右累加工作持续时间,有多个紧前工作的取大值。
2、再计算“最迟开始时间”和“最迟完成时间”(口诀:迟完减持续):计算方法:结束工作默认“总工期”为“最迟完成时间”,然后从右到左累减工作持续时间,有多个紧后工作取小值。
(一定要注意紧前工作和紧后工作的个数)3、计算自由时差(口诀:后工作早开减本工作早完):计算方法:紧后工作左上(多个取小)-自己左下=自由时差。
4、计算总时差(口诀:迟开减早开或迟完减早完):计算方法:右上-左上=右下-左下=总时差。
计算某工作总时差的简单方法:①找出关键线路,计算总工期;②找出经过该工作的所有线路,求出最长的时间③该工作总时差=总工期-②二、双代号时标网络图(有时标,计算简便)双代号时标网络计划是以时间坐标为尺度编制的网络计划,以实箭线表示工作,以虚箭线表示虚工作(虚工作没有持续时间,只表示工作之间的逻辑关系,即前一个工作完成后一个工作才能开始),以波形线表示该工作的自由时差。
(图中所有时标单位均表示相应的持续时间,另外虚线和波形线要区分)示例:双代号时标网络图1、关键线路在时标双代号网络图上逆方向看,没有出现波形线的线路为关键线路(包括虚工作)。
如图中①→②→⑥→⑧2、时差计算(这里只说自由时差和总时差,其余4个时差参见前面的累加和累减)1)自由时差双代号时标网络图自由时差的计算很简单,就是该工作箭线上波形线的长度。
如A工作的FF=0,B工作的FF=1但是有一种特殊情况,很容易忽略。
2.网络图中的六个时间参数(重点)网络图中的时间参数主要有六个:最早开始时间;最早完成时间;最迟开始时间;最迟完成时间;总时差和自由时差。
各时间参数的含义如下。
(1)工作最早开始时间ESii(EarliestStartTime)——是指在其所有紧前工作全部完成后,本工作有可能开始的最早时刻。
(2)工作最早完成时间EFii(EarliestFinishTime)——是指在其所有紧前工作全部完成后,本工作有可能完成的最早时刻。
工作的最早完成时间等于工作最早开始时间与其持续时间之和。
(3)工作最迟完成时间LFii(LatestFinishTime)——是指在不影响整个任务按期完成的前提下,本工作必须完成的最迟时刻。
(4)工作最迟开始时间LSii(LatestStartTime)——是指在不影响整个任务按期完成的前提下,本工作必须开始的最迟时刻。
工作的最迟开始时间等于工作最迟完成时间与其持续时间之差。
(5)总时差TFii(TotalFloatTime)——是指在不影响总工期的前提下,本工作可以利用的机动时间。
(6)自由时差FFii(FreeFloatTime)——是指在不影响其紧后工作最早开始时间的前提下,本工作可以利用的机动时间。
3.双代号网络图中时间参数的计算(1)时间参数计算数学模型:下面取一网络片断(图9-24)作为计算简图。
令整个计划的开始时间为第0天,则:工作最早开始时间等于其紧前工作最早完成时间的最大值。
令整个计划的总工期为一常数,则:工作最迟完成时间等于其紧后工作最迟开始时间的最小值。
在网络计划中,总时差最小的工作为关键工作。
特别地,当网络计划的计划工期等于计算工期时,总时差为零的工作就是关键工作。
由于工作的自由时差是总时差的构成部分,所以,当工作的总时差为零时,其自由时差必然为零。
即:如果网络计划中工作数量比较多,一般用项目管理软件进行计算。
如果数量不多也可用手工进行计算。
(2)计算步骤。
双代号网络计划时间参数的计算方法自认为对双代号网络图的知识掌握的差不多,也能够理解;只是在遇到这六个时间参数的时候,还是有些发怵,今天重新把这六个参数捋了捋,总结如下:1、最早开始时间、最早完成时间:从网络计划的起点节点开始,顺着箭头方向依次进行;以网络计划起点为开始节点的工作,当未规定其最早开始时间时,其最早开始时间为零;有多个紧前工作的工作,其最早开始时间等于其紧前工作最早完成时间的最大值。
2、最迟开始时间、最迟完成时间:从网络计划的终点节点开始,顺着箭头方向依次进行;以网络终点节点为完成节点的工作,其最迟完成时间等于网络计划的计划工期,即要先找出关键线路,求出计划总工期作为最后一项工作的最迟完成时间;有多个紧后工作的工作,其最迟完成时间等于其紧后工作最迟开始时间的最小值。
3、总时差:不影响总工期的时差,等于该工作最迟完成时间与最早完成时间之差,或该工作最迟开始时间与最早开始时间之差;总时差最小的工作为关键工作,当网络计划的计划工期等于计算工期时,总时差为零的工作就是关键工作;同一条线路上的总时差相等(同一条线路都可以共用的时间,谁用了是谁的,不影响总工期)。
4、自由时差不影响紧后工作的时间;对于有多个紧后工作的工作,其自由时差等于本工作之紧后工作最早开始时间-本工作最早完成时间所得之差的最小值;无紧后工作的工作,也就是以网络计划重点节点为完成节点的工作,其自由时差等于计划工期与本工作最早完成时间之差;对于网络计划中以重点节点为完成节点的工作,其自由时差与总时差相等;只有一项紧前工作的紧前工作,该紧前工作的自由时差为0;自由时差小于等于总时差,总时差为零自由时差必为0 。
呵呵,本来想用通俗的语言解释一下,可写下来还是有点绕,我觉得这东西贵在理解,好像只是专家们为了考试罗列了一些概念,把简单的问题弄复杂了;没办法为了考试,慢慢理解吧。
二、搭接网络计划时间参数的计算单代号搭接网络计划时间参数的计算与前述单代号网络计划和双代号网络计划时间参数的计算原理基本相同。
双代号网络图六个时间参数的简易计算方法一.菲常有用的耍点:(这点对六时參敷的计算尊常用用) 茨储线陆上郴邻匸作的时何刪編为咨.Ilfl由时養■总时魁「显迟开始尉何一最早开始时何(min) 关fit工作:总时差最小的工作-•殿迟完圾尉的一虽早完成时刨(min) 在网络计划中.if tt EWfttttK终点节点的«V*r«时何的虽人位二・双代号网络图六时参数总结的计簣步樺(比书上简小多了):jonq 巾0诩g址迟开始时刨LS总时签)A , B »总时菱最甲左成时糾EF足迟完成的何LI-自由时菱r A>自山时畫任何一个I作总时疋二自由时%F1由时於S F各时何何隔的卑屈似題次序: <过秤步*->1. A上再做A.2. 做的力向从超始工作往结束工作方问:3. 尿点的卜一个的/\ t = Hll一个的A •:片诰到乡折向时.娶1R数值人的A.步績二1. B,再做B R2. 做的方向从給束点召”始点3. 综束点B ,=T (爲掘的总时何=他束I什“点中2只的A I)结束点B ■•IM过秤«时何)4. B ,=|»一个的B I.(这屮.的询一个足从终点起h的): £駅蕊麻。
為M 的B」.步環三*总対):=B i—A >=B F—A >如柴不郴等.体谄J上韓信了步9W1rd Ai 小的)AIM A>例:當麻EfVAtff9|flnft小(tt9・Lf ? =9-9 (木IF 的 A ♦)=0总结起来四句话:1. AiVHM从超点开«T・用3开始=當河劇MS束的maxflL2. hi迟尉何总终点开始.J3迟完成=獗麻啟迟开始的min (th 3・总H必.0迟一«V:4.门由时签=緊麻圮V开始的min (ft-M"开始tt:总时X:=(llll时怎+緊后总的刀的min {ft关于计算双代号网络图的题目用图上计算法计算如图所示双代号网络图的各项时间参数(六时标注)确定关键路线、关键工作和总工期注:其中工作F的最迟完成时间为计算工期17其自由时差为17-12=5 (计算工期-F的最早完成时间,因F后没有紧后工作了;H后也没有紧后工作了)双代号网络图是应用较为普遍的一种网络计划形式。
2.网络图中的六个时间参数(重点)网络图中的时间参数主要有六个:最早开始时间;最早完成时间;最迟开始时间;最迟完成时间;总时差和自由时差。
各时间参数的含义如下。
(1)工作最早开始时间ESii(EarliestStartTime)——是指在其所有紧前工作全部完成后,本工作有可能开始的最早时刻。
(2)工作最早完成时间EFii(EarliestFinishTime)——是指在其所有紧前工作全部完成后,本工作有可能完成的最早时刻。
工作的最早完成时间等于工作最早开始时间与其持续时间之和。
(3)工作最迟完成时间LFii(LatestFinishTime)——是指在不影响整个任务按期完成的前提下,本工作必须完成的最迟时刻。
(4)工作最迟开始时间LSii(LatestStartTime)——是指在不影响整个任务按期完成的前提下,本工作必须开始的最迟时刻。
工作的最迟开始时间等于工作最迟完成时间与其持续时间之差。
(5)总时差TFii(TotalFloatTime)——是指在不影响总工期的前提下,本工作可以利用的机动时间。
(6)自由时差FFii(FreeFloatTime)——是指在不影响其紧后工作最早开始时间的前提下,本工作可以利用的机动时间。
3.双代号网络图中时间参数的计算(1)时间参数计算数学模型:下面取一网络片断(图9-24)作为计算简图。
令整个计划的开始时间为第0天,则:工作最早开始时间等于其紧前工作最早完成时间的最大值。
令整个计划的总工期为一常数,则:工作最迟完成时间等于其紧后工作最迟开始时间的最小值。
在网络计划中,总时差最小的工作为关键工作。
特别地,当网络计划的计划工期等于计算工期时,总时差为零的工作就是关键工作。
由于工作的自由时差是总时差的构成部分,所以,当工作的总时差为零时,其自由时差必然为零。
即:如果网络计划中工作数量比较多,一般用项目管理软件进行计算。
如果数量不多也可用手工进行计算。
(2)计算步骤。
双代号时标网络计划六个时间参数计算简易方法双代号时标网络计划(Double-Barrel Network Diagram)是一种用于项目管理的时标网络计划方法,通过图形化和符号化的方式,展示出项目的活动、顺序、持续时间和关系。
在双代号时标网络计划中,每个活动都有两个时间参数,分别是起始时间(Earliest Start Time, EST)和终止时间(Latest Finish Time, LFT)。
本文将介绍双代号时标网络计划的基本概念和计算方法。
1. 事件(Event):指项目中的重要里程碑或关键节点,用圆圈表示。
2. 活动(Activity):指项目中的具体工作任务,用方框表示。
3.时间参数:双代号时标网络计划中,每个活动都有两个时间参数,分别是起始时间(EST)和终止时间(LFT)。
1.确定活动顺序:根据项目中各活动的先导和后继关系,确定活动的顺序。
2.确定活动持续时间:估算每个活动的持续时间。
3.计算起始时间(EST):从项目开始的事件开始,逐个活动计算EST。
对于一个活动的EST,等于该活动的前置活动中最迟完成时间(LFT)的最大值。
4.计算终止时间(LFT):从项目完成的事件开始,逐个活动计算LFT。
对于一个活动的LFT,等于该活动的后继活动中最早开始时间(EST)的最小值。
5. 计算总浮动时间(Total Float):总浮动时间等于活动的LFT减去EST,表示在不影响项目期限的情况下,活动可以延迟的最长时间。
6. 计算自由浮动时间(Free Float):自由浮动时间等于一个活动的后继活动中最早开始时间(EST)的最小值减去该活动的完成时间。
自由浮动时间表示在不影响后继活动的情况下,活动可以延迟的最长时间。
通过以上计算方法,可以得到双代号时标网络计划中每个活动的EST、LFT、总浮动时间和自由浮动时间。
这些时间参数可以帮助项目管理者了解每个活动的时间要求和灵活性,从而更好地进行资源调度和项目进度控制。
网络计划图常用时间参数和浮时计算方法首先弄清楚这两个概念:所谓总时差,就是不影响总工期的前提条件下,本工作可以利用的机动时间。
自由时差就是不影响紧后工作最早开始时间进行的前提下,本工作可以利用的机动时间。
自由时差总是小于等于总时差。
本工作的自由时差FF={紧后工作最早开始时间- 本工作最早完成时间}min。
本工作的总时差TF ={紧后工作的总时差+ 本工作与紧后工作自由时差}min。
主要是记住六个符号。
即ES EF LS LF TF FF在双代号网络图里:某工作的总时差=该工作最迟完工时间-该工作最早完工时间或该工作的总时差也可以=该工作最迟开工时间-该工作最早开工时间该工作的自由时差=该工作的紧后工作最早开工时间-该工作最早完工时间若该工作有多个紧后工作的话取其中最早开工的工作的最早开工时间。
在单代号网络图里比较麻烦该工作的自由时差=该工作紧后工作最早开始时间与该工作最早完成时间差的最小值。
本工作的总时差=该工作紧后工作的总时差与该工作与该工作紧后工作自由时差所得之和的最小值双代号网络图里TF=LS-ES or TF=LF-EFFFi,n=Tp-EFi,nFFi,j=ESj,k-EFi,j单代号网络图里TFn=0TFi=min(TFj+LAGi,j)FFi,n=Tp-EFi,nFFi=min(LAGi,j)总时差是不影响总工期的情况下该工作可以利用的机动时间自由时差是在不影响后续工作的情况下该工作可以利用的机动时间自由时差=紧后工作最早开始时间-本工作最早完工时间打个比方有个工程分为2部分完成(后面称为A部分和B部分),总工期为4天。
A部分需1天完成,其后续B部分要2天完成。
若A拖延一天从第二天开始开工,项目全部完成正好4天,不影响总工期,所以总时差为1天。
若A不拖延那么A部分最早第一天就可完成,而B部分最早第二天就可以开工,则A部分自由时差也是1天。
只要A拖延,后续工作B的最早开始时间一定受影响,当A部分拖延一天以上不仅影响后续工作B最早开始时间而且影响总工期。