010-011信号与系统第三章-1
- 格式:ppt
- 大小:1.08 MB
- 文档页数:61
第三章连续信号的正交分解§3-1 引言线性系统分析方法,是将复杂信号分解为简单信号之和(或积分),通过系统对简单信号的响应求解系统对复杂信号的响应。
在上一章所述的时域中,近代时域法将信号分解为冲激信号的积分,根据系统的冲激响应通过卷积计算出系统对信号的响应。
然而,很多信号的特性与频率有着很重要的关系,因此研究信号在频域中的特性可以得到许多极具实用价值的结论,它在工程中也具有很重要的意义。
故此,从本章开始,我们就是研究这方面的问题。
在本章中,我们研究任何将信号分解成与频率有关的函数的叠加。
即在频域中,将信号分解为一系列与频率有关的正弦函数的和(或积分)。
然后,再研究如何通过系统对正弦信号的响应求解系统对原信号的响应。
类似上章所述,通过信号分解的方法求解响应要研究下面几个问题:1)如何将任意信号分解为一系列正弦信号之和(或积分)。
2) 求解系统对各个正弦子信号的响应(这个内容在电路分析课程中已经有详细介绍)。
3) 将各子信号的响应相叠加,从而合成系统对激励信号的响应。
本章将要研究的就是如何对信号进行分解和合成。
§3-2 信号在正交函数集中的分解信号的分解,在某种意义上与矢量的分解有相似之处。
为了形象地说明信号的分解,首先我们讨论矢量的分解。
一、矢量的分解1、矢量的定义:具有大小和方向的量叫做矢量。
2、矢量运算:加,矢量点乘(结果是标量),矢量叉乘。
3、矢量的分解:1) 矢量的单矢量基的分解:A 在1A 上的分量为A 在1A 上的投影:E +=11A A c其中,E 为误差矢量。
而A 在1A 上的垂直投影11c A 的模11A c :11111A A Acos θA Acos θA AA ∙===1c ,从几何或者解析角度,都可以得到使误差E 最小的系数为:1112111A A A AA A A ∙∙=∙=c其中的1c 称为矢量A 和1A 的相似系数。
其它投影情况下误差E 不为最小,见上图。
3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。
1,某系统7,4码)()(01201230123456c c c m m m m c c c c c c c ==c 其三位校验位与信息位的关系为:1求对应的生成矩阵和校验矩阵; 2计算该码的最小距离;3列出可纠差错图案和对应的伴随式;4若接收码字R =1110011,求发码;解:1 1000110010001100101110001101G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦101110011100100111001H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2 d min =3 34. RH T=001 接收出错E =0000001 R+E=C = 1110010 发码2.已知(),X Y 的联合概率(),p x y 为: 求()H X ,()H Y ,(),H X Y ,();I X Y 解:(0)2/3p x == (1)1/3p x ==()()(1/3,2/3)H X H Y H === bit/symbol (),(1/3,1/3,1/3)H X Y H == bit/symbol ();()()(,)I X Y H X H Y H X Y =+-= bit/symbol3.一阶齐次马尔可夫信源消息集},,{321a a a X ∈,状态集},,{321S S S S∈,且令3,2,1,==i a S i i ,条件转移概率为01X Y011/31/301/3[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=03121313121141)/(i j S a P ,1画出该马氏链的状态转移图;2计算信源的极限熵; 解:12⎪⎪⎩⎪⎪⎨⎧=++=+=++=++1321323112123312311411332231141w w w w w w w w w w w w w w →⎪⎩⎪⎨⎧===3.03.04.0321w w wHX|S 1 =H 1/4,1/4,1/2=比特/符号HX|S 2=H 1/3,1/3,1/3=比特/符号HX|S 3=H 2/3,1/3= 比特/符号()3|0.4 1.50.3 1.5850.30.918 1.3511Hw H X S i ii ==⨯+⨯+⨯=∑∞=比特/符号 4.若有一信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2.08.021x x P X ,每秒钟发出个信源符号;将此信源的输出符号送入某一个二元信道中进行传输 假设信道是无噪无损的,容量为1bit/二元符号, 而信道每秒钟只传递2个二元符号;(1) 试问信源不通过编码即x 10,x 21在信道中传输 (2) 能否直接与信道连接(3) 若通过适当编码能否在此信道中进行无失真传输 (4) 试构造一种哈夫曼编码两个符号一起编码, (5) 使该信源可以在此信道中无失真传输;解:1不能,此时信源符号通过0,1在信道中传输,二元符号/s>2二元符号/s 2从信息率进行比较, (0.8,0.2)H = < 12可以进行无失真传输 3410.640.16*20.2*3i i i Kp K ===++=∑ 二元符号/2个信源符号此时 2=二元符号/s < 2二元符号/s 5.两个BSC 信道的级联如右图所示:1写出信道转移矩阵; 2求这个信道的信道容量; 解: 16.设随机变量,{21=x x X }1,0{21=Y的联合概率空间为 x 1x 1x 1x 2x 2x 1x 2x 20.64011100101 0.64定义一个新的随机变量Y X Z ⨯=普通乘积(1) 计算熵HX,HY,HZ,HXZ,HYZ,以及HXYZ ;(2) 计算条件熵 HX|Y,HY|X,HX|Z,HZ|X,HY|Z,HZ|Y,HX|YZ,HY|XZ 以及HZ|XY ; (3) 计算平均互信息量IX ;Y,IX :Z,IY :Z,IX ;Y|Z,IY ;Z|X 以及IX :,Z|Y; 解:1 2 37.设二元对称信道的输入概率分布分别为]4/14/3[][=X P ,转移矩阵为[]⎥⎦⎤⎢⎣⎡=3/23/13/13/2|XY P ,(1) 求信道的输入熵,输出熵,平均互信息量; (2) 求信道容量和最佳输入分布; (3) 求信道剩余度; 解:1信道的输入熵4log 4/1)3/4(log 4/3)(22+=X H ;2最佳输入分布为]2/12/1[][=X P ,此时信道的容量为)3/1,3/2(1H C -=3信道的剩余度:);(Y X I C -8.[][]25.025.05.0=X P ,试确定最佳译码规则和极大似然译码规则,并计算出相应的平均差错率;解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8/124/112/112/18/124/112/16/14/1][XY P 最佳译码规则:⎪⎩⎪⎨⎧===331211)()()(ab F a b F a b F ,平均差错率为1-1/4-1/6-1/8=11/24;极大似然规则:⎪⎩⎪⎨⎧===332211)()()(ab F a b F a b F ,平均差错率为1-1/4-1/8-1/8=1/2;9.设有一批电阻,按阻值分70%是2k Ω,30%是5k Ω;按功耗分64%是1/8W,36%是1/4W;现已知2k Ω电阻中80%是1/8W,假如得知5k Ω电阻的功耗为1/4W,问获得多少信息量; 解:根据题意有⎥⎦⎤⎢⎣⎡===3.07.05221k r k r R ,⎥⎦⎤⎢⎣⎡===36.064.04/128/11w w W ,8.0)1/1(=r w p 由15/4)2/1()2/1()2()1/1()1()1(=⇒+=r w p r w p r p r w p r p w p 所以15/11)2/1(1)2/2(=-=r w p r w p得知5k Ω电阻的功耗为1/4W,获得的自信息量为=-))2/2((r w p lb10.已知6符号离散信源的出现概率为⎥⎥⎦⎤⎢⎢⎣⎡321321161814121654321a a a a a a ,试计算它的熵、Huffman 编码和费诺编码的码字、平均码长及编码效率; 解:该离散信源的熵为323213232116161881441221)()(61lb lb lb lb lb lb p lb p x H i i i +++++=-=∑== bit/符号11.在图片传输中,每帧约有2106个像素,为了能很好地重现图像,每像素能分256个亮度电平,并假设亮度电平等概分布;试计算每分钟传送两帧图片所需信道的带宽信噪功率比为30dB; 解:每个像素点对应的熵8256log log 22===n H bit/点 2帧图片的信息量bit H N I 7610*2.38*10*2*2**2===单位时间需要的信道容量s bit t I C t /10*3.56010*2.357===由香农信道容量公式Hz SNR C W SNR W C t t 4252210*35.5)10001(log 10*3.5)1(log )1(log ≈+=+=⇒+=12.求右图所示的信道的容量及达到信道容量时的输入分布; 解:由右图可知,该信道的转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=102/12/101P 可以看到,当该信道的输入分布取⎥⎦⎤⎢⎣⎡=2/102/1)(321a a a X P 时,⎥⎦⎤⎢⎣⎡=2/12/1)(21b bY P 此时2);(2)()/(log)/();(311211lb Y a X I lb b p a b p a bp Y a X I j j jj =====∑=同理可得, 而0);(2==Y a X I ,此分布满足⎩⎨⎧==≠=0);(02);(i i i i p Y x I p lb Y x I ;因此这个信道的容量为X Y b 1b 2a 1a 2a 3C=lb2=1bit/符号,而达到信道容量的输入分布可取⎥⎦⎤⎢⎣⎡=2/102/1)(321a a aX P ; D max =∑==414,3,2,1min i ijij dp ,由于ij i d p 和具有对称性,每个和式结果都为1/2,因此 Dmax= 1/2,13.设离散信源⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡p p p p U U U U u p U 21)1(21)1(2121)(4321其中21≤p 和接收变量V={v1,v2,v3,v4},失真矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=05.05.015.0015.05.0105.015.05.00D ,求D min,D max 、RD min 、RD max 、达到D min 和D max 时的编码器转移概率矩阵P; 解:由于失真矩阵每行每列都只有一个最小值“0”,所以可以达到D min =0,此时对应的信道转移概率矩阵应使得信源的每个输出经过信道转移后失真为0,即选择⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001P ; RD min = R0= HU = 1-plog p –1-plog1-p = 1+Hp;对应的转移概率矩阵可取任意1列为全1,如⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001P ,此时 RD max= R1/2= 0;14.设有一个二进制一阶马尔可夫信源,其信源符号为X ∈0,1,条件概率为p 0/0= p 1/0= p1/1= p 0/1=画出状态图并求出各符号稳态概率;15分15.设输入符号与输出符号为X =Y ∈{0,1,2,3},且输入符号等概率分布;设失真函数为汉明失真;求D max 和D min 及RD max 和RD min 20分解:()()()()012314p x p x p x p x ====失真矩阵的每一行都有0,因此D min =016.设随机变量}1,0{},{21==x x X和}1,0{},{21==y y Y 的联合概率空间为定义一个新的随机变量Y X Z ⨯=普通乘积计算熵HX,HY,HZ,HXZ,HYZ,以及HXYZ ;计算条件熵 HX|Y,HY|X,HX|Z,HZ|X,HY|Z,HZ|Y,HX|YZ,HY|XZ 以及HZ|XY ; 计算平均互信息量IX ;Y,IX :Z,IY :Z,IX ;Y|Z,IY ;Z|X 以及IX :,Z|Y; 解:12))3/4(log 4/34log 4/1(2/1))3/4(log 4/34log 4/1(2/1)|(2222+++=Y XH3 )|()();(Y X H X H Y X I -=)|()();(Z X H X H Z X I -=分别为]4/14/3[][=XP ,转移17.设二元对称信道的输入概率分布矩阵为[]⎥⎦⎤⎢⎣⎡=3/23/13/13/2|XY P , 求信道的输入熵,输出熵,平均互信息量;求信道容量和最佳输入分布; 求信道剩余度; 解:1信道的输入熵4log 4/1)3/4(log 4/3)(22+=X H ;2最佳输入分布为]2/12/1[][=X P ,此时信道的容量为)3/1,3/2(1H C -=3信道的剩余度:);(Y X I C-设有DMC,其转移矩阵为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2/16/13/13/12/16/16/13/12/1|X Y P ,若信道输入概率为[][]25.025.05.0=X P ,试确定最佳译码规则和极大似然译码规则,并计算出相应的平均差错率;解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8/124/112/112/18/124/112/16/14/1][XY P 最佳译码规则:⎪⎩⎪⎨⎧===331211)()()(a b F a b F a b F ,平均差错率为1-1/4-1/6-1/8=11/24;极大似然规则:⎪⎩⎪⎨⎧===332211)()()(ab F a b F a b F ,平均差错率为1-1/4-1/8-1/8=1/2;一、概念简答题1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同2.简述最大离散熵定理;对于一个有m 个符号的离散信源,其最大熵是多少3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系4.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理;5.写出香农公式,并说明其物理意义;当信道带宽为5000Hz,信噪比为30dB 时求信道容量;6.解释无失真变长信源编码定理;7.解释有噪信道编码定理;8.什么是保真度准则 对二元信源,其失真矩阵,求a>0时率失真函数的和9.简述离散信源和连续信源的最大熵定理;10.解释等长信源编码定理和无失真变长信源编码定理,说明对于等长码和变长码,最佳码的每符号平均码长最小为多少编码效率最高可达多少11.解释最小错误概率译码准则,最大似然译码准则和最小距离译码准则,说明三者的关系; 12.设某二元码字C={111000,001011,010110,101110}, ①假设码字等概率分布,计算此码的编码效率②采用最小距离译码准则,当接收序列为110110时,应译成什么码字13.一平稳二元信源,它在任意时间,不论以前发出过什么符号,都按发出符号,求和平均符号熵14.分别说明信源的概率分布和信道转移概率对平均互信息的影响,说明平均互信息与信道容量的关系;15.二元无记忆信源,有求:1某一信源序列由100个二元符号组成,其中有m个“1”,求其自信息量2求100个符号构成的信源序列的熵;16.求以下三个信道的信道容量:,,17.已知一3,1,3卷积码编码器,输入输出关系为:试给出其编码原理框图;18. 简述信源的符号之间的依赖与信源冗余度的关系;19. 简述香农第一编码定理的物理意义20. 什么是最小码距, 以及它和检错纠错能力之间的关系;21. 简述信息的特征22. 简单介绍哈夫曼编码的步骤一、概念简答题每题5分,共40分1.答:平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量;平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量;2.答:最大离散熵定理为:离散无记忆信源,等概率分布时熵最大;最大熵值为;3.答:信息传输率R指信道中平均每个符号所能传送的信息量;信道容量是一个信道所能达到的最大信息传输率;信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分布;平均互信息是信源概率分布的∩型凸函数,是信道传递概率的U型凸函数;4.答:通信系统模型如下:数据处理定理为:串联信道的输入输出X、Y、Z组成一个马尔可夫链,且有,;说明经数据处理后,一般只会增加信息的损失;5.答:香农公式为,它是高斯加性白噪声信道在单位时间内的信道容量,其值取决于信噪比和带宽;由得,则6.答:只要,当N足够长时,一定存在一种无失真编码;7.答:当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小;8.答:1保真度准则为:平均失真度不大于允许的失真度;2因为失真矩阵中每行都有一个0,所以有,而;9.答:离散无记忆信源,等概率分布时熵最大;连续信源,峰值功率受限时,均匀分布的熵最大;平均功率受限时,高斯分布的熵最大;均值受限时,指数分布的熵最大;10.答:等长信源编码定理:对于任意,只要,则当L足够长时必可使译码差错;变长信源编码定理:只要,一定存在一种无失真编码;等长码和变长码的最小平均码长均为,编码效率最高可达100%;11.答:最小错误概率译码准则下,将接收序列译为后验概率最大时所对应的码字;最大似然译码准则下,将接收序列译为信道传递概率最大时所对应的码字;最小距离译码准则下,将接收序列译为与其距离最小的码字;三者关系为:输入为等概率分布时,最大似然译码准则等效于最小错误概率译码准则;在二元对称无记忆信道中,最小距离译码准则等效于最大似然译码准则;12.答:12令接收序列为,则有,,,,故接收序列应译为010110;13.答:14.答:平均互信息相对于信源概率分布为上凸函数,相对于信道传递概率分布为下凹函数;平均互信息的最大值为信道容量;15.答:1216.答:P1为一一对应确定信道,因此有;P2为具有归并性能的信道,因此有;P3为具有发散性能的信道,因此有;17.答:18.当信源的符号之间有依赖时,信源输出消息的不确定性减弱;而信源冗余度正是反映信源符号依赖关系的强弱,冗余度越大,依赖关系就越大;19.答:无失真信源编码,编码后尽可能等概率分布, 使每个码元平均信息量最大;从而使信道信息传输率R达到信道容量C, 实现信源与信道理想的统计匹配;20.某一码书C中, 任意两个码字之间汉明距离的最小值称为该码的最小码距Dmin.当已知某线性分组码的最小汉明距离为Dmin,那么这组码最多能检测出e =Dmin-1个码元错误,最多能纠正t =Dmin-1 /2个码元错误;21.答:信息的基本概念在于它的不确定性,任何已确定的事物都不含信息;接收者在收到信息之前,对它的内容是不知道的,所以信息是新知识、新内容;信息是能使认识主体对某一事物的未知性或不确定性减少的有用知识;信息可以产生,也可以消失,同时信息可以被携带、贮存及处理;信息是可以量度的,信息量有多少的差别;22.①将信源消息符号按其出现的概率大小依次排列px1≥px2≥…≥px n②取两个概率最小的符号分别配以0和1,并将这两个概率相加作为一个新符号的概率,与未分配码元的符号重新排队;③对重排后的两个概率最小符号重复步骤2的过程;④继续上述过程,直到最后两个符号配以0和1为止;⑤从最后一级开始,向前返回得到各个信源符号所对应的码元序列,即相应的码字;二、综合题每题10分,共60分1.黑白气象传真图的消息只有黑色和白色两种,求:1 黑色出现的概率为,白色出现的概率为;给出这个只有两个符号的信源X的数学模型;假设图上黑白消息出现前后没有关联,求熵;2 假设黑白消息出现前后有关联,其依赖关系为:,,,,求其熵;3分别求上述两种信源的冗余度,比较它们的大小并说明其物理意义;2.二元对称信道如图; ;1若,,求和; 2求该信道的信道容量和最佳输入分布;3.信源空间为,试分别构造二元和三元霍夫曼码,计算其平均码长和编码效率;4.设有一离散信道,其信道传递矩阵为,并设,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率;5.已知一8,5线性分组码的生成矩阵为;求:1输入为全00011和10100时该码的码字;2最小码距;6.设某一信号的信息传输率为s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz;试求:1无差错传输需要的最小输入功率是多少2此时输入信号的最大连续熵是多少写出对应的输入概率密度函数的形式;7.二元平稳马氏链,已知P0/0=,P1/1=,求:1求该马氏信源的符号熵;2每三个符号合成一个来编二进制Huffman码,试建立新信源的模型,给出编码结果;3求每符号对应的平均码长和编码效率;8.设有一离散信道,其信道矩阵为,求:1最佳概率分布2当,时,求平均互信息 信道疑义度3输入为等概率分布时,试写出一译码规则,使平均译码错误率最小,并求此设线性分组码的生成矩阵为,求:1此n,k 码的n= k=,写出此n,k 码的所有码字;2求其对应的一致校验矩阵H;3确定最小码距,问此码能纠几位错列出其能纠错的所有错误图样和对应的伴随式;4若接收码字为000110,用伴随式法求译码结果;设一线性分组码具有一致监督矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110101100110111000H 1求此分组码n=,k=共有多少码字2求此分组码的生成矩阵G; 3写出此分组码的所有码字;4若接收到码字101001,求出伴随式并给出翻译结果;10.二元对称信道的信道矩阵为,信道传输速度为1500二元符号/秒,设信源为等概率分布,信源消息序列共有13000个二元符号,问:1试计算能否在10秒内将信源消息序列无失真传送完2若信源概率分布为,求无失真传送以上信源消息序列至少需要多长时间11.已知7,4循环码的生成多项式,求:1求该码的编码效率2求其对应的一致校验多项式3写出该码的生成矩阵,校验矩阵;4若消息码式为,求其码字;12.证明:平均互信息量同信息熵之间满足IX;Y=HX+HY-HXY13. 居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高米以上的,而女孩中身高米以上的占总数的一半;假如我们得知“身高米以上的某女孩是大学生”的消息,问获得多少信息量14. 有两个二元随机变量X 和Y ,它们的联合概率为Y Xx 1=0 x 2=1 y 1=0 1/8 3/8 y 2=13/81/8定义另一随机变量Z = XY 一般乘积,试计算HZ=15. 求以下二个信道的信道容量:, ,16. 已知一个高斯信道,输入信噪比比率为3;频带为3kHz,求最大可能传 送的信息率;若信噪比提高到15,理论上传送同样的信息率所需的频带为 多少17. 设信源为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡4/34/121x x P X X ,试求1信源的熵、信息含量效率以及冗余度;2求二次扩展信源的概率空间和熵;18. 什么是损失熵、噪声熵什么是无损信道和确定信道如输入输出为s r ⨯,则它们的分别信道容量为多少19. 信源编码的和信道编码的目的是什么20. 什么是香农容量公式为保证足够大的信道容量,可采用哪两种方法21. 什么是限失真信源编码二、综合题1.答:1信源模型为2由得则3119.02log )(121=-=X H γ 1分447.02log )(122=-=∞X H γ 1分12γγ>;说明:当信源的符号之间有依赖时,信源输出消息的不确定性减弱;而信源冗余度正是反映信源符号依赖关系的强弱,冗余度越大,依赖关系就越大;2分2.答:12,最佳输入概率分布为等概率分布;3.答:1二元码的码字依序为:10,11,010,011,1010,1011,1000,1001;平均码长,编码效率2三元码的码字依序为:1,00,02,20,21,22,010,011;平均码长,编码效率4.答:1最小似然译码准则下,有,2最大错误概率准则下,有,26.答:1无错传输时,有即则2在时,最大熵7.答:1由得极限概率:则符号熵为2新信源共8个序列,各序列的概率为信源模型为一种编码结果依信源模型中的序列次序为0,11,1001,1010,1011,10000,100010,10001138.答:1是准对称信道,因此其最佳输入概率分布为;2当,时,有则3此时可用最大似然译码准则,译码规则为且有答:1n=6,k=3,由C=mG可得所有码字为:000000,001011,010110,011101,100101,101110,110011,1110002此码是系统码,由G知,,则3由H可知,其任意2列线性无关,而有3列线性相关,故有,能纠一位错;错误图样E 伴随式100000 101010000 110001000 011000100 100000010 010000001 0014由知E=010000,则解:1n=6,k=3,共有8个码字;3分2设码字()12345CCCCCCC=由TTHC0=得⎪⎩⎪⎨⎧=⊕⊕⊕=⊕⊕=⊕⊕1353412CCCCCCCCCC3分令监督位为()12CCC,则有⎪⎩⎪⎨⎧⊕=⊕=⊕=34451352CCCCCCCCC3分生成矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1111111112分3所有码字为000000,001101,010011,011110,100110,101011,110101,111000;4分4由TT HRS=得()101=S,2分该码字在第5位发生错误,101001纠正为101011,即译码为1010011分10.答:1信道容量为信源序列信息量为而10秒内信道能传递的信息量为故不能无失真地传送完;2此时信源序列信息量为信息传输率为则11.答:123,而412. 证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; 2分同理 ()()()X Y H Y H Y X I-=; 1分则 ()()()Y X I Y H X Y H;-=因为 ()()()X Y H X H XY H+= 1分故()()()()Y X I Y H X H XY H;-+=即()()()()XY H Y H X H Y X I-+=; 1分13. 解:设A 表示“大学生”这一事件,B 表示“身高以上”这一事件,则 PA= pB= pB|A= 2分 故 pA|B=pAB/pB=pApB|A/pB== 2分 IA|B== 1分14. 解:Z = XY 的概率分布如下: 15. 答:P 1为一一对应确定信道,因此有; P2为具有归并性能的信道,因此有;16. 答:1 最大可能传送的信息率是Ct = w log 1+ Px/Pn = 3×1000 × log 1+ 3 = 6×1000比特/秒2 17. 解:12二次扩展信源的概率空间为:18. 答:将HX|Y 称为信道},,{|Y P X X Y 的疑义度或损失熵,损失熵为零的信道就是无损信道,信道容量为logr;将HY|X 称为信道},,{|Y P X X Y 的噪声熵,噪声熵为零的信道就是确定信道,信道容量为logs;19. 答:信源编码的作用:1符号变换:使信源的输出符号与信道的输入符号相匹配;2冗余度压缩:是编码之后的新信源概率均匀化,信息含量效率等于或接近于100%; 信道编码的作用:降低平均差错率; 20.答:香农信道容量公式:)1(log )(02BN P B P C SS +=,B 为白噪声的频带限制,0N 为常数,输入Xt 的平均功率受限于S P ;由此,为保证足够大的信道容量,可采用1用频带换信噪比;2用信噪比换频带;21. 答:有失真信源编码的中心任务:在允许的失真范围内把编码的信息率压缩到最小;。
第1章绪论
1.1复习笔记
本章作为《信号与系统》的开篇章节,是整个信号与系统学习的基础。
本章介绍了有关信号与系统的基本概念和术语,给出几种典型的信号和系统的表现形式,讲述了各信号与系统的特点以及信号之间的运算和转换。
通过本章学习,读者应掌握:如何判断信号类型、不同信号之间的运算、信号的分解以及系统类型的判断。
一、信号概述
1.信号的概念及分类(见表1-1-1)
表1-1-1信号的概念及分类
2.典型的连续信号(见表1-1-2)
表1-1-2典型的信号及表示形式
3.信号的运算(见表1-1-3)
表1-1-3信号的运算
4.阶跃函数和冲激函数
阶跃信号和冲激信号是信号与系统中最基础的两种信号,许多复杂信号皆可由二者或二者的线性组合表示。
具体见表1-1-4及表1-1-5。
(1)单位阶跃信号u(t)
表1-1-4单位阶跃信号u(t)
(2)单位冲激信号δ(t)
表1-1-5单位冲激信号δ(t)表示形式及性质
5.信号的分解
一个一般信号根据不同类型可分解为以下几种分量,具体见表1-1-6。
表1-1-6信号的分解
二、系统
1.系统概念及分类(见表1-1-7)
表1-1-7系统的概念及分类
系统模型如下:
输入信号经过不同系统可得到不同输出信号,具体见表1-1-8。
表1-1-8不同系统特性
1.2课后习题详解
1-1分别判断图1-2-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?
(a)
(b)
(c)
(d)
(e)
(f)。
《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。
](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S RS LS C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。