2-2静电场的基本方程
- 格式:ppt
- 大小:1.35 MB
- 文档页数:44
工程电磁场基础第3 章静电场(2)电荷的分布形式主讲人:陈德智dzhchen@/hkdq/华中科技大学电气与电子工程学院2013年3月2. 电荷的分布形式•“自由空间”的物理图像•静电场中的导体•静电场中的电介质——极化电荷•包含材料特性的基本方程•媒质交界面条件00/3200, U φφπϕϕϕ==⎧=∇=⎪⎨=⎪⎩电荷的实际存在形式•电荷是物质的基本属性,不存在脱离了物质的电荷。
•电荷与电场之间相互影响,真空中的自由电荷不可能稳定地处于某个固定位置;常遇到的是物质中的电荷。
•典型的物质包括导体和电介质。
导体中有部分电荷可在导体内自由移动,称自由电荷;而介质(或电介质、绝缘体)中的电荷被约束在原子或分子内部,称为束缚电荷。
通常情况下,作为电场之源的电荷,就存在于这些物质中。
•当使用库仑定律计算电场时,必须考虑包括自由电荷与束缚电荷在内的全部电荷的贡献。
,导体是等位体,无极分子\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\有极分子⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\⊕\均匀极化时,只在表面上产生面分布的极化电荷,介质内部极化电荷为0。
因为是均匀极化,设单位体积内的分子数为n ,则。
取厚度为l 的表面薄层,设面积为A ,其体积为。
所含有的分子数。
这些分子都有电荷移出,故电荷总量为。
因此极化电荷面密度为(3)均匀极化下的极化电荷e n nq ==P p l p σV A l =⋅p /e q A nq l Pσ===N n V n A l =⋅=⋅⋅e e q q N nq Al ==更一般的形式p n nP σ==⋅P ep nP σ=p q V ΔρΔ−==−∇⋅Pp p p 2200d d 44R RS V S V R R σρπεπε′′′′=+∫∫e e E p p p 00d d 44SV S V R Rσρϕπεπε′′=+∫∫极化电荷面密度极化电荷体密度极化电荷产生的电场包含材料特性的基本方程在形式上同真空中的基本方程完全相同,只需要把本构关系中的换成ε即可:旋度方程保持不变,散度方程只包括自由电荷!0εd Sq⋅=∫D S d 0l⋅=∫E l ρ=⋅∇D 0∇×=E D =ε E结论:引入参数ε 后,静电场基本方程中的电荷就只保留了自由电荷,而极化电荷的效应被ε 和重新定义的电位移矢量D 所包含。
一填空题1.麦克斯韦方程组的微分形式是:、、和。
2.静电场的基本方程为:、 .3.恒定电场的基本方程为:、。
4.恒定磁场的基本方程为:、。
5.理想导体(媒质2)与空气(媒质1)分界面上,电磁场边界条件为: 、、和。
6.线性且各向同性媒质的本构关系方程是:、、 .7.电流连续性方程的微分形式为: .8.引入电位函数是根据静电场的特性。
9.引入矢量磁位是根据磁场的特性。
10.在两种不同电介质的分界面上,用电位函数表示的边界条件为:、。
11.电场强度的单位是,电位移的单位是;磁感应强度的单位是,磁场强度的单位是。
12.静场问题中,与的微分关系为: ,与的积分关系为: .13.在自由空间中,点电荷产生的电场强度与其电荷量成比,与观察点到电荷所在点的距离平方成比.14.XOY平面是两种电介质的分界面,分界面上方电位移矢量为 C/m2,相对介电常数为2,分界面下方相对介电常数为5,则分界面下方z方向电场强度为__________,分界面下方z方向的电位移矢量为_______________。
15.静电场中电场强度,则电位沿的方向导数为_______________,点A(1,2,3)和B(2,2,3)之间的电位差__________________。
16.两个电容器和各充以电荷和,且两电容器电压不相等,移去电源后将两电容器并联,总的电容器储存能量为,并联前后能量是否变化 .17.一无限长矩形接地导体槽,在导体槽中心位置有一电位为U的无限长圆柱导体,如图所示。
由于对称性,矩形槽与圆柱导体所围区域内电场分布的计算可归结为图中边界、、、和所围区域内的电场计算。
则在边界_____________上满足第一类边界条件,在边界_____________上满足第二类边界条件。
18.导体球壳内半径为a,外半径为b,球壳外距球心d处有一点电荷q,若导体球壳接地,则球壳内表面的感应电荷总量为____________,球壳外表面的感应电荷总量为____________。