计数原理1.2.1排列概念与排列数公式说课稿新人教A版选修2_3
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
高中数学第一章计数原理1.2 排列与组合1.2.1 排列(第3课时)教案新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章计数原理1.2 排列与组合1.2.1 排列(第3课时)教案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章计数原理1.2 排列与组合1.2.1 排列(第3课时)教案新人教A版选修2-3的全部内容。
1。
2。
1 排列第三课时教学目标知识与技能利用捆绑法、插空法解决排列问题.过程与方法经历把简单的计数问题化为排列问题解决的过程,从中体会“化归”的数学思想.情感、态度与价值观能运用所学的排列知识,正确地解决实际问题,体会“化归”思想的魅力.重点难点教学重点:利用捆绑法、插空法解决排列问题.教学难点:利用捆绑法、插空法解决排列问题.错误!错误!提出问题:7位同学排队,根据上一节课所学的方法,解决下列排列问题.(1)7位同学站成一排,共有多少种不同的排法?(2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?活动设计:学生自己做,找学生到黑板上板演.活动成果:解:(1)问题可以看作:7个元素的全排列A错误!=5 040。
(2)根据分步乘法计数原理:7×6×5×4×3×2×1=7!=5 040.(3)问题可以看作:余下的6个元素的全排列A错误!=720。
1.2排列与组合1.2.1排列教学建议本小节具有承上启下的作用.理解排列的概念是应用计数原理推导排列数公式的前提,同时,具体的排列问题的分析又为得出排列数公式提供了基础.本课时通过实例让学生理解排列的概念,能用列举法、树形图列出排列,并从列举过程中体会排列数与计数原理的关系,体会将实际问题划归为计数问题的方法.教学重点:理解排列的概念,能用列举法、树形图列出排列,从简单排列问题的计数过程中体会数学公式.教学难点:对排列要完成的“一件事”的理解;对“一定顺序”的理解.资源拓展数列显示的行星排列规律18世纪70年代,德国自然科学家提丢斯将已知六大行星绕日轨道椭圆的长半轴的天文单位(简称行星与太阳的平行距离)依次排列,寻找它的通项公式,提丢斯发现,如果在火星与木星之间加一项的话,可以得到下表:行星水星金星地球火星? 木星土星与日距离0.387 0.723 1.000 1.524 ? 5.203 9.560近似值0.4 0.7 1.0 1.6 2.8 5.2 10如果将近似值的数列记作{a n},则它的通项公式是a n=当n≥2时,{a n}有下面的性质:a n+2-a n+1=2(a n+1-a n).德国天文学家波得宣布了提丢斯的这一成果,后来被称为提丢斯—波得定则.果然,后来天文学家们在2.8处发现了许多小行星,最大的一颗叫“谷神星”,直径有1 000多公里,一些天文学家研究的结论是,这些小行星正好是质量不小的行星爆炸后的产物,对于数列再往下计算一项得19.6,此处是否对应着有颗行星?真是再巧不过了,人们发现了天王星,它到太阳的距离是19.2天文单位,与19.6非常接近.不过后来发现的海王星与太阳的距离与数列不甚符合,冥王星到太阳的距离是39.4天文单位,与数列中38.8比较接近.看来有些规律之谜还未完全揭开,人类在这方面尚需作出不懈的努力.- 1 -。
§1.2.1排列教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。
过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念 教学难点:排列数公式的推导 授课类型:新授课 课时安排:2课时 内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1、问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。
说课题目《排列》今天,我说课的题目是《排列》,选自人教版高中数学选修2-3第一章第二小节第一课时的第一节课。
一、说教材。
1、教材的地位和作用:本节课是在学习了两个计数原理的的基础上进行的。
与日常生活密切相关(如体彩,足彩等抽奖活动)。
处于一个承上启下的地位。
排列数公式的推导过程是分步乘法计数原理的一个重要的应用,同时排列数公式又是推导组合数公式的主要依据。
这一部分内容是高考必考的内容。
2、教学目标:根据上述教材结构与内容分析,考虑到学生已有的认知结构,我制定如下目标:通过教学使学生能够利用“分步计数原理”及“树形图”写出简单问题的所有排列,能够正确理解理解排列的定义,通过“框图”掌握排列数推导方法及排列数公式。
培养学生的抽象能力和逻辑思维能力。
3、教材的重点、难点和关键:根据教材特点及教学目标的要求,我将教学重点确定为——排列的定义。
用分步计数原理推导排列数公式是这节课的一个难点。
同时学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的又一难点。
4、说教法学法:1、为了突出学生的主体地位,充分调动学生的积极性,本节课采用点拔式指导法和讲练结合教学法交叉进行,通过实例引出定义,再辅助相应的习题训练,在教学中把启发、诱导贯彻于教学的始终。
2、采用多媒体教具,增大教学容量和增强直观性,提高教学效率和教学质量。
二、说教学过程①、复习提问:1、什么是分类计数原理,分步计数原理?提问:(1)、这两个原理有什么异同?(2)、应用这两个原理解决问题关键在于明确什么?(设计意图:明确问题是分类还是分步)上节例9的解决方法能否简化?②、引入新课:2、实际问题1 :从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的选法?要完成的“一件事情”是什么?(设计意图:为理解排列概念奠定基础)怎么用计数原理解决它?(设计意图:启发学生应用分步计数原理分析问题)“甲上午乙下午”与“乙上午甲下午”一样吗?(设计意图:辨析问题,在计数过程中这是两种不同的选法)列出所有选法(设计意图:验证计数原理所得结果的正确性,进一步说明用计数原理解题的可靠性)师生活动:教师引导学生使用树形图列举结果舍弃具体背景,如何叙述问题1及其解答?(设计意图:将具体问题抽象到一般问题,为引出排列概念做准备)师生活动:教师给出元素的概念,引导学生使用“元素”“排列”等词叙述问题3、实际问题2:从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?要完成的“一件事情”是什么?仿照问题1的解决过程给详细解答(设计意图:让学生完整经历问题1的解答过程,建立理解排列概念的经验)师生活动:学生独立完成解题过程,发言,讨论,在利用“树形图”列举时适当引导思考:问题1、2的共同特点是什么,你能从中概括出一般情形吗?排列定义: 一般的说,从n 个不同元素中任取m (m≤n )个元素(只研究被取出的元素各不相同的情况),按照一定的顺序排成一列,叫做从n 个不同元素中任取m 个元素的一个排列.例1(辨析概念)掌握定义关键理解:① “取出不同元素”; ②“按照一定顺序排列”。
《排列》
本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。
【知识与能力目标】
了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用
排列数公式进行计算。
【过程与方法目标】
能运用所学的排列知识,正确地解决实际问题。
【情感态度价值观目标】
通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。
【教学重点】
排列、排列数的概念。
【教学难点】
排列数公式的推导。
预习任务1、预习自测。
(一)课前设计
1.预习任务
任务1
阅读教材P14-P20,思考:排列的概念,排列概念中的关键内容,排列公式推导过程任务2
默写排列数公式以及阶乘的具体内容
2.预习自测
1.下面问题中,是排列问题的是()
A.由1,2,3三个数字组成无重复数字的三位数
B.从40人中选5人组成篮球队
C.从100人中选2人抽样调查
D.从1,2,3,4,5中选2个数组成集合
解:A 选项A中组成的三位数与数字的排列顺序有关,选项B,C,D只需取出元素即可,与元素的排列顺序无关.
2.我体操男队共六人参加男团决赛,但在每个项目上,根据规定,只需五人出场,那么在。
2020高中数学 1.2.1排列教材分析新人教A版选修2-3
教材分析
计数问题是数学研究的重要对象之一. 排列与组合是当今发展很快的组合数学的最初步最基本的知识.
本章内容独立,自成体系,学生将以两个计数原理为基础,掌握排列,组合,二项式定理及其应用,了解计数与实际生活(如体彩,足彩等抽奖活动)的紧密联系.这一部分内容是高考必考的内容,而且还能提高学生的抽象能力和逻辑推理能力,提高学生分析和解决问题的能力.
本节让学生掌握排列的定义、排列数及排列数的公式,是高中数学教材的重要内容,它既是学习概率的预备知识,又是培养学生逻辑思维能力的极好题材。
另外,从知识体系看,它既在推导排列数公式的过程中使分步计数原理获得了重要的应用,又使排列数公式成为推导组合数公式的主要依据,它是一个衔接上下节知识的重要纽带,有着承上启下的地位.。
排列【教学目的】理解排列、排列数的概念,了解排列数公式的推导;能用“树型图”写出一个排列中所有的排列;能用排列数公式计算。
【教学重点】排列、排列数的概念。
【教学难点】排列数公式的推导一、问题情景〖问题1〗从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素。
a b c d这四个字母中,每次取出3个按顺序排成一列,共有多少种不同的排〖问题2〗.从,,,法?分析:解决这个问题分三个步骤:第一步先确定左边的字母,在4个字母中任取1个,有4种方法;第二步确定中间的字母,从余下的3个字母中取,有3种方法;第三步确定右边的字母,从余下的2个字母中取,有2种方法由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法二、数学构建≤)个元素(这里的被取元素各不相1.排列的概念:从n个不同元素中,任取m(m n同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同≤)个元素的所有排列的个数叫做2.排列数的定义:从n个不同元素中,任取m(m n从n个元素中取出m元素的排列数,用符号m n A表示注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的顺序排成一列,不是数;“排≤)个元素的所有列数”是指从n个不同元素中,任取m(m nA只表示排列数,而不表示具排列的个数,是一个数所以符号mn体的排列。
1.2.1 排列概念与排列数公式
一、教材分析
1.教材所处的地位和作用
本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。
2 教学的重点和难点
重点:两种排序法的排序步骤及计算机程序设计
难点:排序法的计算机程序设计
二、教学目标分析
1.知识与技能目标:
掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。
2.过程与方法目标:
能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。
3.情感,态度和价值观目标
通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。
三、教学方法与手段分析
1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。
这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。
2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。
四、学法分析
模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。
五、教学过程分析
一、创设情境
提出问题:大家考完试后如果要排一下成绩的话,单靠人手该怎样操作呢?如果我们用计算机里的软件电子表格对分数排序就非常简单,那么电子计算机是怎么对数据进行排序的呢?
通过这个问题,引出我们这节课所要学习的两种排序方法--直接插入排序法与冒泡排序法
二、探索新知
这里我先让学生们阅读课本P30-P31的内容,然后回答下面的问题:
(1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别?
(2)冒泡法排序中对5个数字进行排序最多需要多少趟?
(3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次?
提出问题,然后让学生们作出回答,这样可以促使学生们能够积极思考,自主地去学习新的知识,而不只是单向的由老师向学生灌输。
三、知识应用
例1 用冒泡排序法对数据7,5,3,9,1从小到大进行排序
(根据刚刚提问所总结的方法完成解题步骤)
练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果.
(及时将学到的知识应用,有利于知识的掌握)
例2 设计冒泡排序法对5个数据进行排序的程序框图.
(在之前所学习知识的基础上画出程序框图,然后给出一个思考题)
思考:直接插入排序法的程序框图如何设计?可否把上述程序框图转化为程序?
(之后出一个练习题,找出思考题的答案)
练习:用直接插入排序法对例1中的数据从小到大排序,画出程序框图,并转化为程序运行求出最终答案。
(这里可以使学生们领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。
)
四、课堂小结:
(1)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法它们的排序步骤
(2两种排序法的计算机程序设计
(3)注意循环语句的使用与算法的循环次数,对算法进行改进。
通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。
五、布置作业
习题1.3A组第3题。