排列与排列数公式(一)
- 格式:ppt
- 大小:323.50 KB
- 文档页数:17
排列与组合知识集结知识元排列与排列数公式知识讲解1.排列及排列数公式【考点归纳】1.定义(1)排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)(2)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.2.相关定义:(1)全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(2)n的阶乘:正整数由1到n的连乘积,叫做n的阶乘,用n!表示.(规定0!=1)3.排列数公式(1)排列计算公式:=.m,n∈N+,且m≤n.(2)全排列公式:=n•(n﹣1)•(n﹣2)•…•3•2•1=n!.例题精讲排列与排列数公式例1.(x-2)(x-3)(x-4)…(x-15)(x∈N+,x>15)可表示为()A.A B.A C.A D.A例2.若=12,则n=()A.8B.7C.6D.4例3.已知=15,那么=()A.20B.30C.42D.72组合与组合数公式知识讲解1.组合及组合数公式【考点归纳】1.定义(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个元素中任取m个元素的一个组合.(2)组合数:从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m个元素的组合数,用符号表示.2.组合数公式:=.m,n∈N+,且m≤n.3.组合数的性质:性质1性质2.例题精讲组合与组合数公式例1.'排球单循环赛南方球队比北方球队多9支南方球队总得分是北方球队的9倍求证冠军是一支南方球队(胜得1分败得0分).'例2.'一个袋子里装有大小相同且标有数字1~5的若干个小球,其中标有数字1的小球有1个,标有数字2的小球有2个,…,标有数字5的小球有5个.(Ⅰ)从中任意取出1个小球,求取出的小球标有数字3的概率;(Ⅱ)从中任意取出3个小球,求其中至少有1个小球标有奇数数字的概率;(Ⅲ)从中任意取出2个小球,求小球上所标数字之和为6的概率.'例3.'求C3n38-n+C21+n3n的值.'排列组合的简单计数问题知识讲解1.排列、组合及简单计数问题【知识点的知识】1、排列组合问题的一些解题技巧:①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题除法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反、等价转化.对于无限制条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按时间发生的过程进行分步.对于有限制条件的排列组合问题,通常从以下三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑限制条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2、排列、组合问题几大解题方法:(1)直接法;(2)排除法;(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”;(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则;(6)调序法:当某些元素次序一定时,可用此法;(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有;(8)隔板法:常用于解正整数解组数的问题;(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有;(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列;组合;②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列;组合;③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列;组合.例题精讲排列组合的简单计数问题例1.的展开式中,x的系数为___(用数字作答)例2.在的展开式中,x4的系数是____.例3.若,则n的展开式中,含x2项的系数为_______.当堂练习单选题练习1.计算2+3的值是()A.72B.102C.5070D.5100练习2.=()A.30B.24C.20D.15练习3.6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种。
§1.2排列与组合1.2.1排列第1课时排列与排列数公式学习目标1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列数的定义及公式1.排列数的定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m 个元素的排列数,用符号A m n表示.2.排列数公式A m n=n(n-1)(n-2)…(n-m+1)(n,m∈N*,m≤n)=n!(n-m)!.A n n=n(n-1)(n-2)…2·1=n!(叫做n的阶乘).另外,我们规定0!=1.1.123与321是相同的排列.(×)2.同一个排列中,同一个元素不能重复出现.(√)3.在一个排列中,若交换两个元素的位置,则该排列不发生变化.(×)4.从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列.(×)一、排列的概念例1判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题.反思感悟判断一个具体问题是否为排列问题的思路跟踪训练1判断下列问题是否为排列问题.(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M={1,2,…,9}中,任取两个元素作为a,b,可以得到多少个焦点在x轴上的椭圆方程x2a2+y2b2=1?可以得到多少个焦点在x轴上的双曲线方程x2a2-y2b2=1?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?可确定多少条射线?解(1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题,与顺序有关,故选3个座位安排三位客人是排列问题.(2)第一问不是排列问题,第二问是排列问题.若方程x2a2+y2b2=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小关系一定;在双曲线x2a2-y2b2=1中,不管a>b还是a<b,方程x2a2-y2b2=1均表示焦点在x轴上的双曲线,且是不同的双曲线,故是排列问题.(3)确定直线不是排列问题,确定射线是排列问题.二、排列数公式的应用命题角度1 利用排列数公式求值例2-1 计算A 315和A 66.解 A 315=15×14×13=2 730, A 66=6×5×4×3×2×1=720. 命题角度2 利用排列数公式化简例2-2 (1)用排列数表示(55-n )(56-n )…(69-n )(n ∈N *且n <55); (2)化简n (n +1)(n +2)(n +3)…(n +m ).解 (1)∵55-n ,56-n ,…,69-n 中的最大数为69-n ,且共有(69-n )-(55-n )+1=15(个)数, ∴(55-n )(56-n )…(69-n )=A 1569-n .(2)由排列数公式可知n (n +1)(n +2)(n +3)…(n +m )=A m +1n +m .命题角度3 利用排列数公式证明例2-3 求证A m n +1-A m n =m A m -1n. 证明 ∵A m n +1-A mn =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!·⎝⎛⎭⎪⎫n +1n +1-m -1=n !(n -m )!·mn +1-m=m ·n !(n +1-m )!=m A m -1n, ∴A m n +1-A m n =m A m -1n. 反思感悟 排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.跟踪训练2 不等式A x 8<6A x -28的解集为( )A .[2,8]B .[2,6]C .(7,12)D .{8} 答案 D解析 由A x 8<6A x -28,得8!(8-x )!<6×8!(10-x )!,化简得x 2-19x +84<0,解得7<x <12,①又⎩⎪⎨⎪⎧x ≤8,x -2≥0,所以2≤x ≤8,② 由①②及x ∈N *,得x =8.三、排列的简单应用例3 用排列数表示下列问题.(1)从100个两两互质的数中取出2个数,其商的个数;(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;(3)有4名大学生可以到5家单位实习,若每家单位至多招1名新员工,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.解 (1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其排列数为A 2100. (2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,其排列数为A 33.(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,其排列数为A 45. 反思感悟 首先分析问题是不是排列问题,若是排列问题,则利用定义解题.跟踪训练3 京沪高速铁路自北京南站至上海虹桥站,双线铁路全长1 318公里,途经北京、天津、河北、山东、安徽、江苏、上海7个省市,设立包括北京南、天津西、济南西、南京南、苏州北、上海虹桥等在内的21个车站,计算铁路部门要为这21个车站准备多少种不同的火车票?解 对于两个火车站A 和B ,从A 到B 的火车票与从B 到A 的火车票不同,因为每张票对应一个起点站和一个终点站.因此,结果应为从21个不同元素中,每次取出2个不同元素的排列数A 221=21×20=420(种).所以一共需要为这21个车站准备420种不同的火车票.1.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.2.排列数公式有两种形式,可以根据要求灵活选用.1.下面问题中,是排列问题的是()A.由1,2,3三个数字组成无重复数字的三位数B.从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案 A解析选项A中组成的三位数与数字的排列顺序有关,选项B,C,D只需取出元素即可,与元素的排列顺序无关.2.A39等于()A.9×3 B.93C.9×8×7 D.9×8×7×6×5×4×3答案 C3.若A m10=10×9×…×5,则m=________.答案 64.从1,2,3,4这4个数字中选出3个数字构成无重复数字的三位数有________个.答案245.从n个不同的元素中取出m个(m≤n)元素排成一列,不同排法有________种.答案n(n-1)(n-2)…(n-m+1)一、选择题1.4·5·6·…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n答案 D解析因为A m n=n(n-1)(n-2)…(n-m+1).所以A n-3n=n(n-1)(n-2)…[n-(n-3)+1]=n·(n-1)·(n-2)·…·6·5·4.2.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.90答案 C解析5本书进行全排列,A55=120.3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种答案 B解析∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A44=24(种).4.下列各式中与排列数A m n相等的是()A.n!(n-m+1)!B.n(n-1)(n-2)…(n-m)C.n A m n -1n -m +1 D .A 1n ·A m -1n -1答案 D 解析∵A m n =n !(n -m )!,而A 1n ·A m -1n -1=n ·(n -1)![(n -1)-(m -1)]!=n !(n -m )!,∴A m n =A 1n ·A m -1n -1.5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20 答案 C解析 首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有A 25=20(种)排法, 因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是20-2=18.6.将4张相同的博物馆的参观票分给5名同学,每名同学至多1张,并且票必须分完,那么不同的分法的种数为( ) A .54B .45C .5×4×3×2D .5答案 D解析 由于参观票只有4张,而人数为5人,且每名同学至多1张,故一定有1名同学没有票.因此从5名同学中选出1名没有票的同学,有5种选法.又因为4张参观票是相同的,不加以区分,所以不同的分法有5种. 二、填空题7.若A 42x +1=140·A 3x ,则x =________. 答案 3解析 根据原方程,知x 应满足⎩⎪⎨⎪⎧2x +1≥4,x ≥3,x ∈N *,解得x ≥3,x ∈N *.由排列数公式,得(2x +1)·2x ·(2x -1)·(2x -2)=140x ·(x -1)·(x -2),所以x =3.8.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)答案 1 560解析 根据题意,得A 240=1 560,故全班共写了1 560条毕业留言.9.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法. 答案 3 600解析 不同排法的种数为A 55A 26=3 600(种).10.若把英语单词“good ”的字母顺序写错了,则可能出现的错误共有________种. 答案 11解析 根据题意,因为“good ”四个字母中的两个“O ”是相同的, 则其不同的排列有12×A 44=12种, 而正确的排列只有1种, 则可能出现的错误共有11种.11.5名同学排成一列,甲同学不排排头的排法种数为________.(用数字作答) 答案 96解析 可分两步:第一步,甲同学不排排头,故排头的位置可以从余下的四个同学中选一个排,有A 14种方法;第二步,余下的四个同学全排列,有A 44种不同的排法,根据分步乘法计数原理,所求的排法种数为A 14A 44=96.故填96.12.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有______种不同的招聘方案.(用数字作答) 答案 60解析 将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有A 35=5×4×3=60(种). 三、解答题13.A ,B ,C ,D 四人站成一排,其中A 不站排头,写出所有的站法. 解 作出“树形图”如下:故所有的站法:BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.14.某国的篮球职业联赛共有16支球队参加.(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?解(1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从16支球队任取两支的一个排列,比赛的总场次是A216=16×15=240.(2)由(1)中的分析,比赛的总场次是A28×2+1=8×7×2+1=113.15.一条铁路有n个车站,为适应客运需要,新增了m个车站,且m>1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解 由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,∴A 2n +m -A 2n =62,即(n +m )(n +m -1)-n (n -1)=62.∴m (2n +m -1)=62=2×31,∵m <2n +m -1,且n ≥2,m ,n ∈N *,∴⎩⎪⎨⎪⎧ m =2,2n +m -1=31,解得m =2,n =15, 故原有15个车站,现有17个车站.。
1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同[例题分析]排列组合思维方法选讲1.首先明确任务的意义例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。
分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。