年产280万吨1780热轧带钢车间设计开题报告
- 格式:pdf
- 大小:209.57 KB
- 文档页数:8
燕山大学本科毕业设计(论文)开题报告课题名称: 1780热连轧四辊可逆粗轧机三维结构设计及分析学院(系): 里仁学院年级专业:轧钢-12—3班学生姓名:指导教师:完成日期: 3月16日(一) 综述本课题国内外研究动态,说明选题的依据和意义1。
1 选题的背景及意义采用轧制成型法来生产钢板材,具有生产率高、板厚规格多、生产过程连续性强、易于实现机械化自动化等诸多优点.早期,我国依靠从国外大规模引进冷轧、热连轧技术,随着国内各高校以刚才生产企业对轧制技术研究与实践经验的丰富,现以成形了一套成熟轧制技术[1]。
国外发展出的无头轧制技术,利用薄板坯连铸连轧的生产线,将铸造较长铸坯进行精轧,且轧后进行剪切,在精轧机组中形成有限的无头连轧,适合于稳定生产薄规格的带钢[2-3]。
德国开发出基于薄板坯连铸连轧技术的无头轧制技术,通过提高铸坯的拉速,使连轧机和连铸机的速度得到匹配,实现板料的连铸连轧。
现代热连轧技术发展主要集中在对板形、厚度精度及板料表面质量控制等,因此,这对轧机设备性能及质量稳定性、可靠性有更高要求,对轧机系统高精度要求也越来越高,四辊轧机作为板带材生产的主要设备,对产品精度起着不可忽视的作用[4]。
现代中厚板轧机越来越趋于大型化、精密化、自动化,以满足钢板控制轧制技术的要求,能够生产高强度的合金板。
采用热装炉时燃耗已降至0。
6×109J/t以下,及高刚度(2kN/mm 以上)的现代化中厚板轧机,大大超过日本和美国现有中厚板轧机性能,生产高质量、高性能中厚板创造了有利条件[5-6]。
因此,本课题选择对热连轧四辊可逆粗轧机结构进行设计与分析,对提高其工作可靠性因素进一步研究。
该课题对提高热连轧设备的应用,具有深远的社会价值与经济效益。
1。
2 轧钢机械设备的发展与应用现状随着国内钢材总产量逐年的提高,对轧钢设备的能力也逐渐由向大型化、高速化、连续化、自动化的发展方向,以满足钢材生产能力需求。
年产280万吨2250热轧带钢生产线设计毕业论文目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 热轧带钢概述 (1)1.2 热轧带钢技术要求 (2)1.3.应用性与先进行 (3)1.3.1 应用性 (3)1.3.2 先进性 (3)1.4现代热连轧机的发展趋势和特点 (4)1.5 本设计目的和意义 (5)第2章生产方案及大纲的制定 (6)2.1产品方案的编制 (6)2.1.1产品方案 (6)2.1.2 编制方案的原则及方法 (6)2.1.3 选择计算产品 (6)2.2 产品大纲 (7)2.2.1 钢种分布及生产能力 (7)2.2.2原料及产品规格 (7)2.3 生产方案 (8)2.3.1 选择生产方案依据 (9)2.3.2 制定生产方案 (9)第3章设计方案 (10)3.1 工艺方案的选择 (10)3.2 主机型式的选择 (12)3.3 轧机数量及相关设备的选择 (13)3.3.1 粗轧机组设备选择 (13)3.3.2 侧压设备的选择 (14)3.3.3精轧机组设备选择 (15)3.4加热炉的选择 (19)第4章生产设备及参数 (21)4.1工艺装备 (21)4.2 主要设备形式及主要技术参数 (22)4.2.1 加热炉 (22)4.2.2粗轧区设备 (22)4.2.3 精轧区设备 (28)4.2.4 卷取机区主要设备 (31)第5章生产工艺流程 (34)5.1生产工艺流程 (34)5.2 生产工艺流程框图 (36)5.3.1 坯料管理制度 (37)5.3.2 加热制度 (37)5.3.3 轧制制度 (39)5.3.4 冷却制度 (40)5.3.5卷曲制度 (41)5.4 车间自动化 (42)第6章轧制工艺参数设计 (45)6.1制定轧制制度的原则和要求 (45)6.1.1在保证设备能力允许的条件下尽量提高产量 (45)6.1.2 在保证操作稳便的条件下提高质量 (46)6.1.3 道次选择确定 (47)6.2 粗轧压下规程 (47)6.2.1 粗轧压下制度 (47)6.2.2粗轧速度制度 (48)6.2.3 粗轧温度制度 (50)6.3 精轧压下规程 (51)6.3.1 精轧压下制度 (51)6.3.2 精轧速度制度 (52)6.3.3 精轧轧制时间和周期的确定 (53)6.3.4 精轧温度制度 (55)6.4 轧制图表 (56)6.6 各道次变形抗力 (57)6.7 计算各道的传动力矩 (59)6.8 轧辊辊缝和转速的设定 (61)第7章电机轧辊的强度校核 (63)7.1静负荷图 (63)7.2 等效力矩计算及电动机的校核 (64)7.3 电动机功率的计算 (65)7.4 轧辊强度校核 (66)7.4.1 支承辊弯曲强度校核 (66)7.4.2 工作辊的扭转强度校核 (68)第8章轧钢机产量计算 (70)8.1 轧机小时产量计算 (70)8.2 轧机平均小时产量计算 (71)8.3.轧钢车间年产量计算 (71)第9章厚度控制方式 (73)9.1 预控AGC系统 (74)9.2间接测厚反馈闭环控制系统 (75)第10章辊型与板形控制 (76)10.1 板型控制理论 (76)10.2 板形设定模型 (78)10.3 影响辊缝形状的因素 (80)10.3.1 轧辊热膨胀对辊缝的影响 (80)10.3.2 轧辊的磨损对辊缝的影响 (81)10.3.3 原始辊型对辊缝的影响 (81)10.3.4 入口板凸度对辊缝的影响 (81)10.4 轧辊凸度计算 (82)10.5 轧辊的磨损的确定 (85)10.6 初始加工辊型确定 (86)10.7 静态凸度计算 (86)10.8 轧辊辊型设计 (87)10.9 弯辊装置 (87)10.9.1 弯曲工作辊 (87)10.9.2 弯曲支撑辊 (88)第11章车间平面设计 (89)11.1平面布置的原则 (89)11.2 金属流程线的确定 (89)11.3仓库面积的确定 (90)11.3.1确定仓库面积的原则 (90)11.3.2原料仓库面积的确定 (90)11.3.3成品仓库面积的确定 (90)第12章环境保护 (92)12.1环境保护概述 (92)12.2环境保护的容与对策 (92)12.2.1绿化 (92)12.2.2水质处理 (92)12.2.3噪音防治 (93)12.2.4大气污染的防治 (93)12.2.5有害废弃物的处理 (93)12.2.6车间的综合利用 (93)结论 (95)参考文献 (96)谢辞 (98)第1章绪论1.1 热轧带钢概述热轧宽带钢是国民经济的重要物资,是制造其他薄板类钢铁产品的重要原料, 主要作为冷轧板、焊管、冷弯或焊接型钢的原料或直接用于制作各种结构件、容器、汽车、造船、集装箱等。
年产万吨热轧带钢车间设计1. 引言随着社会工业化的发展,热轧带钢作为一种重要的金属材料,在建筑、汽车、机械制造等领域得到广泛应用。
为了满足市场需求,设计一个年产万吨热轧带钢车间是非常必要的。
本文将从车间规划布局、工艺流程、设备选型、安全环保等多个方面,对年产万吨热轧带钢车间的设计进行详细阐述。
2. 车间规划布局2.1 车间面积年产万吨的规模要求,需要有足够的车间面积来容纳设备和工作人员。
根据现代工艺流程和设备的尺寸进行合理布局,车间面积建议不少于3000平方米。
2.2 车间布局在车间布局方面,应考虑人流、物流以及设备的合理排列。
合理设置办公区、生产区、原料区、半成品区和成品区等不同功能区域,使生产流程顺畅,工作人员的工作效率最大化。
3. 工艺流程3.1 炼钢流程热轧带钢的生产过程一般包括炼钢、碳化、轧制、淬火、退火、修磨等工艺环节。
炼钢是其中的关键环节,通过高温熔炼去除杂质,得到高质量的钢坯。
3.2 热轧流程热轧是将炼钢得到的钢坯进行加热后通过连续轧机进行轧制的过程。
这一步将钢坯逐渐拉伸、变形,使其变为所需的带状材料。
3.3 退火与修磨热轧后的带钢可能存在一定的内应力和不规则形状,为了消除这些缺陷,需要进行退火处理。
退火后的带钢经过修磨、切割等工艺处理,得到最终的产品。
4. 设备选型4.1 炼钢设备炼钢设备是热轧带钢车间中的核心设备,包括炉子、转炉、炼钢机等。
选购时应考虑设备的稳定性、生产能力以及能耗方面的因素。
4.2 轧机设备轧机设备是热轧过程中的关键设备,主要包括脱碳设备、轧机机组和辊道设备等。
选型时需综合考虑轧制能力、稳定性以及安全工作性能。
4.3 退火设备退火设备用于对经过轧制后的钢带进行退火处理,消除内应力和恢复材料的塑性。
选择设备时需考虑工艺要求、退火温度和速度的控制以及能耗方面的因素。
5. 安全环保在车间设计中,安全环保是至关重要的。
应设计合理的消防设施,安装可靠的烟雾和气体检测系统,确保生产过程中的安全。
1 车间投资分析重钢1780mm热轧带钢车间工艺设计毕业论文目录摘要............................................................................................................. 错误!未定义书签。
ABSTRACT ................................................................................................ 错误!未定义书签。
引言............................................................................................................. 错误!未定义书签。
1 车间投资分析 (4)1.1 本设计的目的和意义 (4)1.2 厂址的选择 (5)1.3 原料及产品的市场分析 (5)1.4 技术经济分析 (6)2 年产量及产品大纲的制定 (8)2.1 产品方案的编制 (8)2.1.1 产品方案 (8)2.1.2 编制产品方案的原则及方法 (8)2.1.3 选择计算产品 (8)2.1.4 确定产品大纲 (8)3 生产方案 (10)3.1 选择生产方案的依据 (10)3.2 制定生产方案 (10)4 生产工艺流程制定 (11)4.1 制定生产工艺流程的主要依据 (11)4.2 主要生产工艺过程简述 (12)4.2.1 板坯库工艺技术流程 (12)4.2.2 加热炉工艺技术流程 (12)4.2.3 粗轧区工艺技术流程 (13)4.2.4 热卷箱、飞剪工艺技术流程 (13)4.2.5 精轧区工艺流程 (14)5 轧机选择 (15)5.1 轧钢机选择的原则 (15)5.2 轧钢机机架布置及数目的确定 (15)5.2.1 E1立辊轧机 (15)5.2.2 四辊粗轧机 (17)5.2.3 F1E立辊轧机 (18)5.2.4 F1~F7四辊精轧机组 (18)6 辅助设备的选择 (20)6.1 加热及热处理设备选择 (20)6.1.1 炉型确定 (20)6.1.2 步进梁及运动机构 (20)6.1.3 加热炉 (21)6.2 切断设备的选择 (21)6.3 热卷箱 (22)6.4 层流冷却 (24)7 典型产品工艺计算 (27)7.1 确定粗轧机组的轧制规程 (27)7.1.1 板坯尺寸 (27)7.1.2 粗轧机组压下量分配原则及其道次变形量的分配 (27)7.1.3 校核咬入能力 (28)7.1.4 粗轧机组的速度制定 (28)7.1.5 确定轧件在各道次中的轧制时间 (28)7.1.6 确定轧件在各道次中的轧制温度 (31)7.1.7 确定轧件在各道次的平均变形速度 (33)7.1.8 确定轧件在各道次的轧制力 (34)7.1.9 确定轧件在各道次的轧制力矩 (36)7.2 精轧阶段工艺计算 (41)7.2.1 压下规程的分配 (41)7.2.2 精轧机组速度制度的制定 (42)7.2.3 轧制时间的确定 (43)7.2.4 轧制温度的确定 (43)7.2.5 计算各道的平均变形速度 (44)7.2.6 计算各道平均单位压力 (45)7.2.7 计算各道的传动力矩 (46)8 电机能力校核 (50)8.1 粗轧电机能力校核 (50)8.1.1 等效力矩计算 (50)8.1.2 电机温升校核 (51)8.1.3 电机的过载校核 (51)8.2 精轧机电机能力校核 (51)8.2.1 等效力矩计算 (51)8.2.2 电机温升校核 (51)8.2.3 电机的过载校核 (51)9 轧辊强度校核 (52)9.1 R1强度校核 (52)9.1.1 辊身强度校核 (52)9.1.2 辊颈弯曲应力和扭转应力计算 (53)1 车间投资分析9.1.3 辊头扭转强度计算 (53)9.1.4 接触应力计算 (54)9.2 F1~F4精轧机强度校核 (54)9.2.1 支承辊弯曲力矩校核 (54)9.2.2 辊颈弯曲应力和扭转应力校核 (55)9.2.3 辊头扭转强度计算 (55)9.2.4 接触应力计算 (55)9.3 F5~F7精轧机强度校核 (55)9.3.1 支承辊弯曲力矩校核 (55)9.3.2 辊颈弯曲应力和扭转应力校核 (56)9.3.3 辊头扭转强度计算 (56)9.3.4 接触应力计算 (56)10 轧钢机产量计算 (57)10.1 典型产品的工作图表 (57)10.2 典型产品小时产量计算 (57)10.3 厂年产量计算 (57)11 车间平面布置 (59)11.1 平面布置的原则 (59)11.2 金属流程线的确定 (59)11.3 设备间距的确定 (59)11.3.1 加热炉及其前后设备间距 (60)11.3.2 其它设备之间的距离 (60)11.3.3 车间跨度大小及柱距大小 (60)11.4 仓库面积的确定 (60)11.4.1 原料仓库面积的计算 (61)11.4.2 中间仓库面积的计算 (62)11.4.3 成品仓库面积的计算 (62)11.5 车间运输量的确定 (62)12 劳动组织及车间经济技术指标 (64)12.1 车间劳动组织 (64)12.1.1 劳动定额 (64)12.1.2 劳动定员 (64)12.2 车间技术经济指标 (65)12.2.1 金属消耗 (65)12.2.2 其它消耗 (65)12.3 车间概算 (65)12.3.1 车间设计指标 (65)12.3.2 车间投资概算 (66)12.3.3 成本概算 (66)12.3.4 钢板销售收入 (66)12.3.5 年利润及投资回收期 (66)13 轧钢车间环境保护设计与废水处理 (67)13.1 环保对车间设计的要求 (67)13.2 环保的内容与对策 (67)13.3 热轧废水的治理 (68)13.3.1 直接冷却废水的处理 (68)13.3.2 间接冷却废水的处理 (68)13.3.3 层流冷却废水的处理 (68)参考文献 (69)致谢 (70)1车间投资分析1.1 本设计的目的和意义本设计是重钢1780热轧板带钢车间工艺设计。
重钢1780mm热轧带钢车间工艺设计毕业论文目录摘要 (I)ABSTRACT (II)引言 (1)1车间投资分析 (2)1.1本设计的目的和意义 (2)1.2厂址的选择 (2)1.3原料及产品的市场分析 (3)1.4技术经济分析 (3)2年产量及产品大纲的制定 (5)2.1产品方案的编制 (5)2.1.1产品方案 (5)2.1.2编制产品方案的原则及方法 (5)2.1.3选择计算产品 (5)2.1.4确定产品大纲 (5)3生产方案 (7)3.1选择生产方案的依据 (7)4生产工艺流程制定 (8)4.1制定生产工艺流程的主要依据 (8)4.2主要生产工艺过程简述 (9)4.2.1板坯库工艺技术流程 (9)4.2.2加热炉工艺技术流程 (9)4.2.3粗轧区工艺技术流程 (10)4.2.4热卷箱、飞剪工艺技术流程 (10)4.2.5精轧区工艺流程 (11)5轧机选择 (12)5.1轧钢机选择的原则 (12)5.2轧钢机机架布置及数目的确定 (12)5.2.1E1立辊轧机 (12)5.2.2四辊粗轧机 (14)5.2.3F1E立辊轧机 (15)5.2.4F1~F7四辊精轧机组 (15)6辅助设备的选择 (17)6.1加热及热处理设备选择 (17)6.1.1炉型确定 (17)6.1.2步进梁及运动机构 (17)6.1.3加热炉 (18)6.3热卷箱 (19)6.4层流冷却 (21)7典型产品工艺计算 (24)7.1确定粗轧机组的轧制规程 (24)7.1.1板坯尺寸 (24)7.1.2粗轧机组压下量分配原则及其道次变形量的分配 (24)7.1.3校核咬入能力 (25)7.1.4粗轧机组的速度制定 (25)7.1.5确定轧件在各道次中的轧制时间 (26)7.1.6确定轧件在各道次中的轧制温度 (28)7.1.7确定轧件在各道次的平均变形速度 (30)7.1.8确定轧件在各道次的轧制力 (31)7.1.9确定轧件在各道次的轧制力矩 (33)7.2精轧阶段工艺计算 (38)7.2.1压下规程的分配 (38)7.2.2精轧机组速度制度的制定 (39)7.2.3轧制时间的确定 (40)7.2.4轧制温度的确定 (40)7.2.5计算各道的平均变形速度 (41)7.2.6计算各道平均单位压力 (42)7.2.7计算各道的传动力矩 (44)8电机能力校核 (48)8.1粗轧电机能力校核 (48)8.1.1等效力矩计算 (48)8.1.2电机温升校核 (49)8.1.3电机的过载校核 (49)8.2精轧机电机能力校核 (49)8.2.1等效力矩计算 (49)8.2.2电机温升校核 (49)8.2.3电机的过载校核 (49)9轧辊强度校核 (50)9.1R1强度校核 (50)9.1.1辊身强度校核 (50)9.1.2辊颈弯曲应力和扭转应力计算 (51)9.1.3辊头扭转强度计算 (51)9.1.4接触应力计算 (52)9.2F1~F4精轧机强度校核 (52)9.2.1支承辊弯曲力矩校核 (52)9.2.2辊颈弯曲应力和扭转应力校核 (53)9.2.3辊头扭转强度计算 (53)9.2.4接触应力计算 (53)9.3F5~F7精轧机强度校核 (53)9.3.1支承辊弯曲力矩校核 (53)9.3.2辊颈弯曲应力和扭转应力校核 (54)9.3.3辊头扭转强度计算 (54)9.3.4接触应力计算 (54)10轧钢机产量计算 (55)10.1典型产品的工作图表 (55)10.2典型产品小时产量计算 (55)10.3厂年产量计算 (55)11车间平面布置 (57)11.1平面布置的原则 (57)11.2金属流程线的确定 (57)11.3设备间距的确定 (58)11.3.1加热炉及其前后设备间距 (58)11.3.2其它设备之间的距离 (58)11.3.3车间跨度大小及柱距大小 (58)11.4仓库面积的确定 (59)11.4.1原料仓库面积的计算 (59)11.4.2中间仓库面积的计算 (60)11.4.3成品仓库面积的计算 (60)11.5车间运输量的确定 (60)12劳动组织及车间经济技术指标 (62)12.1车间劳动组织 (62)12.1.1劳动定额 (62)12.1.2劳动定员 (62)12.2车间技术经济指标 (63)12.2.1金属消耗 (63)12.2.2其它消耗 (63)12.3车间概算 (63)12.3.1车间设计指标 (63)12.3.2车间投资概算 (64)12.3.3成本概算 (64)12.3.4钢板销售收入 (64)12.3.5年利润及投资回收期 (64)13轧钢车间环境保护设计与废水处理 (64)13.1环保对车间设计的要求 (65)13.2环保的容与对策 (65)13.3热轧废水的治理 (66)13.3.1直接冷却废水的处理 (66)13.3.2间接冷却废水的处理 (66)13.3.3层流冷却废水的处理 (66)参考文献 (67)致谢 (69)1车间投资分析1.1本设计的目的和意义本设计是重钢1780热轧板带钢车间工艺设计。
河北联合大学本科毕业设计中期检查报告题目:年产280万吨1780热轧带钢车间设计学院:冶金与能源学院专业:材料成型及控制工程班级:09成型1班*名:***学号:************指导教师:***2013年 4 月20 日R1 R2 R3 R4 R5 R6图1 典型的全连续式粗轧机的布置全连续式粗轧机在一、二代热轧带钢轧机中居多,因受当时的控制水平和机械制造能力的限制,粗轧机轧制速度较低,且都是以断面大、长度短的初轧板坯为原料,所以轧机产量取决于粗轧机的产量。
全连续式粗轧机每架轧机只轧—道,轧件沿一个方向进行述连续轧制,生产能力大,因此在当时发展较快。
随着粗轧机控制水平的提高和轧机结构的改进,粗轧机的轧制速度提高了,生产能力增大了,粗轧机的布置形式也发生了很大变化,相继发展了3∕4连续式和半连续式。
相比之下,全连续式粗轧机的优点就不明显了,而且其生产线长、占地面积大、设备多、投资大、对板坯厚度范围的适应性差等缺点更加突出,所以近期建设的粗轧机已不再采用全连续式。
(2)3∕4连续式3∕4连续式粗轧机由可逆式轧机和不可逆式轧机组成,其布置形式有2架轧机,3架轧机或4架轧机。
典型的3∕4连续式粗轧机的布置如图2所示。
图2 3∕4连续式粗轧机的布置典型的3∕4连续式粗轧机由4架轧机组成,第1架为二辊可逆式轧机,第2架为四辊可逆式轧机。
第3、4架均为四辊不可逆式轧机。
3∕4连续式粗轧机的轧制工艺是:板坯在可逆式轧机上往复轧制3~5道次,在不可逆式轧机上轧制l道次。
3∕4连续式粗轧机兼有全连续式粗轧机的优点,又克服了它的缺点,与其相比具有生产线短、占地面积小、设备少、投资省、对板坯厚度范围的适应性好等优点。
对于年产300万吨左右规模的带钢厂,采用3∕4连轧机较为适宜。
我国热轧宽带钢粗轧机采用3∕4连续式布置的有宝钢2050mm、武钢1700mm、太钢1549mm。
(3)半连续式半连续式粗轧机由1架或2架可逆式轧机组成。
毕业设计(论文)开题报告题目轧钢厂加热炉钢坯推出机传动系统设计学生姓名学号 06050116专业名称机械工程及自动化年级机械一班所在系(院)电子与自动化指导教师年月日说明1、根据《毕业设计(论文)工作管理规定》,学生必须撰写《毕业设计(论文)开题报告》,由指导教师签署意见、各教学单位审查,毕业设计(论文)领导小组负责人批准后实施。
2、开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。
3、毕业设计开题报告各项内容要实事求是,逐条认真填写。
其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。
第一次出现缩写词,须注出全称。
4、本报告中,由学生本人撰写的对课题和研究工作的分析及描述,应不少于2000字,没有经过整理归纳,缺乏个人见解,拼凑而成的开题报告按不合格论。
5、开题报告检查原则上在第2~4周完成,各教学单位完成毕业设计开题检查后,应写一份开题情况总结报告。
毕业设计(论文)的意义和选题背景我设计的题目是轧钢厂加热炉钢坯推出机传动系统设计:从炼钢厂出来的钢坯还仅仅是半成品,必须到轧钢厂去进行轧制以后,才能成为合格的产品。
从炼钢厂送过来的连铸坯,首先是进入加热炉,然后经过初轧机反复轧制之后,进入精轧机。
轧钢属于金属压力加工,说简单点,轧钢板就像压面条,经过擀面杖的多次挤压与推进,面就越擀越薄。
在热轧生产线上,轧坯加热变软,被辊道送入轧机,最后轧成用户要求的尺寸。
轧钢是连续的不间断的作业,钢带在辊道上运行速度快,设备自动化程度高,效率也高。
从平炉出来的钢锭也可以成为钢板,但首先要经过加热和初轧开坯才能送到热轧线上进行轧制,工序改用连铸坯就简单多了,一般连铸坯的厚度为150~250mm,先经过除磷到初轧,经辊道进入精轧轧机,精轧机由7架4辊式轧机组成,机前装有测速辊和飞剪,切除板面头部。
精轧机的速度可以达到23m/s。
辽宁科技大学本科生毕业设计摘要热轧板带钢是钢铁产品的主要品种之一,广泛应用于工业,农业,交通运输和建筑业,同时作为冷轧、焊管、冷弯型钢等生产原料,其产量在钢材总量所占的比重最大,在轧钢生产中占统治地位。
在工业发达国家,热连轧板带钢占板带钢总产量的80%左右,占钢材总产量的50%以上。
宽带钢在我国国民经济中的发展中需求量很大。
世界各国近年来都在注重研制和使用连铸连轧等新技术和新设备来生产板带钢。
板带材生产技术水平不仅是冶金工业生产发展水平的重要标志,也反映了一个国家工业与科学技术发展的水平。
建设现代化的热轧宽带钢轧机要满足现代工业对热轧板品种质量的要求。
最终产品的质量取决于连铸坯的质量,传统厚度的板坯连铸工艺明显优于薄板坯连铸工艺。
薄板坯连铸连轧更适于生产中低档板材品种,在薄规格产品生产方面具有明显优势。
为了满足高质量和高性能板材要求,采用厚板坯常规连轧生产方式更合理。
本设计主要分为综述、产品方案制定、典型产品生产工艺制度的制定、设备及参数选择、压下规程设计、生产能力校核、车间经济指标计算和专题等几个部分。
另外,绘制了一张车间平面布置图。
整个设计理论联系实际,设计了技术先进,经济效益大的热轧带钢生产线。
关键词:热轧带钢;工艺设计;工艺计算;设备ABSTRACTHot Strip is one of the main varieties of steel products,widely used in industry, agriculture,transport and construction sectors,as both cold-rolled,welded,cold-formed steel and other raw materials,and its share of total steel production in the the largest proportion in the steel rolling production dominate.In industrialized countries,hot rolling plate steel plate steel production accounted for about80%,accounting for more than50%of total production of steel.Wide strip in the development of our national economy in great demand.In recent years,countries in the world are in the focus on the development and use of new technologies such as continuous casting and rolling,and new equipment to produce flat steel.Plate and strip production technology level is not only the production of metallurgical industry an important indicator of the level of development,but also reflects a country's industrial and scientific and technological development level.Building a modern hot-rolled wide strip mills to meet modern industry hot-rolled plate variety and quality requirements. The quality of the final product depends on the quality of the billet,the traditional thick slab casting process significantly better than the thin slab continuous casting process.Thin slab casting and rolling plate varieties better suited to middle and low production,the production of thin gauge has obvious advantages.To meet the requirements of high quality and high performance laminates,using conventional thick slab rolling production more reasonable way.The design is divided into overview,product program development,typical system has been developed production processes,equipment and parameter selection,draft schedule design,production capacity check,calculate economic indicators and thematic workshops and several other parts.The whole design theory with practice,the design of technologically advanced,cost-effective large hot strip production line.Keywords:hot rolled strip;process design;process calculation;equipment目录1综述 (1)1.1热轧板带钢发展史 (1)1.1.1国外热轧板带的发展 (1)1.1.2国内热轧板带钢的发展 (2)1.2热轧板带钢产品概述 (3)1.2.1热轧板带钢的种类、规格及用途 (3)1.2.2板带产品的使用特点、生产特点及技术要求 (4)1.3热轧带钢生产工艺概述 (4)1.3.11700ASP工艺流程及其先进技术 (4)1.3.21780工艺流程及其先进技术 (5)1.4热轧工艺装备关键技术 (6)1.4.1无头轧制 (6)1.4.2ASR技术 (7)1.4.3CVC技术 (8)1.4.4在线制造 (9)1.4.5现代建模方法 (9)1.5热轧宽带钢的发展趋势 (10)2产品方案 (11)2.1产品方案的编制 (11)2.1.1产品方案简介 (11)2.1.2选择计算产品 (11)2.2坯料 (12)2.2.1钢种 (12)2.2.2坯料规格 (12)2.3产品特点 (12)2.3.1产品质量标准 (12)2.3.2产品性能 (13)2.3.3产品规格 (13)2.3.4产品目标值 (14)2.4产品方案和金属平衡 (14)2.4.1产品方案 (14)3生产工艺过程和设备的选择 (16)3.11700生产工艺流程及其概述 (16)3.2生产方案的选择 (16)3.3工艺布置特点和设备的选择 (17)3.3.1机组配置 (17)3.3.2加热炉的选择 (17)3.3.3粗轧机组的选择 (18)3.3.4立辊轧机的选择 (18)3.3.5保温装置的选择 (20)3.3.6飞剪机的选择 (20)3.3.7高压水除鳞设备的选择 (21)3.3.8精轧机组的选择 (22)3.3.9层流冷却 (23)3.3.10卷取机的选择 (24)4生产工艺流程图和典型产品 (27)4.1确定轧制方法 (27)4.2根据产品选择原料 (27)4.3工艺流程图 (27)5压下规程设计 (28)5.1粗轧机压下规程的制度 (28)5.1.1粗轧机组各道次的压下量分配 (28)5.1.2根据成品板宽确定精轧坯宽度 (28)5.1.3计算粗轧机组轧制时的宽展量 (29)5.1.4计算坯料轧前的膨胀宽度 (29)5.2精轧机压下规程的制定 (30)6校核咬入能力 (32)7轧制时间制度 (33)7.1粗轧轧制时间计算 (33)7.2精轧轧制时间计算 (35)8温度制度 (40)8.1粗轧时各道次的温降 (40)8.2精轧温度制度 (41)9速度制度 (43)9.1粗轧机速度制度 (43)9.2精轧机速度制度 (43)10计算各道的平均变形速度 (47)10.1粗轧各道次的平均变形速度 (47)10.2精轧各道次的平均变形速度 (48)11轧制力及轧制力矩的计算 (49)11.1粗轧机轧制力和轧制力矩的计算 (50)11.2精轧机轧制力和轧制力矩的计算 (52)12生产设备的校核 (55)12.1轧辊的校核 (55)12.2粗轧机轧辊强度校核 (55)12.3精轧轧辊强度的校核 (59)12.4接触应力的计算 (64)13轧机生产能力校核 (67)13.1年产量计算 (67)13.2工作制度与工作时间 (67)13.3轧机生产能力校核 (67)专题:钛及钛合金性能及应用 (71)1钛的性能及应用 (72)1.1概述 (72)1.2钛的资源和它的战略地位 (72)1.3我国钛工业基础 (73)1.4钛的性能和应用 (74)1.5研究和发展 (75)2钛合金的性能及应用 (77)2.1钛合金发展史 (77)2.2钛合金性能 (77)2.2.1热强度高 (77)2.2.2抗蚀性好 (77)2.2.3低温性能好 (78)2.3典型钛合金性能 (78)2.4钛合金应用 (78)参考文献 (79)致谢 (81)1综述1.1热轧板带钢发展史热轧板带钢轧机的发展已有70多年历史,汽车工业、建筑工业、交通运输业等的发展,使得热轧及冷轧薄钢板的需求量不断增加,从而促使热轧板带钢轧机的建设获得了迅速和稳定的发展。
学号:HEBEI UNITED UNIVERSITY毕业设计说明书G RADUATE D ESIGN设计题目:年产180万吨1780热轧带钢车间设计学生姓名:专业班级:学院:冶金与能源学院指导教师:2012 年5 月31日摘要板带钢是钢铁产品的主要品种之一,广泛应用于工业,农业,交通运输和建筑业。
宽带钢在我国国民经济中的发展中需求量很大。
世界各国近年来都在注重研制和使用连铸连轧等新技术和新设备来生产板带钢。
本设计为年产180万吨1780热轧带钢车间设计,典型产品厚度为5.0mm。
为了满足高质量和高性能板材要求,本次设计结合唐钢1700mm、宁钢1780mm、鞍钢1780mm热轧车间设计了年产180万吨的1780mm常规热轧车间。
设计采用两架四辊可逆粗轧机,轧制六道次,精轧机选用六架非可逆轧机轧制六道次,通过采用CVC轧机、PC轧机和厚度自动控制(AGC)等技术相结合来控制板型和厚度,在精轧前采用无芯轴隔热屏热卷箱。
在此设计中详细地介绍了原料的选择、生产工艺的制定、典型产品工艺计算、主要设备和辅助设备的选择等一系列过程。
按照要求计算了轧制力,轧制力矩,电机功率等问题,且对轧机进行了校核,并且设计了凸度,挠度以及年产量等问题。
关键词:热轧;板带钢;CVC轧机;压下规程ABSTRACTPlate strip is one of the main varieties of steel products, widely used in industry, agriculture, transportation and construction. Wide strip in the development of our national economy in great demand. In recent years, countries in the world are paying attention to the development and use of continuous casting and rolling, and other new technologies and new equipment to produce steel strip.The 1780 is designed to produce 1.8 million tons of hot rolled strip plant design, a typical product thickness 5.0mm. To meet the requirements of high quality and high performance boards, this design combines the Tangshan Iron and Steel 1700mm, Ning steel 1780mm, Anshan Iron and Steel 1780mm hot rolling workshop designed annual output of 1.8 million tons of 1780mm conventional hot rolling workshop. Design uses two four-high reversing roughing mill, rolling six times, finishing mill selected six non-reversible rolling mill six times, through the use of CVC mill, PC mill and thickness control (AGC) to control panels and other technology-based combination and thickness, in the no-mandrel before finishing the heat shield coil box.In this design details on the selection of raw materials, production process development, process calculation typical products, the main equipment and auxiliary equipment such as a process of selection. In accordance with the requirements in the rolling force, rolling torque, motor power and other issues, and conducted a check on the mill, and the design of the crown, deflection, and output issues.Key words: hot rolling; plate strip; CVC mill; rolling schedule目录摘要 (I)ABSTRACT (II)引言 (1)1 文献综述 (1)1.1热轧板带钢生产状况 (1)1.1.1 国内外热轧宽带钢生产状况 (1)1.1.2 热轧窄带钢生产状况 (3)1.2轧带钢市场前景和需求概况 (4)1.2.1 热轧宽带钢市场前景 (4)1.2.2 热轧窄带钢市场需求 (4)1.3今后热轧板带钢的发展趋势 (5)1.3.1 热轧宽带钢发展方向 (5)1.3.2 热轧窄带钢发展方向 (5)1.4本设计的目的和意义 (5)2 生产方案及产品大纲的制定 (7)2.1生产方案 (7)2.2坯料选择和原料规格 (7)2.2.1 坯料选择 (7)2.2.2 原料规格选择 (7)2.3产品大纲 (7)2.3.1 产品规格 (8)2.3.2 钢种方案 (8)3 生产工艺流程制定 (10)3.1制定生产工艺流程的主要依据 (10)3.2生产工艺过程简述 (11)4 主要设备的选择与布置 (13)4.1粗轧机组的选择 (13)4.1.2 半连轧 (13)4.1.3 3/4连轧 (14)4.1.4 紧凑式 (14)4.2精轧机的选择 (15)4.2.1 HC轧机(High Crown Control Mill) (15)4.2.2 CVC轧机(Continuously Variable Crown) (16)4.2.3 PC轧机 (17)4.3保温装置 (19)4.3.1保温装置的概述 (19)4.3.2 保温装置的选择 (21)5 典型产品的压下规程设计 (22)5.1压下规程设计 (22)5.1.1 轧制道次选择 (23)5.1.2 粗轧机组压下量分配 (23)5.1.3 精轧机组的压下量分配 (24)5.1.4 校核咬入能力 (25)5.2确定速度制度 (25)5.2.1 粗轧速度制度 (25)5.2.2 粗轧延续时间 (26)5.2.3 精轧速度制度确定 (26)5.2.4 精轧轧制延续时间 (27)5.3轧制温度的确定 (27)6 力能参数的计算 (30)6.1轧制力的计算 (30)6.1.1 粗轧段轧制力计算 (30)6.1.2 精轧段轧制力计算 (31)6.1.3 各机架的空载辊缝设定: (32)6.2轧制力矩的计算 (33)6.3附加摩擦力矩的计算 (34)6.4空转力矩的计算 (35)6.6轧辊辊型设计 (37)6.6.1 各架出口凸度的确定 (37)6.6.2 热膨涨热凸度 (38)6.6.3 轧辊挠度曲线 (38)6.6.4 凸度分配 (40)7 轧辊强度校核与电机的选择 (41)7.1轧辊的强度校核 (41)7.1.1 支撑辊的强度校核 (41)7.1.2 工作辊的校核 (43)7.1.3工作辊与支撑辊间的接触应力 (45)7.2电机的选择 (47)7.2.1轧制过程中静负荷图的制定 (47)7.2.2主电机的校核 (48)8轧机年产量计算 (50)8.1轧机小时产量 (50)8.2轧机平均小时产量 (51)8.3轧钢车间年产量计算 (51)9 辅助设备选择 (53)9.1热炉选择 (53)9.1.1加热能力的确定 (54)9.1.2炉子数量的确定 (54)9.1.3炉子尺寸的确定 (54)9.2除鳞装置的选择 (55)9.2.1除鳞的必要性 (55)9.2.2各种除鳞方式的比较 (56)9.2.3本次设计除鳞装置的选择 (56)9.3剪切设备的选择 (57)9.4带钢冷却装置 (58)9.5卷取设备的选择 (60)9.7活套支撑器 (63)9.7.1概述 (63)9.7.2活套支撑器的相关参数的计算 (64)9.8控制设备 (66)9.8.1厚度控制 (66)9.8.2板形控制 (67)9.8.3宽度控制 (68)10轧钢车间平面布置及经济技术指标 (70)10.1轧钢车间平面布置 (70)10.2车间技术经济指标 (70)10.2.1各类材料消耗指标 (70)10.2.2综合技术经济指标 (73)结论 (75)参考文献 (76)致谢 (78)引言目前现代热连轧机正按照以下趋势发展:1.为提高产量而不断提高速度,主电机容量也提高,增加轧机的强度和刚度,采用快速换辊及换剪刃装置等,使机组产量大幅度提高;2.当前提高经济效益,降低成本,节约能耗和提高成材率成为关键问题,为此而迅速开发了一系列新工艺新技术。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载年产280万吨1780热轧带钢车间设计地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容MACROBUTTON MTEditEquationSection2 方程段 1 部分 1 SEQ MTEqn \r \h \*MERGEFORMAT SEQ MTSec \r 1 \h \* MERGEFORMAT SEQ MTChap \r 1 \h \* MERGEFORMAT 学号:200906040106 HEBEI UNITED UNIVERSITY毕业设计说明书GRADUATE DESIGN设计题目:年产280万吨1780热轧带钢车间设计学生姓名:张志芳专业班级:09成型1班学院:冶金与能源学院指导教师:杨海丽教授2013年05月28日摘要板带材生产的技术水平不仅是冶金工业生产发展水平的重要标志,也反映了一个国家工业与科学技术发展的水平。
建设现代化的热轧宽带钢轧机要满足现代工业对热轧板品种质量的要求。
而最终产品的质量首先取决于连铸胚的质量,其次取决于轧钢工艺的设计,如轧机的刚度、轧机的布置形式等等。
所以工艺设计是否合理不仅关系到产量,还关系到最终产品的质量。
基于以上考虑,本次设计结合本钢1700mm、唐钢1700mm、莱钢1500mm、宝钢1580mm、鞍钢1780mm、梅钢1422mm热轧生产线设计了280万吨1780mm常规热连轧生产线,在此设计中详细的介绍了加热、粗轧、热卷取、精轧、冷却、卷取等一系列过程。
其中精轧机选取7架大断面牌坊和高吨位轧制力轧机,采用工作辊正弯辊(WRB)技术、CVC轧机和厚度自动控制(AGC)等技术来控制板型和提高厚度精度。