异步电动机正反转工作原理
- 格式:doc
- 大小:44.00 KB
- 文档页数:1
异步电动机实现正反转的方法
异步电动机实现正反转的方法是通过改变电机的输入电压或改变电机的相序来实现的。
以下是几种常见的实现方法:
1. 改变电机的输入电压:通过改变电机的输入电压的相位差和大小,可以实现电机的正反转。
当输入电压的相位差为0时,电机正转;当相位差为180度时,电机反转。
通过改变输入电压的大小,可以控制电机的转速。
2. 改变电机的相序:在三相异步电动机中,通过改变电机的相序可以实现电机的正反转。
在正转时,电机的相序为ABC,即A相、B相和C相的电流依次流过电机的三个绕组;在反转时,电机的相序为ACB,即A相、C相和B相的电流依次流过电机的三个绕组。
通过改变相序,可以改变电机的磁场方向,从而实现电机的正反转。
3. 利用变频器控制:变频器是一种能够根据输入信号改变输出频率的器件,通过改变电机的输入频率,可以实现电机的正反转。
当输入频率为标准频率时,电机正转;当输入频率为负向频率时,电机反转。
同时,通过改变输入频率的大小,可以控制电机的转速。
变频器在工业控制中广泛应用,可以实现电机的精确控制。
这些方法都可以实现异步电动机的正反转,具体选择哪种方法取决于应用场景和要求。
三相异步电动机按钮联锁正反转控制工作原理三相异步电动机按钮联锁正反转控制是一种常见的电机控制方式,通常用于需要频繁正反转的场合,如输送机、提升机等设备。
按钮联锁控制是指通过按钮控制电机的正反转,并且在正向或反向运行时,另一方向的按钮不能起作用,以确保安全可靠的运行。
本文将从工作原理、控制电路、联锁逻辑和应用场景等方面对三相异步电动机按钮联锁控制进行详细介绍。
一、工作原理三相异步电动机是工业领域中常见的一种电动机类型,它通过三相交流电源产生旋转磁场,从而驱动负载旋转。
按钮联锁控制是通过按钮控制电机的正反转,同时通过联锁控制电路来防止误操作和保证运行的安全性。
其工作原理主要包括按钮控制、继电器控制和联锁控制三个部分。
1.按钮控制按钮控制是通过控制按钮来实现电机的正反转。
通常有正向按钮(或称前进按钮)和反向按钮(或称后退按钮)。
按下正向按钮,电机正向运行;按下反向按钮,电机反向运行。
在按钮未按下时,电机处于停止状态。
按钮控制是电机运行的基础。
2.继电器控制继电器是控制电机正反转的关键组件。
通过正向按钮和反向按钮控制对应的继电器的触点,从而实现电机的正反转。
继电器具有可靠的电气隔离和可控性,是控制电机正反转的重要部件。
3.联锁控制联锁控制是在按钮控制的基础上增加的安全控制功能。
其原理是通过联锁逻辑电路,使得在电机正向或反向运行的过程中,另一方向的按钮不能起作用,从而避免误操作和保证运行的安全性。
联锁控制是按钮控制的增强和完善。
二、控制电路三相异步电动机按钮联锁正反转控制的控制电路通常由按钮、继电器和联锁逻辑电路组成。
下面将对每个部分的功能和连接进行详细介绍。
1.按钮正向按钮和反向按钮是控制电机正反转的主要控制元件。
一般情况下,按钮通过脉冲信号触发继电器的动作,从而控制电机的正反转。
在按钮未按下时,电机处于停止状态。
2.继电器继电器是实现正反转控制的关键元件。
通过控制按钮的脉冲信号,继电器使得对应的触点在正向或反向按钮按下时闭合,从而实现电机的正反转。
三相异步电动机正反转原理及接线如下图所示,电动机反转的方法:在正转的线路上,改变通入电动机定子绕组的任意两相电源相序。
为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,下图为采用按钮和接触器双重互锁的Y系列三相异步电动机正、反两方向运行的控制路。
一、正向启动:1、合上空气开关QF接通三相电源2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时是正向运行,即相序是L1、L2、L3。
二、互锁环节:具有禁止功能在线路中起安全保护作用1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。
当正转接触器KM1线圈通电动作后,KM1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。
2、按钮互锁:在电路中采用了控制按钮操作的正反传控制电路,按钮SB2、SB3都具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM2线圈回路连接。
例如按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接触器KM1线圈回路串联。
按钮SB3的常开触点与接触器KM1线圈串联,而常闭触点压KM2线圈回路串联。
这样当按下SB2时只能有接触器KM2的线圈可以通电而KM1断电,按下SB3时只能有接触器KM1的线圈可以通电而KM2断电,如果同时按下SB2和SB3则两只接触器线圈都不能通电。
这样就起到了互锁的作用。
注意:KM1 和 KM2 线圈不能同时通电,易引起主回路电源短路。
一旦误操作,危险性就相当大。
三、反向启动:电动机正向(或反向)启动运转后,不必先按停止按钮使电动机停止,可以直接按反向(或正向)启动按钮,使电动机变为反方向运行。
图3 单相异步电动机的机械特性单相异步电动机原理及正反转单相异步电动机是指用单相交流电源供电的异步电动机。
单相异步电动机具有结构简单、成本低廉、噪声小、使用方便、运行可靠等优点,因此广泛用于工业、农业、医疗和家用电器等方面,最常见于电风扇、洗衣机、电冰箱、空调等家用电器中。
但是单相异步电动机与同容量的三相异步电动机相比,体积较大,运行性能较差。
因此,单相异步电动机一般只制成小容量的电动机,功率从几瓦到几千瓦。
单相异步电动机在家用电器中的应用特别广泛,与人们的生活密切相关。
单行异步电动机的结构如下图:一、 单相异步电动机的工作原理和机械特性 当单相正弦交流电通入定子单相绕组时,就会在绕组轴线方向上产生一个大小和方向交变的磁场,如图1所示。
这种磁场的空间位置不变,其幅值在时间上随交变电流按正弦规律变化,具有脉动特性,因此称为脉动磁场,如图2(a)所示。
可见,单相异步电动机中的磁场是一个脉动磁场,不同于三相异步电动机中的旋转磁场。
(a)交变脉动磁场 (b)脉动磁场的分解 图2 脉动磁场分解成两个方向相反的旋转磁场为了便于分析,这个脉动磁场可以分解为大小相等,方向相反的两个旋转磁场,如图2(b)所示。
它们分别在转子中感应出大小图1 单相交变磁场相等,方向相反的电动势和电流。
两个旋转磁场作用于笼型转子的导体中将产生两个方向相反的电磁转矩T+和T- ,合成后得到单相异步电动机的机械特性,如图3所示。
图中,T+为正向转矩,由旋转磁场B m1产生;T- 为反向转矩,由反向旋转磁场B m2产生,而T为单相异步电动机的合成转矩。
从图3可知,单相异步电动机一相绕组通电的机械特性有如下特点:1.当n=0时,T + =T-,合成转矩T=0。
即单相异步电动机的启动转矩为零,不能自行启动。
2.当n>0时,T>0;n<0时,T<0。
即转向取决于初速度的方向。
当外力给转子一个正向的初速度后,就会继续正向旋转;而外力给转子一个反向的初速度时,电机就会反转。
异步电动机正反转原理
异步电动机正反转原理:
异步电动机是一种常见的电动机类型,它通过旋转磁场的作用来实现正反转。
其原理可以简要概括为以下几个步骤:
1. 三相交流电源供电:异步电动机通常由三相交流电源供电,即三相电压与三相电流组成的电源。
2. 电流产生旋转磁场:当电源接通后,电流通过电动机的定子线圈,产生线圈中的磁场。
根据Fleming's left-hand rule(佛萊明左手定则),电流与磁场方向垂直产生力。
3. 旋转磁场与转子交互作用:定子线圈产生的旋转磁场与转子磁场相互作用,产生转子中的感应电动势。
由于感应电动势的存在,电动机有转矩产生。
4. 运行转矩:由于转子中的感应电动势和电流的作用,转子开始旋转,成为驱动。
当负载连接到电动机上时,负载对转子的旋转产生阻力,转矩输出到负载上。
5. 正反转切换:异步电动机的正反转切换通常是通过切换电源的相序来实现的。
改变相序能够改变旋转磁场的方向,从而使电动机的旋转方向发生变化。
需要注意的是,异步电动机的正反转切换是通过改变电源的相序来实现的,而不是通过改变电动机内部结构来实现的。
异步电机的正反转控制原理
异步电机的正反转控制原理是通过改变电源的相序来实现的。
异步电机是由转子和定子组成的,当电源的相序发生改变时,定子的磁场方向也会发生改变,进而改变了转子的磁场方向。
根据右手定则,当定子的磁场方向改变时,转子就会发生反向转动。
具体来说,正转控制和反转控制的原理如下:
1. 正转控制:当期望电机正转时,需要将电源的相序设置为正常顺序,即依次通电给各个相,使得定子的磁场方向保持一个确定的方向。
这样,定子的磁场就会产生一个旋转磁场,而转子会被这个旋转磁场牵引,从而实现正转运动。
2. 反转控制:当期望电机反转时,需要将电源的相序逆序设置,即逆序依次通电给各个相。
这样,定子的磁场方向也会逆序改变,导致定子磁场方向与转子磁场方向的差别进一步加大,从而使转子发生反方向的转动。
总结来说,异步电机的正反转控制可以通过改变电源的相序来改变定子磁场的方向,实现转子的正向或反向运动。
三相异步电动机接触器联锁正反转控制电路工作原理引言三相异步电动机作为工业中最常见的电机类型之一,在各个领域都有着广泛的应用。
它的正反转控制是电动机运行中非常重要的一部分,有效的控制正反转可以使电机的运行更加安全和可靠。
而接触器的联锁功能则可以进一步提高电机的保护性能。
本文将详细介绍三相异步电动机接触器联锁正反转控制电路的工作原理。
三相异步电动机的基本原理三相异步电动机是利用三相交流电源产生的旋转磁场来驱动转子转动的。
在三相交流电源作用下,电机的定子绕组中会产生一个旋转磁场,这个旋转磁场会与转子中的永磁体相互作用,使得转子跟随其旋转。
通过对电源的相序和电压的控制,可以改变旋转磁场的方向和大小,从而实现电动机的正反转控制。
三相异步电动机接触器接触器是一种重要的电气元件,用于控制电流的通断。
三相异步电动机接触器在电路中起到了重要的作用,可以实现对电机的正反转控制和保护。
接触器通常由主触点和辅助触点组成。
主触点用于承载较大的电流,控制电机的运行;辅助触点一般用于信号传递和电机保护。
接触器的联锁功能接触器的联锁功能是为了避免电机发生错误的正反转操作,保护电机和设备的安全。
联锁功能可以通过在电路中添加一些开关和传感器来实现。
当电机进行正转时,联锁功能可以阻止电机的反转操作,反之亦然。
三相异步电动机接触器联锁正反转控制电路示意图下面是一个典型的三相异步电动机接触器联锁正反转控制电路示意图:1.电源输入:接入交流电源,通过主开关进行整个电路的通断控制。
2.过载保护:接入过载保护装置,用于监测电机的电流是否超过额定值,以避免电机过载损坏。
3.主接触器KM1和KM2:分别用于电机正转和反转的控制。
通过控制这两个接触器的通断,可以实现电机的正反转操作。
4.制动器接触器KM3:用于电机的制动控制。
在电机停止运行时,通过通断制动器接触器,可以实现电机的快速制动。
5.电机保护:接入电机保护装置,包括过载保护、过热保护等,用于保护电机的安全运行。
三相异步电动机正反转原理图解如何调整电机输出轴的转动方向?这个问题与三相电源的相序有关,只要任意调换两相的相序就可以了!普通三相异步电动机的正反转除了用变频器或2个接触器来控制,还有其它简单的控制方法吗?用断路器,这些功能对于电路保护设计很有帮助。
辅助接点(辅助开关):它们是与主接点电隔离的接点,适用于报警和程序开关。
辅助接点可用于向操作人员或控制系统告警,发出警报,或在重要应用中接通备用电源。
对普通三相异步电动机,改变输入电动机的三相电源相序,就可改变电动机的旋转方向。
正反转控制线路就是基于这一原理设计。
改变接入电动机三相电源相序的最简单的办法,就是调换其中两相线的位置。
正反转控制线路一般都是基于这一方法。
一种最简单的控制线路是使用倒顺开关直接使电动机作正反转,但其只适用于电动机容量较小、正反转不很频繁的场合。
最常见的还是使用接触器的正反转控制线路。
2#帖中给出的就是使用两台接触器的一个典型的具有双重联锁的正反转控制线路。
1、控制原理当按下正转启动按钮SB2后,电源相通过热继电器FR的动断接点、停止按钮SB1的动断接点、正转启动按钮SB2的动合接点、反转交流接触器KM2的常闭辅助触头、正转交流接触器线圈KM1,使正转接触器KM1带电而动作,其主触头闭合使电动机正向转动运行,并通过接触器KM1的常开辅助触头自保持运行。
反转启动过程与上面相似,只是接触器KM2动作后,调换了两根电源线U、W相(即改变电源相序),从而达到反转目的。
2、互锁原理接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故。
为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头。
当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合。
三相异步电动机接触器联锁的正反转控制在工业领域中,三相异步电动机是一种常见的电动机类型,广泛应用于机械设备的驱动系统中。
为了实现电机的正反转控制,通常需要采用接触器联锁的方法,通过控制接触器的动作来实现电机的正反转切换。
本文将详细介绍三相异步电动机接触器联锁的正反转控制原理和方法。
一、三相异步电动机的基本原理三相异步电动机是由三个相位互相错开120度的线圈组成,当电机通电时,电流通过线圈产生旋转磁场,从而带动转子转动。
根据电流的方向和大小,电动机可以实现正转和反转的运动。
实现电机正反转控制的关键是控制电流的方向和大小,而接触器则是实现电流控制的重要设备。
二、接触器的基本原理接触器是一种电气开关装置,通过控制主触头和辅助触头之间的接通和断开来控制电路的通断。
主触头由电磁铁控制,当电磁铁通电时,主触头闭合,电路通电;当电磁铁断电时,主触头断开,电路断电。
辅助触头用于控制主触头的闭合和断开动作,通过控制辅助触头的状态和电流大小,可以实现接触器的正反转控制。
三、接触器联锁的正反转控制原理接触器联锁的正反转控制原理是基于电机正反转的电流方向和大小不同。
当电机需要正转时,需要将接触器的辅助触头接通,使电流流经电机的相应线圈,从而实现电机正转。
当电机需要反转时,需要将接触器的辅助触头断开,使电流无法流经电机的相应线圈,从而实现电机反转。
通过控制接触器的辅助触头状态,可以实现电机的正反转切换。
四、三相异步电动机接触器联锁的正反转控制方法实现三相异步电动机接触器联锁的正反转控制方法有多种,常用的方法包括电气控制和PLC控制两种。
1. 电气控制方法电气控制方法是通过电路和开关来控制接触器的动作,实现电机的正反转控制。
在电路中设置正转按钮和反转按钮,通过按下按钮来控制接触器的辅助触头状态。
当按下正转按钮时,辅助触头接通,实现电机正转;当按下反转按钮时,辅助触头断开,实现电机反转。
2. PLC控制方法PLC控制方法是通过PLC(可编程逻辑控制器)来控制接触器的动作,实现电机的正反转控制。
三相异步电动机正反转工作原理
三相异步电动机是一种常见的电动机类型,它由三个相位的定子线圈和一个转子组成。
当电机接通电源后,电流会通过定子线圈,产生一个旋转的磁场。
这个磁场会引起转子上的感应电流,进而产生感应磁场。
在正转工作状态下,将电动机的正序三相电源接通,三个线圈分别形成一组旋转磁场,这些旋转磁场的方向和速度与定子磁场一致。
由于转子上的感应电流会随着定子磁场的旋转而产生一个力矩,这个力矩会使转子跟随旋转磁场一起旋转。
在反转工作状态下,将电动机的逆序三相电源接通,三个线圈形成的旋转磁场方向和速度与定子磁场相反。
同样的道理,转子上的感应电流引起的力矩也会使转子跟随旋转磁场反方向旋转。
不论是正转还是反转状态下,转子的旋转速度都会略低于旋转磁场的速度,这个差异被称为“滑差”。
滑差的存在是为了保持电机的运转稳定和产生转矩。
当负载增加时,滑差会增加,从而产生更多的转矩来应对负载需求。
总之,三相异步电动机的正反转工作原理是通过正序或逆序供电,产生旋转磁场,并利用感应电流引起的力矩使转子旋转。
三相异步电动机正反转控制电路原理
三相异步电动机正反转控制电路通常采用交流接触器和翻转开关实现。
在交流电源接通后,翻转开关向正转或反转方向翻转,这会使得交流
接触器的接点闭合,将电源的三相电流输入到电动机的三个绕组中。
当电
动机开始运转时,它会产生旋转磁场,由于旋转磁场的转向与电机的接线
方式不同,电机的正/反转方向也会不同。
如果需要更精确地控制电机的正/反转,可以采用直流控制电路,使
用电子器件如晶闸管或MOSFET等来控制电机的电流方向和大小。
单相异步电机正反转接线方法
单相异步电机是一种常见的电动机类型,其正反转接线方法是十分重要的。
下面将介绍单相异步电机正反转接线方法。
1. 单相异步电机的基本原理
单相异步电机是利用单相交流电源所产生的交变磁场作用于定子线圈,而使转子线圈产生感应电动势,从而产生转矩,使转子转动。
其中,定子线圈接通单相交流电源后,两相磁场相互作用,形成一个旋转的磁场,而转子内部的导体则受到旋转磁场的作用而产生感应电动势,从而在转子上产生转矩。
2. 单相异步电机正转接线方法
单相异步电机正转接线方法是将电机的两个端子分别接通单相交流电源的正负极,即将电源的一个极连接到电机的一端,另一个极则连接到电机的另一端。
这样,电机就能够顺时针方向旋转。
3. 单相异步电机反转接线方法
单相异步电机反转接线方法是将电机的两个端子交换连接单相交流电源的正负极,即将电源的一个极连接到电机的另一端,另一个极则连接到电机的一端。
这样,电机就能够逆时针方向旋转。
总之,单相异步电机正反转接线方法是十分简单的,只需将电机的两个端子分别接通单相交流电源的正负极,并根据需要交换连接即可实现正反转。
但在实际应用中,需谨慎操作,以免出现危险。
- 1 -。
三相异步电动机双联正反转控制电路安装与调试工作原理在工业控制领域,三相异步电动机双联正反转控制电路是一种常见的控制方式。
这种控制电路可以实现对电动机的正反转控制,广泛应用于各种工业设备和机械设备中。
本文将详细介绍三相异步电动机双联正反转控制电路的安装和调试工作原理,主要包括以下七个方面:1.电源切换电源切换是三相异步电动机双联正反转控制电路的重要环节。
通过切换电源的相序,实现电动机的正反转。
常见的电源切换方式有机械开关切换和接触器切换。
在接触器切换方式中,需要选择合适的接触器,保证在电源相序改变时,电动机能够稳定切换到另一相电源。
安装接触器时,应确保接触器的主触点连接正确,且接触良好。
2.联锁保护联锁保护是保证三相异步电动机双联正反转控制电路安全运行的关键措施。
通过联锁保护,可以防止电动机在正反转切换过程中发生短路或电气故障。
常见的联锁保护方式有机械联锁和电气联锁。
机械联锁通过机械结构实现联锁保护,而电气联锁则通过电气线路实现联锁保护。
在安装和调试过程中,应确保联锁保护功能正常,且在电源故障或异常情况下能够迅速切断电源。
3.零位保护零位保护是三相异步电动机双联正反转控制电路的必备保护功能。
通过零位保护,可以防止电动机在控制电路出现故障时非自然停车。
常见的零位保护方式有限位开关和编码器等。
在安装和调试过程中,应确保零位保护开关的选型、安装和使用正确,且能够准确检测到电动机的零位状态。
4.方向控制方向控制是三相异步电动机双联正反转控制电路的核心功能。
通过方向控制,可以实现对电动机的正反转操作。
常见的方向控制方式有机械手柄和电气控制。
在电气控制方式中,需要选型并使用合适的双向可控硅,以便在控制信号的作用下实现电动机的正反转。
在安装和调试过程中,应确保双向可控硅的选型、安装和使用正确,且能够准确控制电动机的正反转状态。
5.热保护热保护是防止三相异步电动机过热的重要措施。
通过热保护开关,可以监测电动机的热量,并在温度超过设定值时切断电源,保护电动机不受损坏。
异步电动机正反转工作原理首先,我们先了解一下异步电动机的基本结构。
异步电动机由定子和转子两部分组成。
定子是不动的部分,通常由一组绕在铁心上的绕组组成。
而转子则是可以旋转的部分,通常由绕在铁心上的导体环构成。
在工作时,通过对定子绕组通以三相交流电源,产生旋转磁场。
在正转工作状态下,定子绕组通过电源通以三相交流电流,产生旋转磁场。
这个旋转磁场将会感应到转子上的导体环中,并在导体环内部产生感应电流。
由于转子上的导体环是闭合的回路,感应电流将在导体环内部形成闭合回路。
导体环内的感应电流会与定子绕组中的磁场相互作用,产生力矩。
由于磁场是旋转的,因此感应电流所产生的力矩也会使转子跟随旋转磁场一起旋转。
这就是异步电动机正转的原理。
反转工作原理与正转类似,只是磁场的旋转方向相反。
在反转状态下,定子绕组通以三相交流电流,形成旋转磁场,但旋转方向与前述正转状态相反。
相应地,转子上的导体环感应到的磁场也相反。
在这种情况下,转子受到的力矩也与正转相反,使得转子与旋转磁场反方向旋转,实现反转工作。
在实际应用中,异步电动机通常通过控制电源的相序和频率来实现正反转。
要实现正转,电源的相序和频率必须与电动机的设计参数匹配。
相反,要实现反转,相序和频率需要相反。
因此,通过调整电源的相序和频率,可以实现异步电动机的正反转。
总结起来,异步电动机的正反转工作原理是基于电磁感应和旋转磁场的互作用。
通过定子绕组通以三相交流电流,形成旋转磁场,进而感应到转子上的导体环中的感应电流。
这些感应电流与定子绕组的磁场相互作用,产生力矩使得转子跟随旋转磁场一起旋转,实现正反转工作。
异步电动机正反转线路图
工作原理:
三相异步电动机接触器联锁的正反转控制的线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB1和反转按钮SB2控制。
这两个接触器的主触头所接通的电源相序不同,KM1按L1-L2-L3相序接线,KM2则对调了两相的相序。
控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。
接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故。
为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头。
当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合。
同样,当接触器KM2得电动作时,KM2的常闭触头分断,切断了正转控制电路,可靠地避免了两相电源短路事故的发生。
一、正向启动
1、合上电源开关QS,接通三相电源。
2、按下正向启动按钮SB1,KM1通电吸合并自锁,三触头闭合接通电动机,电动机这时的相序是L1,L2,L3,即正向运行。
二、停止控制
按下SB3,整个控制电路失电,接触器各触头复位,电机失电停转。
三、反向启动
1、合上电源开关QS,接通三相电源。
2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开触头闭合换接了电动机三相电源相序,这时电动机的相序是L3,L2,L1,即反向运行。