高中数学 第1章 立体几何初步章末复习 北师大版必修2
- 格式:ppt
- 大小:5.09 MB
- 文档页数:44
第一章 立体几何初步知识精要1.证明两条直线平行,只需证明这两条直线上的向量共线(即成倍数关系).证明两条直线平行,只需证明这两条直线上的向量的数量积等于零. 2.通过法向量,把线面、面面的角转化为线线的角.从而可以利用公式cos ||||θαβαβ=求解. 3.建立空间直角坐标系.例题1如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12PA , 点O 、D 分别是AC 、PC ABC .(Ⅰ)求证OD ∥平面PAB ;(Ⅱ) 求直线OD 与平面PBC 所成角的大小.解答OP ABC OA OC AB BC ⊥== 平面,,,arcsin30OD PBC ∴ 与平面所成的角为.练习1如图,已知长方体1111ABCD A B C D -,12,1AB AA ==,直线BD 与平面11AA B B 所成的角为030,AE 垂直BD 于,E F 为11A B 的中点.1(Ⅰ)求异面直线AE 与BF 所成的角;(Ⅱ)求平面BDF 与平面1AA B 的大小;(Ⅲ)求点A 到平面BDF 的距离解答 在长方体1111ABCD A B C D -中,以AB 所在直线为x轴,AD 所在直线为y 轴,1AA 所在直线为z 轴建立空间直 角坐标系如图.由已知12,1AB AA ==,可得(0,0,0),(2,0,0),(1,0,1)A B F .又AD ⊥平面11AA B B ,从面BD 与平面1AA为030DBA ∠=又2,,1,AB AE BD AE AD =⊥==从而易得1(,(0,223E D (Ⅰ)13(,,0),(1,0,1)22AE BF ==-cos ,AE BF AE BF AE BF∴<>=14-==即异面直线AE、BF所成的角为(Ⅱ)易知平面1AA B的一个法向量(0,1,0)m=(,,)n x y z=是平面BDF的一个法向量.(2,,0)3BD=-由n BFn BD⎧⊥⎪⎨⊥⎪⎩n BFn BD⎧=⎪⇒⎨=⎪⎩203x xx y-+=⎧⎪⇒⎨-=⎪⎩x zy=⎧⎪⇒=取(1,3,1)n=∴3cos,515m nm nm n<>===⨯即平面BDF 与平面1AA B所成二面角(锐角)大小为5(Ⅲ)点A到平面BDF的距离,即AB 在平面BDF 的法向量n上的投影的绝对值所以距离||cos ,d AB AB n=<>||||||ABnABAB n=||2||55AB nn===所以点A 到平面BDF5例题2 如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2(Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小.解答(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB . 故可以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图3,则相关各点的坐标是A (3,0,0),B (0,3,0),C (0,1,3)O 1(0,0,3).从而图11A .0333),3,3,0(),3,1,3(11=⋅+-=⋅-=-=BO AC BO AC所以AC ⊥BO 1.(II )解:因为,03331=⋅+-=⋅OC BO 所以BO 1⊥OC ,由(I )AC ⊥BO 1,所以BO 1⊥平面OAC ,1BO 是平面OAC 的一个法向量.设),,(z y x n =是0平面O 1AC 的一个法向量,由,3.0,033001=⎩⎨⎧==++-⇒⎪⎩⎪⎨⎧=⋅=⋅z y z y x C O n AC n 取得)3,0,1(=n .设二面角O —AC —O 1的大小为θ,由n 、1BO 的方向可知=<θn ,1BO >,所以COS <=cos θn ,1BO .43||||11=⋅BO n BO n 即二面角O —AC —O 1的大小是.43arccos练习2 如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB (Ⅰ)求证1AC BC ⊥; (Ⅱ) 求证11AC CDB 平面;(Ⅲ)求异面直线1AC 与1B C 解答∵直三棱锥111ABC A B C -底面三边长C 1A 1xz3,4,5AC BC AB ===,1,,AC BC CC 两两垂直标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (32,2,0)(Ⅰ)11(3,0,0),(0,4,4)AC BC =-=,11110,AC BC AC BC ∴⋅=∴⊥(Ⅱ)设1CB 与1C B 的交点为E ,则E (0,2,2)(Ⅲ)11(3,0,4),(0,4,4),AC CB =-=1111112cos ,5||||AC CB AC CB AC CB ∴<>==∴异面直线1AC 与1B C 例题3 在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求SINA .解答 以B 为坐标原点,BC 为x 轴正向建立直角坐标指法,且不妨设点A 位于第一象限由630sin =B ,则44(,sin )(,)3333BA B B ==,设BC =(x ,0),则43(,63x BD +=,由条件得5)352()634(||22=++=x BD ,从而x=2,314-=x (舍去),故2(,)33CA =-.于是 ∴1470cos 1sin 2=-=A A 练习3 在平面上给定ABC ∆,对于平面上的一点P ,建立如下的变换 :f AP 的中点为Q ,BQ 的中点为R ,CR 的中点为'P ,'()f P P =,求证 f 只有一个不动点(指P 与'P 重合的点). 解答:依提意,有12AQ AP =,且111()224AR AB AQ AB AP=+=+,'1111()2248AP AC AR AC AB AP =+=+++,要使'P 与P 重合,应111248AP AC AB AP =++,得1(42)7AP AC AB =+,对于给定的ABC ∆,满足条件的不动点P 只有一个. 例题4 如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC . 已知,21,2,2===AE CD PD 求 (Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E —PC —D 的大小.解答 (Ⅰ)以D 为原点,DA 、DC 、DP 分别 为x 、y 、z 轴建立空间直角坐标系. 由已知可得D (0,0,0),P (0,0C (0,2,0)设0,2,(),0)(0,0,(x B x x A 则>由0=⋅⊥CE PE CE PE 得,即,0432=-x 故由DE CE DE =-⋅=⋅得0)0,23,23()0,21,23(又PD ⊥DE ,故DE 是异面直线PD 与CE 的公垂线,易得1||=DE ,故异面直线PD 、CE 的距离为1.(Ⅱ)作DG ⊥PC ,可设G (0,Y ,Z ).由0=⋅PC DG 得0)2,2,0(),,0(=-⋅z y ,即),2,1,0(,2==DG y z 故可取作EF ⊥PC 于F ,设F (0,M ,N ),则 由0212,0)2,2,0(),21,23(0=--=-⋅--=⋅n m n m PC EF 即得,111又由F 在PC 上得).22,21,23(,22,1,222-===+-=EF n m m n 故 因,,PC DG PC EF ⊥⊥故平面E —PC —D 的平面角θ的大小为向量DG EF 与的夹角. 故,4,22||||cos πθθ===EF DG 即二面角E —PC —D 的大小为.4π练习4如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,BB 1=2,BC =1,∠BCC 1=3π,求:(Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值.解答(I )以B 为原点,1BB 、BA 分别为Y 、Z 轴建立空间直角坐标系. 由于BC =1,BB 1=2,∠BCC 1=3π,在三棱柱ABC —A 1B 1C 1中有B (0,0,0),A (0,0,2),B 1(0设即得由,0,),0,,23(11=⋅⊥EB EA EB EA a E 又AB ⊥面BCC 1B 1,故AB ⊥BE . 因此BE 是异面直线AB 、EB 1的公垂线,则14143||=+=BE ,故异面直线AB 、EB 1的距离为1.(II )由已知有,,1111EB A B EB EA ⊥⊥故二面角A —EB 1—A 1的平面角θ的大小为向量EA A B 与11的夹角.。
【步步高学案导学设计】2017-2018学年高中数学第一章立体几何初步章末总结北师大版必修2一、直观图和三视图的画法直观图和三视图是空间几何体的不同表现形式,空间几何体的三视图可以使我们更好地把握空间几何体的性质,由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化,解决此类问题主要依据它们的概念和画法规则.例1一几何体的三视图如图所示.(1)说出该几何体的结构特征并画出直观图;(2)计算该几何体的体积与表面积.二、共点、共线、共面问题1.关于多点共线问题往往需要证明这些点在某两个平面的交线上.2.多线共点问题的证明往往让其他线都过某两条线的交点.3.多点共面问题的证明往往让其他点在某三点或四点确定的平面上.4.多线共面问题的证明往往让其他线在某两条直线确定的平面内.例2如图所示,空间四边形ABCD中,E、F分别为AB、AD的中点,G、H分别在BC、CD上,且BG∶GC=DH∶H C=1∶2.求证:(1)E、F、G、H四点共面;(2)GE与HF的交点在直线AC上.三、平行问题1.空间平行关系的判定方法:(1)判定线线平行的方法.①利用线线平行的定义证共面而且无公共点(结合反证法);②利用平行公理;③利用线面平行性质定理;④利用线面垂直的性质定理(若a⊥α,b⊥α,则a∥b);⑤利用面面平行性质定理(若α∥β,α∩γ=a,β∩γ=b,则a∥b).(2)判断线面平行的方法:①线面平行的定义(无公共点);②利用线面平行的判定定理(a⊆α,bα,a∥b⇒a∥α);③面面平行的性质定理(α∥β,aα⇒a∥β);④面面平行的性质(α∥β,a⊆α,a⊆β,a∥α⇒a∥β).(3)面面平行的判定方法有:①平面平行的定义(无公共点);②判定定理(若a∥β,b∥β,a、bα,且a∩b=A,则α∥β);③判定定理的推论(若a∥a′,b∥b′,aα,bα且a∩b=A,a′β,b′β,且a′∩b′=A′,则α∥β);④线面垂直性质定理(若a⊥α,a⊥β,则α∥β);⑤平面平行的性质(传递性:α∥β,β∥γ⇒α∥γ).2.平行关系的转化是:例3如图,S为矩形ABCD所在平面外一点,E、F分别是SD、BC上的点,且SE∶ED =BF∶FC.求证:EF∥平面SAB.例4如图所示,直四棱柱ABCD-A1B1C1D1的底面是梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点.求证:AC∥平面BPQ.四、垂直问题1.空间垂直关系的判定方法:(1)判定线线垂直的方法有:①计算所成的角为90°(包括平面角和异面直线所成的角);②线面垂直的性质(若a⊥α,bα,则a⊥b);③面面垂直的定义:两平面相交形成的二面角的平面角为90°.(2)判定线面垂直的方法有:①线面垂直定义(一般不易验证任意性);②线面垂直的判定定理(a⊥b,a⊥c,b α,c α,b∩c =M ⇒a⊥α);③平行线垂直平面的传递性质(a∥b,b⊥α⇒a⊥α);④面面垂直的性质(α⊥β,α∩β=l ,a β,a⊥l ⇒a⊥α);⑤面面平行的性质(a⊥α,α∥β⇒a⊥β);⑥面面垂直的性质(α∩β=l ,α⊥γ,β⊥γ⇒l⊥γ).(3)面面垂直的判定方法有:①根据定义(作两平面构成二面角的平面角,计算其为90°);②面面垂直的判定定理(a⊥β,a α⇒α⊥β).2.垂直关系的转化是:例5 如图所示,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD=60°,N 是PB 的中点,过A ,D ,N 的平面交PC 于M ,E 为AD 的中点.求证:(1)EN∥平面PDC ;(2)BC⊥平面PEB ;(3)平面PBC⊥平面ADMN .第一章 章末总结 答案重点解读例1解 (1)由三视图知该几何体是由一个圆柱与一个等底圆锥拼接而成的组合体,其直观图如图所示.(2)由三视图中的尺寸知,组合体下部是底面直径为8 cm ,高为20 cm 的圆柱,上部为底面直径为8 cm ,母线长为5 cm 的圆锥.易求得圆锥高h =52-42=3(cm),∴体积V =π·42·20+13π·42·3=336π(cm 3),表面积S =π·42+2π·4·20+π·4·5=196π(cm 2).∴该几何体的体积为336π cm 3,表面积为196π cm 2.点评 三视图画法:它包括主视图、左视图、俯视图三种.画图时要遵循“高平齐、长对正、宽相等”的原则,同时还要注意被挡住的轮廓线画成虚线.例2 证明 (1)∵BG ∶GC =DH ∶HC ,∴GH ∥BD ,又EF ∥BD ,∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)∵G ,H 不是BC 、CD 的中点,∴EF ≠GH又EF ∥GH ,∴EG 与FH 不平行,则必相交,设交点为M . ⎭⎪⎬⎪⎫EG 面ABC HF 面ACD ⇒M ∈面ABC 且M ∈面ACD ⇒M 在面ABC 与面ACD 的交线上⇒M ∈AC .∴GE 与HF 的交点在直线AC 上. 点评 证明线共点、点共线、线共面问题,重要是应用平面的基本性质,先证部分元素共点、共线、共面,再利用基本性质1,2,3证明其他元素也具有这个性质,要熟练地掌握这三个基本性质.例3 证明 方法一 转化为证明面面平行.过F 作FG ∥AB ,交AD 于G ,连接EG .∵FG ∥AB ,∴AG ∶GD =BF ∶FC ,∴AG ∶GD =SE ∶ED ,故EG ∥SA .又∵FG ∥AB ,AB ∩SA =A ,∴平面SAB ∥平面EFG .又∵EF ⊂平面SAB ,∴EF ∥平面SAB .方法二 转化为证明线线平行.过E 作EG ∥AD 交SA 于G ,连接BG ,∵BF ∥AD ,∴BF ∥EG ,∴平面BFEG ∩平面SAB =BG .∵SE ∶ED =BF ∶FC ,∴SE ∶SD =BF ∶BC .又∵SE ∶SD =EG ∶AD .∴BF ∶BC =EG ∶AD ,∵BC =AD .∴BF =EG ,故四边形BFEG 为平行四边形.∴EF ∥BG ,∴EF ∥平面SAB .点评 本题的证明体现了证明线面平行的常用方法,解决此类问题关键是选择或添加适当的辅助线(或面),使问题得以转化.证明线面平行常用的方法是利用线面平行的定义和线面平行的判定定理.例4 证明 连接CD 1、AD 1,∵P 、Q 分别是CC 1、C 1D 1的中点,∴PQ ∥CD 1,且CD 1⊆平面BPQ ,∴CD 1∥平面BPQ .又D 1Q =AB =1,D 1Q ∥AB ,∴四边形ABQD 1是平行四边形,∴AD 1∥BQ ,且AD 1平面BPQ ,∴AD 1∥平面BPQ .又AD 1∩CD 1=D 1,∴平面ACD 1∥平面BPQ ,∵AC 平面ACD 1,∴AC ∥平面BPQ .例5 证明 (1)因为AD ∥BC ,BC 平面PBC , AD ⊆平面PBC ,所以AD ∥平面PBC ,又平面ADMN ∩平面PBC =MN ,所以AD ∥MN ,所以MN ∥BC .因为N 为PB 的中点,所以M 为PC 的中点,所以MN ∥BC ,且MN =12BC . 又E 为AD 的中点,所以四边形DENM 为平行四边形.所以EN ∥DM .又EN ⊆平面PDC ,DM 平面PDC ,所以EN ∥平面PDC .(2)因为ABCD 是边长为2的菱形,且∠BAD =60°,所以BE ⊥AD .又因为PE ⊥AD ,PE ∩BE =E ,所以AD ⊥平面PEB .因为AD ∥BC ,所以BC ⊥平面PEB .(3)由(2)知AD ⊥PB .又因为PA =AB 且N 为PB 的中点,所以AN ⊥PB ,又AD ∩AN =A ,所以PB ⊥平面ADMN .又PB 平面PBC ,所以平面PBC ⊥平面ADMN .点评 立体几何的证明,我们要牢牢抓住“转化”这一思想,线与线,线与面,面与面之间的垂直与平行都可互相转化,转化的理论依据是这三种平行与垂直的判定定理、性质定理等.。
第一章立体几何初步【命题趋势】从近几年的高考试题看,本章主要考查空间几何体的结构,三视图与几(教材第20页练习第7(1)题)根据以下三视图想象物体原形,并画出物体的实物图.图11.(2012·北京高考)某三棱锥的三视图如图2所示,该三棱锥的表面积是()图2A.28+65B.30+6 5C.56+12 5 D.60+12 5【命题意图】本题主要考查三视图和几何体表面积相结合的计算.【解析】由几何体的三视图可知,该三棱锥的直观图如图所示,其中AE⊥平面BCD,CD⊥BD,且CD=4,BD=5,BE=2,ED=3,AE=4.∵AE=4,ED=3,∴AD=5.又CD⊥BD,CD⊥AE,则CD⊥平面ABD,故CD⊥AD,所以AC=41且S△ACD=10.在Rt△ABE中,AE=4,BE=2,故AB=2 5.在Rt △BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41. 在△ABD 中,AE =4,BD =5, 故S △ABD =10.在△ABC 中,AB =25,BC =AC =41, 则AB 边上的高h =6,故S △ABC =12×25×6=6 5.因此,该三棱锥的表面积为S =30+6 5. 【答案】 B 2.(2012·福建高考)一个几何体的三视图如图3所示(单位:m),则该几何体的体积为________m 3.图3【命题意图】 本题考查了由三视图还原几何体及几何体的体积计算.【解析】 由三视图知,几何体下面是两个球,球半径为32;上面是长方体,其长、宽、高分别为6、3、1,所以V =43π×278×2+1×3×6=9π+18.【答案】 18+9π1.(2012·福建高考)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱【解析】 球、正方体的三视图形状都相同,大小均相等,首先排除选项A 和C.对于如图所示三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同,故答案选D. 【答案】 D 2.(2012·广东高考)某几何体的三视图如图4所示,它的体积为( )图4A .12πB .45πC .57πD .81π【解析】 由三视图知该几何体是由圆柱、圆锥两几何体组合而成,直观图如图所示. 圆锥的底面半径为3,高为4,圆柱的底面半径为3,高为5,∴V =V 圆锥+V 圆柱=13Sh 1+Sh 2=13×π×32×4+π×32×5=57π.(教材第41页A 组第7题)如图5,四棱锥P —ABCD 中,底面ABCD 为矩形,P A ⊥底面ABCD ,P A =AB 点E 是棱PB 的中点,求证:AE ⊥PC .图51.(2012·课标全国卷)如图6,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .图6(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小. 【命题意图】 本题综合考查了垂直关系及二面角大小的求解,考查学生的综合计算能力.【解】 (1)证明:由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC . 而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD . 因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1A 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA →的方向为x 轴的正方向,|CA →|为单位长,建立如图所示的空间直角坐标系C -xyz .由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2). 则A 1D →=(0,0,-1),BD →=(1,-1,1),DC 1→=(-1,0,1). 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则⎩⎪⎨⎪⎧n ·BD →=0,n ·A 1D →=0,即⎩⎪⎨⎪⎧x -y +z =0,z =0,可取n =(1,1,0).同理,设m =(x ,y ,z )是平面C 1BD 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·DC 1→=0,即⎩⎪⎨⎪⎧x -y +z =0,-x +z =0, 可取m =(1,2,1).。
第一章《立体几何初步》单元小结导航
点击考点
(1) 了解柱,锥,台,球及简单组合体的结构特征。
(2) 能画出简单空间图形的三视图,能识别三视图所表示的立体模型,并会用
斜二测法画出它们的直观图。
(3) 通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空
间图形的不同表示形式。
(4) 会根据公式计算一些简单几何体的表面积和体积。
学习导航
1.学习方法指导
①空间图形直观描述了空间形体的特征,我们一般用斜二测画法来画空间图形的直观图。
②空间图形可以看作点的集合,用符号语言表述点,线,面的位置关系时,经常用到集合的有关符号,要注意文字语言,符号语言,图形语言的相互转化。
③柱,锥,台,球是简单的几何体,同学们可用列表的方法对它们的定义,性质,表面积及体积进行归纳整理。
④对于一个正棱台,当上底面扩展为下底面的全等形时,就变为一个直棱柱;当上底面收缩为中心点时,就变为一个正棱锥。
由1()2
S c c h ''=+正棱台侧和
()3
h V s s '=+正棱台,就可看出它们的侧面积与体积公式的联系。
2.思想方法小结
在本章中需要用到的数学思想方法有:观察法,数形结合思想,化归与转化思想等。
主要是立体几何问题转化为平面几何问题,平行与垂直的相互转化等。