9第九章 异方差
- 格式:ppt
- 大小:1.88 MB
- 文档页数:60
异方差异方差的性质● 经典回归的一个重要假定之一是:u i 的条件方差为常数, 即:E (2i u )= 2σ● 异方差(heterscedasticity ):E (2iu )=2i σ, 不同的(heter )分散程度(scedasticity )● (图)消费和收入, 消费随收入的增加而增加,但变异也在增加● u i 变动的几个理由:- 按照边错边改学习模型(error-learning models ),人们在学习的过程中,其行为误差随时间而减少,如:打字出错的个数- 随着收入的增长,人们有更多的备用收入,从而如何支配他们的收入有更大的选择范围- 随着数据采集技术的改进,2iσ可能减少- 异方差性还会因为异常值的出现而产生。
包括一个异常值,尤其样本较小时,会在很大程度上改变回归分析的结果- 异方差性的另一来源来自CLRM 的假定9的破坏,即:回归模型的设定是不正确的。
● 异方差常见于横截面数据中,因为观测范围大小不一● 异方差的后果:仍然是无偏的,但不是最有效的了(1) 无偏性βββ=+==-- )](')'[(]')'[()ˆ(11U X X X X E Y X X X E E(2) 非有效性1121111)'(')'()'()'(')'(]'')'][(')'[()'ˆ)(ˆ(------Φ==--=--X X X X X X X X X UU E X X X Y X X X Y X X X E E σββββββ● 同方差性时,βˆ的协方差矩阵为: 12)'(-X X σ,会夸大或缩小真实的方差和协方差● 由此会导致β的相关检验和置信区间失效,进而引起预测失效● 以双变量模型为例:i i i u X Y ++=10ββ进行显著性检验时,构造的t 统计量)ˆ(ˆ11ββS t =)ˆ(1βS 变动,所以1ˆβ的置信区间也不稳定异方差性的侦察● 侦破异方差性并没有严明的法则,只有少数的经验规则● 因为除非我们知道对应于选定的X 值的整个Y 总体,否则2i σ是无从获知的●大多数的方法都基于对我们所能观测到的OLS残差i uˆ的分析,而不是对干扰u i的分析非正式的方法●问题的性质:-往往根据所考虑的性质就能判别是否会遇到异方差性-例如:围绕消费对收入的回归,残差的方差随收入的增加而增加●图解法:-可先在无异方差性的假定下做回归分析,然后对残差的平方2ˆi u作一事后检查,看看这些2ˆi u是否呈现任何系统性的样式-(图)-2ˆi u是对应于i Yˆ而描绘的,除此之外,还可将他们对解释变量之一描点-当我们考虑2个或多个X变量的模型时,可将2ˆi u 相对于模型中的任一个变量描点正式方法(1)帕克(park )检验● 提出2i σ是解释变量X i 的某个函数,他建议的函数形式为:iv i ie X βσσ22=或:i i i v X ++=ln ln ln 22βσσ● 由于2iσ通常是未知的,帕克建议用2ˆi u 作为替代变量并作如下回归:ii i i v v X u++=++=i 22lnX ln ln ˆln βαβσ **● 如果β表现为统计上显著的,就表明数据中有异方差性● 帕克检验分两阶段:一是做回归,而不考虑异方差性问题,从这一回归获得i uˆ,然后在第二阶段作如** 的回归戈德菲尔德-匡特检验 (Goldfeld-Quandt test )● 适用于异方差性方差2i σ同回归模型中的解释变量之一有正相关的情形● 步骤一:从最小X 值开始,按X 值的大小顺序将观测值排列步骤二:略去居中的C 个观测值,其中C 是预定的,并将其余的(n-c )个观测值分成两组,每组(n-c)/2个步骤三:分别对头(n-c )/2个观测值和末(n-c)/2 个观测值各拟合一个回归,并分别获得残差平方和RSS 1 和RSS 2步骤四:计算比值:dfRSS dfRSS //12=λ, 如果假定i uˆ是正态分布的,并且如果同方差性假定真实,则λ遵循分子和分母自由度各为(n-c-2k )/2 的F 分布● C 个观测值是为了突出或激化小方差组(即RSS 1)与大方差组(即RSS 2 )之间的差异● 通常当n=30 时,取c =4, 当n=60 时,取c=10为宜● 当模型中有多于1个X 变量时,在检验的步骤一中,就可按任一个X 的大小顺序将观测值排列● 例:消费支出 – 收入, 30 观测值,略去居中4 个观测值后,对开头的13个和末尾的13个观测值分别作OLS 回归:17.377RS S 6968.04094.3ˆ1=+=i i X Y 8.1536RS S 7941.00272.28ˆ2=+-=i iX Y得:07.411/17.37711/8.1536//12===df RSS df RSS λ怀特(white )的一般异方差性检验● Goldfeld-Quandt 检验要求按照被认为是引起异方差性的X 变量把观测值重新排序● White 检验并不要求排序,而且易于付诸实施● 步骤一: 对给定的数据回归(两个解释变量),并获得残差i uˆ步骤二:再做如下(辅助)回归:ii i i i i i i v X X a X a X a X a X a a u ++++++=326235224332212ˆ从这个(辅助)回归中求得R 2步骤三:在无异方差性的虚拟假设下,2nR 渐进的遵循自由度等于辅助回归元(不包括常数项)个数的2χ分布步骤四:如果2χ值超过临界值,结论就是有异方差性,如果不超过,就没有,即:065432=====a a a a a● 例: Y= 贸易税收(进口与出口税收)与政府总收入之比,X 2 =进出口总和与GNP 之比,X 3 =人均GNP , 假设Y 与X 2 正相关,Y 与X 3 成反比White test :1148.0R ))(ln T rade 0.0015(ln )(ln 0491.0)(ln 4081.0 ln 6918.0ln 5629.28417.5ˆ2i 222=+--++-=i i i i i i GNP GNP Trade GNP Trade u7068.4)1148.0(41.2==R n● 如果模型有多个回归元,回归元的平方(或更高次方)项以及它们的交叉项就会耗掉许多的自由度● 遇到统计量显著的情形,原因也许不一定是异方差性异方差的修正方法 – 加权最小二乘法(广义最小二乘法)● 以消费-收入为例,消费异方差,设计一种估计方案:对来自变异较大的总体的观测值作较小的加权,而对来自较小的总体的观测值作较大的加权● OLS 方法对每一观测之同样重视或同等加权● 广义最小二乘法(generalized least square-GLS )利用了异方差的信息,因而能产生BLUE估计量● 利用双变量模型:i i i i u X X Y ++=201ββ其中对每个i, X0i=1● 假定相异的方差2i σ已知,用σ通除上式得:)()()(201iiiiiiiiu X X Y σσβσβσ++=为了易于阐述,将它写为:i i i i u X X Y ******201++=ββ● 转换原始模型中,转换干扰项i u *的方差,现在有了同方差性1)(1)(1)()*()*var(2222i22=====iiiiii i u E u E u E u σσσσ● OLS应用到转换模型将产生BLUE估计量● GLS是对满足标准最小二乘假定的转换变量的OLS● 21*ˆ*ˆββ和的估计步骤是最小化: 220112)**ˆ**ˆ*(*ˆii i X X Y u ββ--=∑∑● *ˆ2β的GLS 估计量为: ∑∑∑∑∑∑∑--=222)())(())(())((*ˆi i i i i i i i i i i i i X w X w w Y w X w Y X w w β 其中2/1i i w σ=● OLS和GLS 的差别:OLS要求最小化:2212)ˆˆ(ˆii i X Y u ββ--=∑∑ GLS要求最小化:2212)ˆˆ(ˆii i i i X Y w u w ββ--=∑∑● GLS中最小化一个以2/1i i w σ=为权的加权残差平方和,而在OLS中最小化一个无权或等权的残差平方和● 这种形式的GLS 被称为加权最小二乘法(weighted least square – WLS )● 若i σ是已知的,异方差的问题似乎已经得到了解决,但大多数情况下,方差是未知的●加权最小二乘法至多只能用于未知方差容易被描述的那些情况●看一下课本中的例子。
异方差的现实意义-概述说明以及解释1.引言1.1 概述概述异方差是指在统计学中,随机变量的方差在不同取值下发生变化的现象。
它是一种常见的统计数据特征,广泛存在于现实中的各种数据集中。
异方差的存在可能会导致统计分析结果的偏差和误判,因此对于异方差的理解和应对策略具有重要意义。
本文旨在探讨异方差的定义、特点以及其在现实中的影响和重要性。
首先,我们将介绍异方差的定义和特点,包括在不同取值下方差的变化趋势和原因。
然后,我们将探讨异方差在现实中的影响,包括统计分析结果的偏差、参数估计的不准确性等。
最后,我们将提出对异方差的认识与应对策略,以及强调异方差的重要性和现实意义。
通过对异方差的深入了解,我们可以更好地理解统计数据的特点,在分析和解释数据时更加准确和全面。
同时,对于异方差的应对策略的掌握,有助于改善统计模型的拟合效果,提高预测和决策的准确性。
因此,对于异方差的研究具有重要的理论和实际价值。
在接下来的部分中,我们将详细介绍异方差的定义和特点,并探讨其在现实中的影响和重要性。
同时,我们将提出对异方差的认识与应对策略,以期为读者提供指导和启示。
让我们一同进入这个有关异方差的探索之旅吧!1.2 文章结构文章结构部分的内容可以如下编写:文章结构部分旨在向读者介绍本篇长文的组织框架和内容安排。
通过清晰明了的文章结构,读者可以更好地理解整篇文章的逻辑顺序和主要论点。
本文的文章结构如下:第一部分是引言部分,通过对异方差的引入和分析,概述了整篇文章的背景和意义。
在概述中,我们将提供对异方差概念的简明扼要的描述,同时阐明本文的目的和意义。
第二部分是正文部分,主要分为两个小节。
首先,我们将在2.1小节详细介绍异方差的定义和特点。
这一小节将对异方差的背景和相关概念进行深入探讨,并分析其特点和表现形式。
其次,在2.2小节中,我们将重点探讨异方差的现实影响。
通过具体的案例研究和数据分析,我们将展示异方差对实证研究和数据分析的影响,并探讨其可能带来的结果偏差和误判。