刚度设计依据
(1) 挠度w大小取决于M, E, I三个参数 应该取较小的M, 较大的E, I
(2) 弯矩M大小取决于载荷\约束分布及梁跨度大小
(3) 截面惯性矩I 大小和截面形状有关,
弹性模量E大小和材料有关
Iz =
y2dA,
A
当A大小一定时, y越大, I 越大
梁的合理刚度设计
选择I 较大的薄壁横截面形状
1 度静不定 选 FBy 为多余力, 去约 束, 写出位移边界条件
-变形协调条件 -物理方程
利用边界条件 解出未知力
列平衡方程,求其他约束力:
-补充方程
分析方法与步骤:
判断梁的静不定度
用多余力代替多余约
束的作用,得相当系统
相当系统
相当系统有多种选择:
计算相当系统在多余约
束处的位移,并根据变形 协调条件建立补充方程。
例题
解:
()
()
例题
例题
解:
()
()
()
例题
图示组合梁,EI=常数,求 wB 与qA
例题
解:
P378, 情况8
()
P377, 情况1,2
()
例题
图示刚架,求截面 C 的铅垂位移
例题
解:
位移w1包括AB弯曲 和AB扭转两部分
例题
矩形截面梁, 自由端承受集中载荷F作用, 该载荷与对 称轴y的夹角为θ, 用叠加法计算自由端求自由端截面形心C
的位移d
解:
例题
一般情况下
挠曲轴与外力作用面一般不重合
§6 简单静不定梁
静不定度与多余约束 简单静不定梁分析方法
静不定度与多余约束
静不定度 4-3= 1