梯形辅助线专题训练题
- 格式:docx
- 大小:67.06 KB
- 文档页数:4
例1. 如图所示,在梯形ABCD 中,AD ∥BC ,AB =8,DC =6,∠B =45°,BC =10,求梯形上底AD 的长.分析:作AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,这样可构造两个直角三角形.解:分别过点A 、D 作AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,则四边形AEFD 是矩形. 在R t △ABE 中,∵∠B =45°,∴AE =BE.设AE =BE =x ,则AB =x =8,∴x =4,∴AE =BE =DF =4,在R t △DFC 中,CF ==2, ∴AD =EF =BC -BE -CF =10-4-2=8-4.例2. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC =17. 求CD 的长.解:过点D 作DE ∥BC 交AB 于点E.又AB ∥CD ,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得AE 2=DE 2-AD 2,即AE 2=172-152=64.所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8. 例3. 如图所示,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,BD =6cm . 求梯形ABCD 的面积.解:过点D 作DE ∥AC 交BC 的延长线于点E. 又AD ∥BC ,∴四边形ACED 是平行四边形. ∴AC =DE ,S △ADC =S △ECD . ∵S △ADC =S △DAB ,∴S △DAB =S △ECD . ∴S △DBE =S 梯形ABCD .∵四边形ABCD 是等腰梯形,∴AC =BD. ∵AC =DE ,∴BD =DE =6cm .∵AC ⊥BD ,AC ∥DE ,∴DE ⊥BD.∴S 梯形ABCD =S △DBE =BD ·DE =×6×6=18(cm 2).例4. 如图所示,四边形ABCD 中,AD 不平行于BC ,AC =BD ,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形.证明:延长AD 、BC 相交于点E ,如图所示. ∵AC =BD ,AD =BC ,AB =BA ,∴△DAB ≌△CBA. ∴∠DAB =∠CBA. ∴EA =EB. 又AD =BC ,∴DE =CE ,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°,A B C D E FA B C D EA B CE D A B CD E∴∠EDC =∠EAB ,∴DC ∥AB. 又AD 不平行于BC ,∴四边形ABCD 是等腰梯形. 例5. 如图所示,在梯形ABCD 中,AB ∥CD ,AB =2,BC =3,CD =1. E 是AD 的中点,求证:CE ⊥BE.证明:延长CE 交BA 的延长线于F ,∵CD ∥BF ,∴∠D =∠EAF ,∠DCE =∠F. ∵DE =AE ,∴△CDE ≌△FAE. ∴AF =CD =1,EF =CE.∵AB =2,BC =3,∴AB +AF =BC. 即BF =BC. ∴BE ⊥CE. 1. 若等腰梯形的锐角是60°,它的两底分别为11cm ,35cm ,则它的腰长为__________cm .2. 如图所示,已知等腰梯形ABCD 中,AD ∥BC ,∠B =60°,AD =2,BC =8,则此等腰梯形的周长为( )A. 19B. 20C. 21D. 22AB CD**3. 如图所示,AB ∥CD ,AE ⊥DC ,AE =12,BD =20,AC =15,则梯形ABCD 的面积为( )A. 130B. 140C. 150D. 160ABCDE*4. 如图所示,在等腰梯形ABCD 中,已知AD ∥BC ,对角线AC 与BD 互相垂直,且AD =30,BC =70,求BD 的长.AB CD5. 如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm 和49cm ,求它的腰长.AB CD6. 如图所示,已知等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AD +BC =10,DE ⊥BC 于E ,求DE 的长.ABC D E FA BCDE7. 如图所示,梯形ABCD 中,AB ∥CD ,∠D =2∠B ,AD +DC =8,求AB 的长.ABCD**8. 如图所示,梯形ABCD 中,AD ∥BC ,(1)若E 是AB 的中点,且AD +BC =CD ,则DE 与CE 有何位置关系?(2)E 是∠ADC 与∠BCD 的角平分线的交点,则DE 与CE 有何位置关系?AB CDE1、梯形ABCD 中,AD ∥BC ,∠B=50°,∠C=80°,BC=5,AD=3,则CD= 。
八年级数学梯形进阶之梯形辅助线大揭秘(四边
形性质探索)拔高练习
试卷简介:本试卷为卢老师八年级秋季线下班第七讲测试题,第七讲为梯形进阶之梯形辅助线大揭秘,全面考察同学们梯形常见辅助线的添加,以及添加的原理。
学习建议:先熟悉一下梯形常规辅助线的添加方法:一平移:.平移一腰,平移两腰,平移对角线;二延长,延长两腰;三做高,做单高,做双高。
一、单选题(共1道,每道100分)
1.如图,在等腰梯形ABCD中,AD∥BC,AB=CD,且AC⊥BD,AF是梯形的高,梯形面积是49cm²,则AF=()
A.5
B.6
C.7
D.8
答案:C
E
解题思路:过点D作DE∥AC交BC的延长线于点
则四边形ACED为平行四边形,从而AC=DE,AC∥DE,AD=CE∵四边形ABCD为等腰梯形ABCD∴AC=BD∴BD=DE∵AC⊥BD∴BD⊥DE∴△BDE为等腰直角三角形∵AD=CE∴△ABD的面积=△DCE的面积∵梯形ABCD面积是49cm²∴△BDE的面积是49cm²即
∴BD=DE=7∵AF为梯形的高∴AF为等腰直角△BDE
的高线∴AF=7
易错点:辅助线的添加
试题难度:四颗星知识点:等腰梯形的性质
第 1 页共 1 页。
初中数学:梯形的五种常用辅助线添加方法,17道例题详解培优几何口诀:梯形问题如何巧转换,平移腰,平移对角线,做一高或两高,两腰延长三角形。
如果出现有中点,细心连上中位线。
上述方法不凑效,过腰中点全等造。
通常情况下,和梯形有关的几何题,辅助线的添加方法,有如上表格里的五种:①平移腰,转化为三角形或者平行四边形;②平移对角线转化为三角形或者平行四边形;③延长两腰,转为三角形;④做高或者双高,转化为直角三角形或者矩形;⑤中位线与腰中点的连线。
在这五大类中,还有细分的一些小类。
请大家细心的看下面的例题,一共举例了17道例题,经典考试题型,有详细解题步骤。
后面,还有8道练习题。
过瘾吧?那就疯狂点赞吧。
例1、有一个角是90°,通常根据题意,平移一腰,则出现直角三角形,用解直角三角形的思路,即可。
例2、平移一腰,得到一个三角形,通过三角形的三边关系定理。
两边之和大于第三边,两边之差小于第三边,即可得出第三边的取值范围。
例3、平移两腰的经典考试题型。
平移两腰,在梯形的中间得出一个三角形。
例4、平移对角线,得出一个平行四边形,再转化成一个三角形来解决问题。
例5,也是平移对角线,得到一个平行四边形和三角形,通过线段的转化,符合勾股定理,得出角度等于90°。
例6,平移对角线,得出平行四边形,还有等底等高三角形面积相等。
此题非常巧妙。
例7,延长两腰,相交得出一个三角形。
再利用原梯形的上底下底平行的关系,得出结论。
例8、这是一道证明四边形是等腰梯形的经典考试题型,不可错过的好题。
请看详细解题推理步骤。
例9,连接对角线,也是解决梯形问题里一个辅助线添加方法。
这题简单,但是这个BD的连接,是解题的关键。
例10,做梯形的一条高。
证明四边形是等腰梯形。
请看详细解题步骤,学会类似方法,举一反三。
例11、梯形做双高,得到一个矩形,和两个直角三角形,问题迎刃而解。
例12、这道题很新颖,求证两线段的大小关系。
做双高,得到两个直角三角形和一个矩形,通过线段大小关系,结合勾股定理,顺利得证。
2019-2020年八年级数学下册专题讲解+课后训练:梯形的辅助线课后练习及详解题一:(1)如图,直角梯形ABCD中,AD∥BC,∠B=90°,腰AB= 4,两底之差为2,求另一腰CD的长;(2)在梯形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=8,BC=14,求梯形ABCD的周长;(3)如图所示,在等腰梯形ABCD中,AB∥CD,DC=AD=BC,且对角线AC垂直于腰BC,求这个梯形各内角的度数;(4)如图,在梯形ABCD中,AD∥BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,则EF= .题二:(1)如图,在梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,E、F、M、N分别为AB、CD、BC、DA的中点,已知BC=7,MN=3,则EF= ;(2)如图,在梯形ABCD中,AD=DC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,则梯形ABCD的面积为;(3)如图,等腰梯形ABCD中,AD∥BC,AD=3,AB= 4,BC=7,求∠B的度数;(4)如图,梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,E在BC上,CE=2,则DE= .题三:已知:等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是cm.题四:已知:等腰梯形的一个底角等于60°,它的两底分别为4cm和7cm,则它的周长为cm.题五:如图所示,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,且AD= 4,BC=8,求AC的长.题六:如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,求梯形ABCD 面积的最大值.题七:如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF ⊥AB,若AD=2.7,AF=4,AB=6,求CE的长.题八:如图,在梯形ABCD中,AB∥CD,∠A+∠B=90°,CD=5,AB=11,点M、N分别为AB、CD的中点,求线段MN的长.题九:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AB= 4,AD=3,BC=5,点M是边CD的中点,连接AM、BM.求△ABM的面积.题十:如图,已知直角梯形ABCD中,AD∥BC(AD<BC),∠B=90°,AB=AD+BC.点E 是CD的中点,点F是AB上的点,∠ADF= 45°,FE=a,梯形ABCD的面积为m.(1)求证:BF=BC;(2)求△DEF的面积(用含a、m的代数式表示).题十一:以线段a=16,b=13为梯形的两底,c=10,d=6为腰画梯形,这样的梯形() A.只能画出一个B.能画出2个C.能画出无数个D.不能画出题十二:以线段a=5,b=10,c=15,d=20做梯形四边形,这样的梯形(不全等的)() A.至少能做3个B.恰好能做2个C.仅仅只能做1个D.一个也不能做梯形的辅助线课后练习参考答案题一:(1)2;(2)34;(3)60°,60°,120°,120°;(4)1.详解:(1)过D作DE⊥BC于E,∵AB⊥BC,DE⊥BC,AD∥BC,∴四边形ADEB是个矩形,∴AB=DE= 4,CE=BC AD=2,Rt△DEC中,CD===2;;(2)过A、D点作AE⊥BC于E,DF⊥BC于F,∵AB=CD,∠B=∠C,AE=DF,∴△ABE≌△DCF,∴BE=CF,∵AD=8,BC=14,BE=CF=3,又∵在Rt△ABE中,∠B=60°,∴AB=2BE=6,∴梯形ABCD的周长为8+14+6+6=34;(3)如图所示,过点C作CE∥AD,又DC∥AE,∴四边形AECD为平行四边形,又DC=AD=BC,∴四边形AECD为菱形,∴AE=CE=BC,∴∠EAC=∠ECA,∠CEB=∠B,∵∠B+∠CAB=90°,即3∠CAE=90°,∴∠CAE=30°,∴∠B=60°=∠DAB,∠D=∠DCB=120°;(4)过点E作AB、CD的平行线,与BC分别交于G,H,∵∠B+∠C=90°,∴∠EGH=∠B,∠EHG=∠C,∴∠EGH+∠EHG=90°,∴四边形ABGE和四边形CDEH都是平行四边形,△EGH为直角三角形,∵E、F分别是AD、BC的中点,∴BG=CH=0.5,GH=2,根据直角三角形中斜边上的中线是斜边的一半知,EF=GH=1,∴EF=1.题二:(1)4;(2)12;(3)60°;(4)5.详解:(1)过点N分别作NG∥AB,NH∥CD,得平行四边形ABGN和平行四边形DCHN,∴∠NGM+∠NHM=∠B+∠C=90°,GH=BC AD,MG=MH,∴GH=2MN=6,∴AD=76=1,∴EF= 4;(2)∵在梯形ABCD中,AB=DC,∴梯形ABCD是等腰梯形,∴∠D+∠DCB=180°,∵∠D=120°,∴∠B=∠DCB=60°,∵对角线CA平分∠BCD,∴∠ACB=30°,∵AD=DC,∴∠DAC=∠ACD=30°,∴∠BAC=90°,∴BC=2AB,∵梯形的周长为AD+DC+BC+AB=5AB=20,∴AB= 4,∴AC=4,BC=8,过点A作AE⊥BC于点E,∵AB= 4,AC=4,BC=8,∴AE=2,∴梯形ABCD的面积为(4+8)×2×=12;(3)过点A作AE∥DC交BC于E,∵AD∥BC,∴四边形AECD是平行四边形,∴EC=AD=3,DC=AE,∴BE=BC CE=73= 4,∴CD=AB= 4,∴AE=AB=BE= 4,∴△ABE是等边三角形,∴∠B=60°;(4)过D作DF∥AC交BC的延长线于F,∵AD∥BC,∴四边形ACFD是平行四边形,∴CF=AD=3,∵BC=7,∴BF=BC+CF=7+3=10,∵CE=2,∴BE=72=5,EF=2+3=5,∴BE=EF,又∵AC⊥BD,DF∥AC,∴∠BDF=90°,∴DE=BF=5.题三:6cm.详解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD= 4cm,∴BC= 4cm+2cm=6cm.题四:17cm.详解:过上底顶点D作DE∥AB交BC于E,则四边形ABED是平行四边形,∴DE=AB,AD=BE,∵梯形的一个底角是60°,∴∠C=60°,又∵腰长AB=CD=DE,∴△CDE是等边三角形,∴CD=CE=BC BE=74=3cm,∴它的周长为3+7+3+4=17cm.题五:.详解:过D作DE∥AC交BC的延长线于E,∵AD∥BC,AB=CD,∴四边形ABCD是等腰梯形,∴ADEC是平行四边形,∴AD=CE,AC=DE,即可得出BE=BC+CE=BC+AD=12,又∵AC=BD,∴BD=ED,∴△BDE为等腰直角三角形,∴AC=BD=.题六:25.详解:过D作DE∥AC交BC延长线于E,∵AD∥BC,DE∥AC,∴四边形ACED是平行四边形,∴AD=CE,∴根据等底等高的三角形面积相等得出△ADC的面积等于△DCE的面积,即梯形ABCD的面积等于△BDE的面积,∵AC⊥BD,DE∥AC,∴∠BDE=90°,BE=3+7=10,∴此时△BDE的边BE边上的高越大,它的面积就越大,即当高是BE时最大,即梯形的最大面积是×10××10=25.题七:2.3.详解:延长AF、BC交于点G,∵AD∥BC,∴∠D=∠FCG,∠DAF=∠G,又DF=CF,∴△AFD≌△GFC,∴AG=2AF=8,CG=AD=2.7,∵AF⊥AB,AB=6,∴BG=10,∴BC=BG CG=7.3,∵AE=BE,∴∠BAE=∠B,∴∠EAG=∠AGE,∴AE=GE,∴BE=BG=5,∴CE=BC BE=2.3.题八:3.详解:如图,过D作DE∥BC,DF∥MN,∵在梯形ABCD中,AB∥CD,DE∥BC,∴CD=BE=5,AE=AB BE=115=6,∵M为AB的中点,∴MB=AM=AB=×11=5.5,ME=MB BE=5.55=0.5,∵N为DC的中点,∴DN=DC=×5=2.5,在四边形DFMN中,DC∥AB,DF∥MN,∴FM=DN=2.5,∴FE=FM+ME=2.5+0.5=3=AE,∴F为AE的中点,又∵DE∥BC,∴∠B=∠AED,∵∠A+∠B=90°,∴∠A+∠AED=90°,∴∠ADE=90°,即△ADE是直角三角形,∴DF=MN=AE=×6=3.题九:8.详解:延长AM交BC的延长线于点N,∵AD∥BC,∴∠DAM=∠N,∠D=∠MCN,∵点M是边CD的中点,∴DM=CM,∴△ADM≌△NCM(AAS),∴CN=AD=3,AM=MN=AN,∴BN=BC+CN=5+3=8,∵∠ABC=90°,∴S△ABN=×AB•BN=×4×8=16,∴S△ABM=S△ABN=8,即△ABM的面积为8.题十:见详解.详解:(1)∵四边形ABCD是直角梯形,∴∠A=90°,∵∠ADF=45°,∴∠AFD= 45°,∴AD=AF,∵AB=AF+BF,AB=AD+BC,∴BF=BC;(2)连接FC,设AD=AF=x,BC=BF=y,连接CF,作DH⊥BC于H,易证四边形ABHD为矩形、△CDF为直角三角形,又∵E是CD中点,∴CD=2EF=2a,由勾股定理得x2+y2=2a2…①,由直角梯形的面积公式可得:(x+y)2=2m…②,由②①,得xy=m a2,∵S△DFC=S梯形ABCD S△AFD S△BFC=(x+y)2 x2 y2 = xy,∴S△DEF=S△DFC=m a2.题十一:D.详解:如图,过点B作BE∥AD,则出现平行四边形ABED和一个△BEC,∵AB=13,CD=16,AD=10,BC=6∴CE=3,BE=10,∵3+6<10,∴BE,CE,BC不能构成三角形∴这样的梯形一个也不能作.故选D.题十二:C.详解:作DE∥AB,则DE=AB,①当a=5为上底,b=10为下底,c、d为腰时,105=5,与15,20不能构成三角形,故不满足题意;②当a=5为上底,b=15为下底,b、d为腰时,155=10,与10,20不能构成三角形,故不满足题意;③当a=5为上底,d=20为下底,b、c为腰时,205=15,与10,15可以构成三角形,故满足题意;④当b=10为上底,c=15为下底,a、d为腰时,1510=5,与5,20不能构成三角形,故不满足题意;⑤当b=10为上底,d=20为下底,a、c为腰时,2010=10,与5,15不能构成三角形,故不满足题意;⑥当c=15为上底,d=20 为下底,a、b为腰时,2015=5,与5,10不能构成三角形,故不满足题意;综上可得只有当a=5为上底,d=20为下底,b、c为腰时,满足题意,即以线段a=5,b=10,c=15,d=20做梯形四边形,这样的梯形(不全等的)只能做一个.故选C..。
例谈梯形中的常用辅助线在解(证)有关梯形的问题时,常常要添作辅助线,把梯形问题转化为三角形或平行四边形问题。
本文举例谈谈梯形中的常用辅助线,以帮助同学们更好地理解和运用。
一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。
[例1]如图1,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。
[例2]如图2,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。
3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。
[例3]如图3,在等腰梯形ABCD 中,AD//BC ,AD=3,BC=7,BD=25,求证:AC ⊥BD 。
【变式1】(平移对角线)已知梯形ABCD 的面积是32,两底与高的和为16,如果其中一条对角线与两底垂直,则另一条对角线长为_____________[例4]如图4,在梯形ABCD 中,AD//BC ,AC=15cm ,BD=20cm ,高DH=12cm ,求梯形ABCD 的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
[例5]如图5,在梯形ABCD 中,AD//BC ,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。
【变式2】如图所示,四边形ABCD 中,AD 不平行于BC ,AC =BD ,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.【变式3】(延长两腰)如图,在梯形中,,,、为、的中点。
三、作对角线即通过作对角线,使梯形转化为三角形。
[例6]如图6,在直角梯形ABCD 中,AD//BC ,AB ⊥AD ,BC=CD ,BE ⊥CD 于点E ,求证:AD=DE 。
梯形常用辅助线的做法常见的梯形辅助线基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图,在梯形ABCD中,.求证:.分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.证明:过D作 ,交AB于E.∵ AB平行于CD,且 ,∴四边形是菱形.∴又∴为等边三角形.∴又 ,∴∴.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若.AD = 7 ,BC = 15 ,求EF .分析:由条件 ,我们通过平移AB 、DC ;构造直角三角形MEN ,使EF 恰好是△MEN 的中线.解:过E 作EM∥AB ,EN ∥DC ,分别交BC 于M 、N ,∵ ,∴∴是直角三角形,∵ , ,∴ .∵、分别是、的中点,∴为的中点,∴ .变式:如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
图1析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。
在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围是:5-4<BC<5+4,即1<BC<9。
2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中, , ,梯形的面积与梯形的面积相等.求证: .分析:条件是两个梯形的面积相等,而结论是三线段长的平方关系,如果延长两腰交于一点,就可得到三个相似的三角形,再利用相似三角形的面积比与相似比的关系变形就可得出结论.证明:延长、使它们相交于点,∵ ,∴∴.同理,∵故得∴变式1:如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。
图5析解:延长BA、CD交于点E。
梯形常用辅助线的做法常见的梯形辅助线基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图,在梯形ABCD中,.求证:.分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.证明:过D作 ,交AB于E.∵ AB平行于CD,且 ,∴四边形是菱形.∴又∴为等边三角形.∴又 ,∴∴.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若.AD = 7 ,BC = 15 ,求EF .分析:由条件 ,我们通过平移AB 、DC ;构造直角三角形MEN ,使EF 恰好是△MEN 的中线.解:过E 作EM∥AB ,EN ∥DC ,分别交BC 于M 、N ,∵ ,∴∴是直角三角形,∵ , ,∴ .∵、分别是、的中点,∴为的中点,∴ .变式:如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
图1析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。
在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围是:5-4<BC<5+4,即1<BC<9。
2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中, , ,梯形的面积与梯形的面积相等.求证: .分析:条件是两个梯形的面积相等,而结论是三线段长的平方关系,如果延长两腰交于一点,就可得到三个相似的三角形,再利用相似三角形的面积比与相似比的关系变形就可得出结论.证明:延长、使它们相交于点,∵ ,∴∴.同理,∵故得∴变式1:如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。
图5析解:延长BA、CD交于点E。
八级数学秋季班第7讲梯形进阶之梯形辅助线大揭秘拔高练习(北师版)八年级数学秋季班第7讲梯形进阶之梯形辅助线大揭秘拔高练习(北师版)试卷简介:本测试卷共8道题,全面考察梯形辅助线的做法,分三个板块,第一板块:梯形辅助线复习,共有9中辅助线的做法;第二板块:梯形辅助线的应用,充分考察等腰梯形和直角梯形的知识;第三板块:梯形动点问题,是中考题的常考题型和重难点、学习建议:先充分的了解梯形各种辅助线的做法和原理一、单选题(共1道,每道10分)1.(2011安徽)如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P在四边形ABCD的边上,若P到BD的距离为,则点P的个数为( )A.1B.2C.3D.4二、填空题(共3道,每道10分)1.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N.下列结论:①BH=DH;②③其中正确的是()2.如图,菱形ABCD由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC的长为_______.3.(2010河南)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD= ,∠C=45°,点P是BC边上一动点,设PB的长为x.(1)当x的值为____________时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为____________时,以点P、A、D、E为顶点的四边形为平行四边形;;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.三、解答题(共4道,每道15分)1.(2011山东菏泽)如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.2.(2011重庆)如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB 于E,交对角线BD于F,点G为BC中点,连结EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.3.如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CE⊥AB.(1)求证:EF∥BD;(2)若AB=7,CD=3,求线段BC,BD的长.4.(2011四川南充)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB 交于一点E,MC(即MC')同时与AD交于一点F 时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.。
梯形辅助线专题训练题
考号______ 姓名___________
1 如图,已知在梯形ABCD 中,AB // DC,/ D=60 °,/ C=45 ° , AB=
2 , AD=4,求梯形ABCD 的面积.
2、在梯形ABCD 中,AD//BC , AB=DC=AD=2 , BC=4,求/ B 的度数及AC 的长。
3、如图所示,已知等腰梯形ABCD中,AD // BC,/ B= 60°, AD = 2, BC= 8,求等腰梯形的周长。
A n
4、如图所示, AB // CD , AE 丄DC , AE = 12, BD = 20, AC = 15,求梯形ABCD 的面积。
E
5、如图所示,在等腰梯形ABCD中,已知AD // BC,对角线AC与BD互相垂直,且AD =30,BC= 70,求BD 的长.
6、如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm和49cm,求它的腰长•
A n
7、如图所示,已知等腰梯形ABCD中,AD // BC, AC丄BD , AD + BC= 10, DE丄BC于E , 求DE的长•
8、已知:如图,梯形ABCD 中,AD// BC, AB=DC,/ BAD / CDA 的平分线AE、DF 分别交直线BC 于点E、F.
求证:CE=BF .
A D
C
D
C
9、如图,在梯形 ABCD 中,AD // BC , BD CD , BDC 90 ° AD 3, BC 8 .求
10、如图6,在梯形ABCD 中,AD // BC ,
A 90 , C 45 , DE=EC , AB=4,AD=2 ,
求BE 的长.
11、已知:如图,梯形ABCD 中,DC // AB , AD=BC ,对角线 AC 、BD 交于点 O , / COD=60 若
CD=3,
AB=8,求梯形 ABCD 的高.
AB 的长.
D C
12、已知如图,直角梯形ABCD 中,AD// BC, AB丄BC, AD=2 , BC=DC=5,点P 在BC 上移动,则当PA+PD取最小值时,△AP中边AP上的高为
12题图
13、如图,在四边形ABCD 中,AC 平分/ BAD , BC CD 10 , AB 21, AD 9 .
求AC的长.
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。