三角函数在各象限的函数值符号
- 格式:ppt
- 大小:235.50 KB
- 文档页数:16
三角函数象限
三角函数象限是sin为负cos为负tan为正cot为正。
奇变偶不变,符号看象限是三角函数里关于诱导公式的一句口诀,第一象限sin为正cos为正tan为正cot为正,第二象限sin为正cos为负tan为负cot为负,第四象限sin为负cos 为正tan为负cot为负。
三角函数象限的特点
函数图像的四个象限分别在坐标系中x轴上方纵坐标右侧是第一象限,纵坐标左侧是第二象限,x轴下方纵坐标左侧是第三象限,纵坐标的右侧是第四象限,即一三象限关于原点对称,二四象限关于原点对称,一四,二三象限关于x轴对称,一二象限三四象限关于y轴对称。
一全正二正弦三正切四余弦,一全正就是说在第一象限三个三角函数都是正号,二正弦第二象限sin函数为正其余为负,三正切第三象限tan函数为正其余为负,四余弦第四象限cos函数为正其余为负。
三角函数口诀1三角函数在各象限的符号:一全正,二正弦,三正切,四余弦。
2三角函数诱导公式口诀:公式1—5:函数名不变,符号看象限。
公式1—6及推广:奇变偶不变,符号看象限。
3两角和与差的三角函数公式两角和与差的余弦公式: 同名积 符号反两角和与差的正弦公式: 异名积 符号同两角和与差的正切公式:符号上同 下不同奇变偶不变符号看象限在学习了任意角的三角函数的定义、三角函数的符号、特殊角的三角函数值、同角三角函数的关系式与诱导公式后,很多老师为了让学生便于记忆和灵活使用诱导公式,都会给出十字口诀“奇变偶不变,符号看象限”.这个十字口诀既是对所有诱导公式的一个高度概括,又是灵活运用诱导公式求值和化简的技巧.诱导公式:公式一: απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k .(其中Z ∈k ). 公式二: ααπ-sin sin(=+);ααπ-cos cos(=+);ααπtan tan(=+). 公式三: sin()-sin αα-=;cos()cos αα-= ;tan()tan αα-=-.公式四: ααπsin sin(=-);ααπ-cos cos(=-);ααπtan tan(-=-)公式五: sin(2sin παα-=-);cos(2cos παα-=);tan(2tan παα-=-)公式六: sin(2π-α) = cos α; cos(2π -α) = sin α. 公式七: sin(2π+α) = cos α;cos(2π+α) =- sin α. 公式八: sin(32π-α)=- cos α; cos(32π -α) = -sin α. 公式九: sin(32π+α) = -cos α;cos(32π+α) = sin α. 以上九组公式可以推广归结为:要求角2k πα⋅±的三角函数值,只需要直接求角α的三角函数值的问题.这个转化的过程及结果就是十字口诀“奇变偶不变,符号看象限”.例1 求cos 2130°、sin (-2130°)、127cos6π、127sin()6π-. (1)化角为2k πα⋅±或090k α⋅±的形式并判断k 的奇偶及角所在的象限:在角度制下处理方法是:∵ 2390213018033027060∴ 2130°=23×90°+60°,可以看出90°的系数为正奇数,逆时针方向旋转23个90°到y 负半轴,再旋转60°到第四象限,因此2130°是第四象限角;-2130°=-23×90°-60°,可以看出90°的系数为负奇数,顺时针方向旋转23个90°到y 正半轴,再旋转60°到第一象限,因此-2130°是第一象限角;在弧度制下处理方法是:12712712712(42)42662323226ππππππ=⨯⨯=⨯=+⨯=⨯+,可以看出2π的系数为正偶数,逆时针旋转42个2π到x 负半轴,再旋转6π到第三象限,因此1276π是第三象限角;12742626πππ-=-⨯-,可以看出2π的系数为负偶数,顺时针旋转42个2π到x 负半轴,再旋转6π到第二象限,因此1276π-是第二象限角. (2)根据上面的判断,运用十字口诀“奇变偶不变,符号看象限”求值:cos 2130°=sin 60sin (-2130°)=cos 60°=12; 127cos 6π=cos 6π-= 127sin()6π-=1sin 62π=. 由“奇变偶不变,符号看象限”一步法化简比直接采用诱导公式化简要简捷得多,但在使用“奇变偶不变,符号看象限”时要对其真正的含义有透彻的理解,即诱导公式的左边为k ·900+α(k ∈Z )的正弦(切)或余弦(切)函数,当k 为奇数时,右边的函数名称正余互变;当k 为偶数时,右边的函数名称不改变,这就是“奇变偶不变”的含义,再就是将α“看成”锐角(可能并不是锐角,也可能是大于锐角也可能小于锐角还有可能是任意角),然后分析k ·900+α(k ∈Z )为第几象限角,再判断公式左边这个三角函数在此象限是正还是负,也就是公式右边的符号.。
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscαcosα·secαtanα·cotα反三角函数的图形设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。