导线网平差程序设计共86页
- 格式:ppt
- 大小:6.38 MB
- 文档页数:86
导线网平差及精度评定程序设计平差问题描述背景:导线网平差及精度评定程序设计平差是在测量和测绘工作中常用的一种技术方法。
它是通过对导线网观测数据进行处理和计算,得出导线网的平差结果,并评定其精度,以确保测量结果的准确性和可靠性。
背景:导线网平差及精度评定程序设计平差是在测量和测绘工作中常用的一种技术方法。
它是通过对导线网观测数据进行处理和计算,得出导线网的平差结果,并评定其精度,以确保测量结果的准确性和可靠性。
目的:本文档旨在介绍导线网平差及精度评定程序设计平差的背景和目的。
通过对平差方法和流程的解释,使读者了解导线网平差的基本原理和操作步骤,并了解如何评定导线网平差结果的精度。
这将有助于测量和测绘工作中平差的正确实施,并对测量数据进行科学的分析和解释。
目的:本文档旨在介绍导线网平差及精度评定程序设计平差的背景和目的。
通过对平差方法和流程的解释,使读者了解导线网平差的基本原理和操作步骤,并了解如何评定导线网平差结果的精度。
这将有助于测量和测绘工作中平差的正确实施,并对测量数据进行科学的分析和解释。
目的:本文档旨在介绍导线网平差及精度评定程序设计平差的背景和目的。
通过对平差方法和流程的解释,使读者了解导线网平差的基本原理和操作步骤,并了解如何评定导线网平差结果的精度。
这将有助于测量和测绘工作中平差的正确实施,并对测量数据进行科学的分析和解释。
目的:本文档旨在介绍导线网平差及精度评定程序设计平差的背景和目的。
通过对平差方法和流程的解释,使读者了解导线网平差的基本原理和操作步骤,并了解如何评定导线网平差结果的精度。
这将有助于测量和测绘工作中平差的正确实施,并对测量数据进行科学的分析和解释。
请注意:本文档仅供参考和研究使用,不可用于商业目的或作为法律依据。
建议在实际应用中,根据具体情况和专业要求,进行适当的调整和改进。
请注意:本文档仅供参考和研究使用,不可用于商业目的或作为法律依据。
建议在实际应用中,根据具体情况和专业要求,进行适当的调整和改进。
导线平差计算方案设置一、导线类型:1.闭、附合导线(图1)2.无定向导线(图2)3.支导线(图3)4.特殊导线或网(见数据输入一节),该选项适用于所有的导线,但不计算闭合差。
而且该类型不需要填写未知点数目。
当点击表格最后一行时自动添加一行,计算时删除后面的空行。
5.坐标导线。
指使用全站仪直接观测坐标、高程的闭、附合导线。
6.单面单程水准测量记录计算。
指仅进行单面读数且仅进行往测而无返测的水准测量记录计算。
当数据中没有输入“中视”时可以用作五等、等外水准等的记录计算。
当输入了“中视”时可以用作中平测量等的记录计算。
说明:除“单面单程水准测量记录计算”仅用于低等级的水准测量记录计算外,其它类型选项都可以进行平面及高程的平差计算,输入了平面数据则进行平面的平差,输入了高程数据则进行高程的平差,同时输入则同时平差。
如果不需进行平面的平差,仅计算闭、附合高程路线,可以选择类型为“无定向导线”,或者选择类型为“闭附合导线”但表格中第一行及最后一行数据(均为定向点)不必输入,因为高程路线不需定向点。
二、概算1.对方向、边长进行投影改化及边长的高程归化。
2.应选择相应的坐标系统,以及Y坐标是否包含500KM。
选择了概算时,Y坐标不应包含带号。
三、平面计算设置(一)、等级:选择等级,以便根据《工程测量规范》自动进行限差等的设置。
不同的规范,或者相同的规范但不同的版本可能技术要求不同,请在软件进行自动设置后做必要的检查,如有不符,可以自行设置。
(二)、近似平差与严密平差的选择及近似平差的方位角、边长是否反算1.近似平差:程序先分配角度闭合差再分配坐标增量闭合差,即分别平差法。
2.严密平差:按最小二乘法原理平差。
3.《工程测量规范》规定:一级及以上平面控制网的计算,应采用严密平差法,二级及以下平面控制网,可根据需要采用严密或简化方法平差。
当采用简化方法平差时,应以平差后坐标反算的角度和边长作为成果。
《城市测量规范》规定:四等以下平面控制网可采用近似平差法和按近似方法评定其精度。
数据结构课程设计——导线网平差程序的设计与实现设计二:导线网平差程序的设计与实现一、设计目的立足于《数据结构与测绘软件开发》这一课程的课堂教学及其实验课程设计,为着实提高学生基于计算机辅助的方式切实解决工程实际问题的动手能力,通过本实习,一方面,使学生深入了解课堂所学知识,另一方面,通过实践掌握测绘行业软件设计与开发的基本方法,深刻掌握矩阵运算、曲线/曲面拟合的数值解法,掌握不同类型的典型测绘软件设计方法,使得学生初步具备编写测绘软件常用算法的能力以及开发中小规模测绘专业软件的能力。
有导线网如图,观测了14条边长和16个转折角,已知测角精度10βδ''=,测边精度为1.0()()S S m mm δ=。
已知A 、B 、C 、D 、E 、F 点的坐标(无误差),如下表:表1 已知点数据点号 X(m) Y(m)A 5256.953 4520.068B 5163.752 4281.277C 3659.371 3621.210D 4119.879 3891.607E 4581.150 5345.292F 4851.5545316.953表2 角度观测值编号角度观测值(° ′ ″)编号角度观测值(° ′ ″)1 163 45 04 9 169 10 302 64 58 37 10 98 22 043 250 18 11 11 94 53 50 4 103 57 34 12 111 14 235 83 08 05 13 79 20 18三、关键问题描述3.1 未知点近似坐标计算平面控制网进行平差计算时需要计算未知点的近似坐标1.坐标计算公式1、2点的坐标已知,并观测了1-2、1-3的夹角,根据这些数据可以求出3号点坐标根据1、2两点的坐标,可以反算出1、2方向的方位角T12,3号点的坐标为++=++=)sin()cos(121313121313ααT S y y T S x x式子中S13为观测边长,α为观测角度 2.计算流程从读入的数据循环计算未知点的坐标,已计算出的坐标当做已知坐标的点处理参加下次计算,以此类推,逐步计算出未知点的坐标3.实现算法CMatrix CPlaneNetAdjust::XYJS() { CMatrix _XYJS(Pnumber,2); double T12; for(int i=0;i0&&xy[k2].Y>0) { T12=GetT12(k1,k2); } double s12=Gets12(k1,k2); double s13=Gets12(k1,k3); double T13=T12+guancejiao[i].Guancezhi; double dx=s13*cos(T13); double dy=s13*sin(T13); xy[k3].X=xy[k1].X+dx; xy[k3].Y=xy[k1].Y+dy; } for(int i=0;i<="" bdsfid="103" double="" p="" temp1="xy[i].X;" temp2="xy[i].Y;" {="">}return _XYJS;}3.2 误差方程列立1.理论分析平面控制网的误差方程都是非线性方程,必须引入参数近似值将误差方程线性化,取X的充分近似值 0X ,x ?是微小量,在按台劳公式展开时可以略去二次和二次以上的项,而只取至一次项,于是可对非线性平差值观测方程式线性化,于是有如下的式子对于观测角的改正数有对于边长观测值的改正数有2.实现算法如下:CMatrix CPlaneNetAdjust::B() { CMatrix _B1(Lnumber,Pnumber*2); double a; double b; double c; double d; double m; double n; double m1; double n1; for(int i=0;i<="">D A D A D B D B DA DB X X Y Y X X Y Y L ??arctan ??arctan 1-----=-=αα()()22??S AD A D Y Y X X -+-=kjkjk k jk jk j jk jkj jk jk jk y S Y x S Y y S X x S Y ?)(?)(?)(?)(?200200200200"??+??-??-??+=ρρρραδh jhjh h jh jh j jh jh j jh jh jh y S Y x S Y y S X x S Y ?)(?)(?)(?)(?200 200200200"??+??-??-??+=ρρρραδ)(?)("?)("?)("?)("?)("?)("?)(" )("00200200200200200200200200i jk jh h jh jhh jh jh j jh jh j jh jh k jk jkk jk jk j jk jk j jk jk i L y S X x S Y y S X x S Y y S X x S Y y S X xS Y v ---??+?-?-?-+?-?-?-=ααρρρρρρρρi k jkjkk jk jk j jk jk j jk jk i l y S Y x S X y S Y x S X v -?+?+?-?-=000000000jki i S L l -=2002000)()(j k j k jk Y Y X X S -+-=_B1.setValue(i,2*k1,0);_B1.setValue(i,2*k1+1,0);}else{_B1.setValue(i,2*k1,a);_B1.setValue(i,2*k1+1,b);}if(k2<knpnumber)< bdsfid="148" p=""></knpnumber)<> {_B1.setValue(i,2*k2,0);_B1.setValue(i,2*k2+1,0);}else{_B1.setValue(i,2*k2,-a);_B1.setValue(i,2*k2+1,-b);}}for(int i=0;i<tnumber;i++)< bdsfid="160" p=""></tnumber;i++)<>{const double p=206.265;int k1=cezhan[i];int k3=huoshi[i];int k2=qianshi[i];double dx12=xy[k2].X-xy[k1].X;double dy12=xy[k2].Y-xy[k1].Y;double dx13=xy[k3].X-xy[k1].X;double dy13=xy[k3].Y-xy[k1].Y;c=(p*dx13/Gets12(k1,k3)/Gets12(k1,k3)-p*dx12/Gets12(k1,k2)/Gets12(k1,k2));c=-c;d=-p*dy13/Gets12(k1,k3)/Gets12(k1,k3)+p*dy12/Gets12(k1,k2)/Get s12(k1,k2);d=-d;m=-p*dy13/Gets12(k1,k3)/Gets12(k1,k3);m=-m;n=p*dx13/Gets12(k1,k3)/Gets12(k1,k3);n=-n;m1=p*dy12/Gets12(k1,k2)/Gets12(k1,k2);m1=-m1;n1=-p*dx12/Gets12(k1,k2)/Gets12(k1,k2);n1=-n1;if(k1<knpnumber)< bdsfid="183" p=""></knpnumber)<> {_B1.setValue(i+Snumber,2*k1,0);_B1.setValue(i+Snumber,2*k1+1,0);}else if(k1>=knPnumber){_B1.setValue(i+Snumber,2*k1,c);_B1.setValue(i+Snumber,2*k1+1,d);}if(k2<knpnumber)< bdsfid="194" p=""></knpnumber)<> {_B1.setValue(i+Snumber,2*k2,0);_B1.setValue(i+Snumber,2*k2+1,0);}else if(k2>=knPnumber){ _B1.setValue(i+Snumber,2*k2,m1); _B1.setValue(i+Snumber,2*k2+1,n1); } if(k3=knPnumber) { _B1.setValue(i+Snumber,2*k3,m); _B1.setValue(i+Snumber,2*k3+1,n); } }CMatrix _B(Lnumber,2*(Pnumber-knPnumber)); for(int i=0;i<_B1.getRow();i++) { for(int j=2*knPnumber;j<2*Pnumber;j++) { double temp=_B1.getValue(i,j); _B.setValue(i,(j-2*knPnumber),temp); } } return _B;}3.3 法方程构建与解算1.理论分析误差方程系数构成法方程2.实现代码①计算LCMatrix CPlaneNetAdjust::L() { CMatrix _L(Lnumber,1); double l; double s; double s0; for(int i=0;i<="" bdsfid="209" const="" cout<<l<l x B V -=?0?=-Pl B x PB B TTmin =PV V T V L L +=?20σ20?σPV V T double A13; double A;int k1=cezhan[i]; int k2=huoshi[i]; int k3=qianshi[i];A12=GetT12(k1,k2); A13=GetT12(k1,k3); A=GetA(k1,k2,k3); l=A13-A12; if(l<0) { l=pi+l; }if(l>=pi) { l=l-pi; }l=l-A;//cout<<rad_dms(a12)<<" "<<rad_dms(a)<<"<="" "<<rad_dms(a13)<<"="" bdsfid="220" p=""></rad_dms(a12)<<">"<<rad_dms(l)<<endl;< bdsfid="222" p=""></rad_dms(l)<<endl;<>_L.setValue(i+Snumber,0,rad_dms(l));} return _L; }②计算权阵PCMatrix CPlaneNetAdjust::P() { CMatrix _P(Lnumber,Lnumber); for(int i=0;i<="" p="" {="">temp=temp=Cjwucha*Cjwucha/(1*sqrt(bianchang[i].Len))/( 1*sqrt(bianchang[i].Len)); _P.setValue(i,i,temp); } for(int i=Snumber;i<="">3.4 精度估计1.单位权中误差间接平差与条件平差虽采用了不同的函数模型,但它们是在相同的最小乘原理下进行的,所以两法的平差结果总是相等的,这是因为在满足条件下的V 是唯一确定的,故平差值不因方法不同而异。
山西水利职业技术学院实习报告题目导线平差的程序设计与实现姓名:孟国娇学号:专业:工程造价1139报告提交日期:山西水利职业技术学院设计任务书学院:土建工程系专业年级:工程造价2011 学生姓名:孟国娇任务下达日期:2012年 2 月20日毕业设计日期:2012年3月12日至2012年6月13日毕业设计题目:导线平差的程序设计与实现毕业设计主要内容和要求:主要内容:(1)测量平差的研究背景及意义;(2)测量平差概述;(3)Excel在单一附和导线近似平差中的应用;(4)Excel在单一附和导线条件平差中的应用;(5)导线网的间接平差理论;(6)导线网平差的结构和函数设计与实现。
设计要求:(1)毕业设计要充分发挥主观能动性,积极思考,主动实践;(2)毕业设计撰写结构要严整,叙述清楚,理论分析适当,数据可靠,研究方法合理,结论正确,论文格式符合规范;(3)研究成果要有一定的实用或参考价值。
院长签字:指导教师签字:摘要随着测绘科学技术的不断发展,在测量数据的处理中产生很多种平差的方法。
在本文中,导线网的近似平差和条件平差的一些简单计算可通过Excel表编制计算公式和编程实现,我们只需在已编好的Excel表中稍作调整和公式修改,并输入已知数据,最终就可得到所需的平差结果,这为测量的内业工作提供了服务和参考;导线网的间接平差程序是利用C++编程实现的,我们需要将导线网的已知数据信息按照特定的规则输入到dat文本中,利用C++程序读取文本数据信息后,对其进行一系列的平差计算,最终获得平差后的结果,并以dat文本的形式输出且保存,这样就可为测量工作提供一定的参考,还能为测绘数据的管理带来帮助。
关键词:导线平差;Excel;C++;程序目录1绪论...............................................................................................................................................1.1研究背景及意义.................................................................................................................1.2国内外研究状况.................................................................................................................1.3本文研究的具体内容.........................................................................................................1.4平差程序相关说明.............................................................................................................1.4.1平差程序计算特点..................................................................................................1.4.2平差程序的基本要求..............................................................................................1.4.3平差程序的结构化设计..........................................................................................1.4.4平差程序模块化......................................................................................................1.4.5平差程序的数据结构.............................................................................................. 2测量平差.......................................................................................................................................2.1测量平差概述.....................................................................................................................2.1.1测量平差..................................................................................................................2.1.2测量平差的函数模型..............................................................................................2.2最小二乘原理.....................................................................................................................2.3条件平差原理.....................................................................................................................2.3.1条件平差的数学模型..............................................................................................2.3.2条件平差原理..........................................................................................................2.3.3条件平差的计算步骤..............................................................................................2.3.4精度评定..................................................................................................................2.4间接平差原理.....................................................................................................................2.4.1间接平差的数学模型..............................................................................................2.4.2间接平差的的一般原理..........................................................................................2.4.3按间接平差法求平差值的计算步骤......................................................................2.4.4精度评定.................................................................................................................. 3Excel在导线平差中的应用.........................................................................................................3.1 Excel在平差中的应用基础...............................................................................................3.1.1 引言.........................................................................................................................3.1.2Excel在平差中的基本应用操作函数...................................................................3.1.3 核心问题的解决及技巧.........................................................................................3.1.4 三角函数在Excel中的处理方法..........................................................................3.1.5 小结.........................................................................................................................3.2Excel在附和导线近似平差中的应用..............................................................................3.2.1 单一附和导线近似平差.........................................................................................3.2.2单一附和导线近似平差实例..................................................................................3.3 Excel在导线网条件平差中的应用...................................................................................3.3.1单一附合导线条件平差..........................................................................................3.3.2边角权的确定及单位权中误差..............................................................................3.3.3单一附和导线条件平差实例.................................................................................. 4导线网的间接平差程序设计与实现 ...........................................................................................4.1矩阵的相关函数.................................................................................................................4.1.1矩阵相乘..................................................................................................................4.1.2矩阵转置..................................................................................................................4.1.3矩阵求逆..................................................................................................................4.1.4矩阵输出..................................................................................................................4.1.5设置实数输出精度..................................................................................................4.2平差中的重要函数.............................................................................................................4.2.1角度制与弧度制的相互转化..................................................................................4.2.2测量正反算函数......................................................................................................4.2.3近似坐标计算..........................................................................................................4.3导线网的平差理论.............................................................................................................4.3.1平差概述..................................................................................................................4.3.2边角网的最小二乘平差..........................................................................................4.4间接平差的结构与函数设计.............................................................................................4.4.1间接平差..................................................................................................................4.4.2结构与函数设计......................................................................................................4.5导线网平差的程序应用.....................................................................................................4.5.1平面网数据的输入格式..........................................................................................4.5.2导线网平差程序应用实例...................................................................................... 5结论与展望 ...................................................................................................................................5.1Excel在导线平差中的应用..............................................................................................5.1.1Excel在导线近似平差中的应用...........................................................................5.1.2Excel在导线网条件平差中的应用.......................................................................5.2C++在导线平差中的应用 .................................................................................................5.3测量平差的展望................................................................................................................ 参考文献........................................................................................................................................... 致谢. (54)1绪论1.1研究背景及意义测量工作是工程施工非常基础、重要的环节,对工程设计、工程施工、工程的验收都发挥着指导性、不可替代的作用。
第29卷 第4期2010年8月兰州交通大学学报J ou rnal of Lanzh ou Jiaotong UniversityV ol.29N o.4A ug.2010 文章编号:1001-4373(2010)04-0088-03基于M atlab的导线网平差程序设计*李建章(兰州交通大学土木工程学院,甘肃兰州 730070)摘 要:导线网数据量大,网形复杂多变,其数据处理过程大多涉及到矩阵的计算.利用VC、VB等编程语言进行导线网程序的开发,算法比较复杂.基于M atlab平台,利用其强大的矩阵处理能力,设计出导线网数据结构,此基础上进行导线网平差程序的设计与开发,减小了代码编写的工作量.关键词:导线网;数据结构;平差;程序设计中图分类号:P209 文献标志码:A 导线网网形灵活多变,在城市测量中应用非常广泛.通常情况下,其外业观测数据量大,数据处理过程中大多涉及到矩阵的计算,且由于导线网网形的不确定性,因此其程序设计非常复杂[1].本文总结导线网的规律,设计出通用数据结构,并基于Matlab 强大的矩阵计算能力,编制了导线网数据处理程序. 1 导线网数据结构设计导线网由导线点、导线边和角度3类要素构成,其中导线边包括起点和终点,角度包括左边和右边.要使程序能对于任意形状的导线网进行处理,首先需要设计数据结构,以存储相关数据.这些数据包括起算数据、观测数据和网形各要素连接关系等,它们都是导线网各要素的属性值.本文用3个表来存储各要素,如表1-3所示.表1 点表数据结构Tab.1 Data structure of points序号字段类型备注1点名称整型2初始纵坐标浮点3初始横坐标浮点4已知点标志整型1为已知点,0为未知点5平差纵坐标浮点6平差横坐标浮点表2 角度数据结构Tab.2 Data structure of angles序号字段类型备注1角度编号整型2左边整型3右边整型4角度浮点度分秒表3 边数据结构Tab.3 Data structure of lines序号字段类型备注1导线边编号整型2起点整型3终点整型4边长浮点5方位浮点弧度6纵坐标增量浮点7横坐标增量浮点 表1-3中分别存储在ptTab,lineTab,angleTab 矩阵中,保存为.mat文件,程序运行时加载[2].2 近似坐标计算近似坐标的计算是导线网平差中关键的一个环节.其精度直接影响到后续平差计算的点位精度和迭代平差工作量大小.近似坐标计算包括近似方位角的计算和近似坐标的计算两个步骤.2.1 近似方位角计算近似方位角的计算以角度为单位,将已知方位传递到网中每一条边.设某角度一边方位已知,而另一边方位未知,由于两边夹角已知,可计算出未知边的方位.图1所示为4种可能情况.图1 方位角计算4种情况Fig.1 Four situation of azimuth angle calculation*收稿日期:2010-04-06作者简介:李建章(1974-),男,甘肃会宁人,讲师.第4期李建章:基于M atlab 的导线网平差程序设计假定已知左边方位角为fw 1,夹角为α,则以上4种情况下右边的方位角f w r 讨论如下.情况一:fw r =fw 1+α(1)情况二:fw r =fw 1+α(2)情况三:fw r =fw 1±π+α(3)情况四:fw r =fw 1±π+α(4)同理可得,已知右边方位角计算左边方位角的情况,也有4种可能性.程序根据角度两边的端点点名的关系判断以上8种情况,采用相应的计算公式计算未知边方位角[3].程序在获得未知边方位角后,将计算结果保存到边表相应记录中.然后在角度表中搜索相邻角度,搜索条件是:该角度的一边必须是上一角度的一边,而另一边不是上一角度的一边.查询到满足条件的角度后,判断其是否为截至角(两边方位已知),如否则计算出该角度未知边方位,重复前面的步骤直至某一截至角停止.然后在边表中查询有无近似方位未知的边,如有,再次执行以上步骤,直至边表中所有边近似方位计算完毕,这个过程可以通过一个函数自身迭代来实现.程序流程如图2所示.图2 计算近似方位流程图Fig .2 Flow chart of calculating azimuth angle计算导线边方位的子程序如下所示:functio n [ptT ab ,angleT ab ,lineT ab ,ok ]=g etfw0(pt -T ab ,ang le T ab ,lineT ab )[baindex ]=getanglebeg in (angleT ab ,line Tab );%查找起算角[ok ,ptT ab ,line T ab ,ang le T ab ]=caculateFW0(baindex ,ptT ab ,line Tab ,ang le Tab );%由起算角往前传递方位.if no t (fwisok (lineTab ))%判断有没有方位未知的导线边 [ptT ab ,ang leT ab ,lineT ab ,ok ]=getfw 0(ptT ab ,a n -gleT ab ,lineT ab ); %函数迭代计算.end end2.2 近似坐标计算通过2.1计算,所有导线边的近似方位计算完毕,此时可以利用每条边的边长和近似方位计算其坐标增量,这个过程只需要在边表中循环计算即可.然后以导线边为单位,从起始边出发,将已知坐标传递到各未知点.所谓起始边即该边一端点坐标已知,另一端点坐标未知.利用导线边坐标增量计算未知点坐标,然后查找相邻边,判断其是否为截至边(两端点坐标皆知),如否,计算未知点坐标.重复查找计算直至截至边,然后程序在点表中判断有无近似坐标未知的点,如有,则重复以上步骤,否则程序退出.这个过程和2.1中计算方位角的过程是类似的,因此不再列出程序流程图和代码.3 误差方程系数矩阵计算导线网观测值有角度和边长两种类型,一个观测值可列出一个误差方程.因此程序需分别读取角度表和导线边表中每个记录来计算误差方程系数矩阵B 、常数项矩阵l 和权阵P .3.1 利用观测角度计算误差方程系数矩阵设某角度观测值为ang le ,其左边近似方位、左边长、左边起点点名,左边起点点序号,左边终点点名,左边终点点序号,左边坐标增量分别为:lfw ,ls ,lbname ,lbindex ,lename ,leindex ,ldetx ,ldety ,同理对应右边各项为:rfw ,rs ,rbname ,rbindex ,rename ,reindex ,rdetx ,rdety .由图1可知,各观测角度两边的方向有4种情况,为简化程序,首先将其全部转化为情况1.设转换后左导线边起、终点序号分别为tem lbindex ,tem -leindex .右导线边起、终序点号分别为tem rbindex ,temreindex .如下是图1第三种情况的转换代码.if lename ==rbname temlbindex =leinde x ; temleindex =lbinde x ; tem rbindex =rbindex ; tem reindex =reindex ; lde tx =(-1)*lde tx ; lde ty =(-1)*lde ty ; rdetx =rdetx ;89兰州交通大学学报第29卷 rdety =rdety ; lfw =lfw +pi (); rfw =rfw ;end设该角度序号为index .又左边起点、终点和右边起点、终点的未知数序号分别为:lbcontrindex ,le -contrindex ,rbco ntrindex ,recontrindex .则B (index ,(2×leco ntrindex -1))=ρΔy L 1000s 2L B (index ,(2×leco ntrindex ))=-ρΔx L1000s 2L B (index ,(2×reco ntrindex -1))=-ρΔy R1000s 2RB (index ,(2×reco ntrindex ))=-ρΔx R1000s 2RB (index ,(2×lbcontrindex -1))=ρΔy R 1000s 2R -ρΔy L1000s 2L B (index ,(2×lbcontrindex ))=-ρΔx R 1000s 2R +ρΔx L1000s 2L angle 0=r f w -l f wl (index ,1)=(angle 0-ang le )×180×3600πP (index ,index )=1[4]上述各点如为已知点,则对应系数为0.未知点序号为所有待求点的排列序号,用于控制误差方程系数在B 矩阵中的列位置.3.2 利用观测边长计算误差方程系数矩阵设某观测边坐标增量为Δx ,Δy ,观测边长为S ,S 0=Δx 2+Δy 2,则B (index ,(2×lbco ntrindex -1))=-ΔxS 0(5)B (index ,(2×lbco ntrindex ))=-ΔyS 0(6)B (index ,(2×leco ntrindex -1))=ΔxS 0(7)B (index ,(2×lecontrindex ))=ΔyS 0(8)l (index ,1)=1000×(S 0-S )(9)P (index ,index )=S100[5](10)其中已知点对应项系数为0,其中index 为观测边序号,观测边序号是该边在边表中序号加上角度观测值个数.lbcontrindex 和leco ntrindex 为该边起点、终点的未知点序号.以上过程需要一个循环语句即可完成.4 结束语本文基于Matlab 开发了导线网平差程序,算法简单,编程工作量小[6].对于测绘专业类似计算问题如三角网、水准网等的程序设计有一定的借鉴意义.由于篇幅的限制,本文没有论述其他相关处理过程的算法,包括利用误差方程迭代计算获取最优解、度分秒和弧度互化、边点要素属性的查询等,这些算法在M atlab 中实现相对比较容易.参考文献:[1] 汪自军,陈圣波,臧立娟,等.导线网数据处理系统关键技术及其实践[J ].微计算机信息,2008(2):216-218.[2] 李建章.基于M a tlab 的水准网平差程序设计[J ].兰州交通大学学报,2009,28(3):29-31.[3] 武艳强,黄立人,江在森.导线网平差中近似坐标的无限定推算方法[J ].测绘通报,2006(12):12-15.[4] 武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M ].武汉:武汉大学出版社,2003:102-125.[5] 姚德新.土木工程测量学教程[M ].北京:中国铁道出版社,2003:67-68.[6] 薄志义,曹福生.程序寻找支导线网计算路径的研究[J ].测绘科学,2007(9):68-69.Adjustment Programming of Traverse Network on the Basis of MatlabLI Jian -zhang(Sch ool of Civil En gineering ,Lanzhou Jiaotong University ,Lanzh ou 730070,China )A bstract :H aving large data and complex shape ,the data pro cessing of traverse netw o rk involves matrix cal -culation .It 's mo re difficult to prog ram on o ther prog ramming lang uages like VC and VB .In the e ssay ,the data structure o f traverse netw ork is desig ned by utilizing the matrix dispo sal capability of M atlab ,and thenthe prog ram that has the adv antag es of being simple in algo rithm is finished .Key words :trave rse ne tw ork ;data structure ;adjustment ;pro gramming90。
平差课程设计导线网一、课程目标知识目标:1. 让学生掌握导线网的基本概念,理解其在测量平差中的应用。
2. 学会计算导线网的闭合差、各边长及各角度的改正数,掌握相应的计算公式。
3. 掌握根据导线网计算结果进行精度分析和评定的方法。
技能目标:1. 能够运用所学知识解决实际测量中的导线网问题,具备一定的实践操作能力。
2. 能够独立完成导线网闭合差的计算,熟练运用计算工具进行数据处理。
3. 能够对导线网计算结果进行合理的分析,提出改进措施。
情感态度价值观目标:1. 培养学生对测量平差学科的兴趣,激发他们主动学习的热情。
2. 增强学生的团队合作意识,培养他们在解决问题时相互协作、共同进步的精神。
3. 培养学生严谨的科学态度,使他们认识到测量精度对实际工程的重要性。
课程性质:本课程为测量平差学科的基础课程,以理论教学为主,实践操作为辅。
学生特点:学生已具备一定的测量学基础知识,具有较强的逻辑思维能力和学习兴趣。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力。
通过本课程的学习,使学生能够掌握导线网的相关知识,为后续专业课程打下坚实基础。
教学过程中,将目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 导线网基本概念:介绍导线网的定义、分类及其在测量中的应用。
- 教材章节:第二章第二节- 内容列举:导线网的定义、平面导线网、高程导线网等。
2. 导线网闭合差计算:讲解导线网闭合差的计算方法,推导相关公式。
- 教材章节:第二章第三节- 内容列举:闭合差定义、闭合差计算公式、各边长和角度改正数的计算。
3. 导线网精度分析:分析导线网的精度,探讨影响精度的因素及改进措施。
- 教材章节:第二章第四节- 内容列举:精度评定方法、误差来源分析、提高精度的措施。
4. 导线网实践操作:组织学生进行导线网实践操作,巩固理论知识。
- 教材章节:第二章第五节- 内容列举:实践操作步骤、仪器使用、数据处理与分析。
导线平差计算1 简介闭合导线和附合导线是长输管道站场和穿跨越测量常用的控制手段,其优点是可以同时完成平面和高程控制测量。
导线平差原理请查阅相关文献。
不同平差软件的平差方法步骤基本相同,本文件基于南方平差易软件平台介绍导线(闭合导线、附合导线是最简单的导线控制网)平差的操作方法。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
●《长距离输油输气管道测量规范》(SY/T 0055-2003)●《工程测量规范》(GB 50026-2007)3 操作步骤(1)录入数据录入数据是将导线测量数据录入平差软件。
可以采用手工或文件方式录入(建议采用后者,选菜单“文件/打开”)。
其数据格式如下:[NET] 控制网信息[P ARA] 控制网参数[STATION]坐标和高程信息(11表示高程已知,如果无坐标则无法在平差易中看到和输出地图)[OBSER] 观测的转角、平距、高差等信息下图为导入数据窗口:图3-1 导入数据窗口(2)坐标推算(F3)选菜单“平差/推算坐标”,根据已知条件(测站点信息和观测信息)推算出待测点的近似坐标。
为构建动态网图和导线平差作基础。
(3)概算选菜单“平差/选择概算”→配置概算参数→输出概算结果。
下图为“选择概算”的配置参数窗口:图3-2 配置概算参数(4)调整观测数据将概算结果调整到输入的观测数据中,重新导入。
(5)计算方案的选择对于同时包含了平面数据和高程数据的导线, 一般处理过程应为:先进行平面处理, 然后在高程处理时软件会使用已经较为准确的平面数据(如距离等)来处理高程数据。
对精度要求很高的平面高程混合平差,您也可以在平面和高程处理间多次切换,迭代出精确的结果(但建议平面和高程分开了平差)。
针对导线平差,需要设置中误差及仪器参数、高程平差参数、限差及等级内容。
选菜单“平差/平差方案”即可进行参数的设置,如下图:图3-3 平差方案参数设置(6)闭合差计算与检核(F2)根据观测值和设定参数来计算导线的闭合差,从而来检查某条导线是否存在观测粗差或误差。