实验2、PCM实验
- 格式:doc
- 大小:3.27 MB
- 文档页数:16
实验一PCM编译码实验一、实验目的1、掌握脉冲编码调制与解调的原理。
2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。
3、了解脉冲编码调制信号的频谱特性。
4、熟悉了解W681512。
二、实验器材1、主控&信号源模块、3号、21号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图1-1 21号模块W681512芯片的PCM编译码实验图1-23号模块的PCM编译码实验图1-3A/μ律编码转换实验2、实验框图说明图1-1中描述的是信号源经过芯片W681512经行PCM编码和译码处理。
W681512的芯片工作主时钟为2048KHz,根据芯片功能可选择不同编码时钟进行编译码。
在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。
图1-2中描述的是采用软件方式实现PCM编译码,并展示中间变换的过程。
PCM编码过程是将音乐信号或正弦波信号,经过抗混叠滤波(其作用是滤波3.4kHz以外的频率,防止A/D 转换时出现混叠的现象)。
抗混滤波后的信号经A/D转换,然后做PCM编码,之后由于G.711协议规定A律的奇数位取反,μ律的所有位都取反。
因此,PCM编码后的数据需要经G.711协议的变换输出。
PCM译码过程是PCM编码逆向的过程,不再赘述。
A/μ律编码转换实验中,如实验框图1-3所示,当菜单选择为A律转μ律实验时,使用3号模块做A律编码,A律编码经A转μ律转换之后,再送至21号模块进行μ律译码。
同理,当菜单选择为μ律转A律实验时,则使用3号模块做μ律编码,经μ转A律变换后,再送入21号模块进行A律译码。
四、实验步骤实验项目一测试W681512的幅频特性概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特性,了解芯片W681512的相关性能。
1、关电,按表格所示进行连线。
源端口目的端口连线说明信号源:A-OUT模块21:TH5(音频接口)提供音频信号信号源:T1模块21:TH1(主时钟)提供芯片工作主时钟信号源:CLK模块21:TH11(编码时钟)提供编码时钟信号信号源:CLK模块21:TH18(译码时钟)提供译码时钟信号信号源:FS模块21:TH9(编码帧同步)提供编码帧同步信号信号源:FS模块21:TH10(译码帧同步)提供译码帧同步信号模块21:TH8(PCM编码输出)模块21:TH7(PCM译码输入)接入译码输入信号2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A律编码观测实验】。
pcm编译码实验报告PCM 编译码实验报告一、实验目的1、掌握脉冲编码调制(PCM)的基本原理。
2、熟悉 PCM 编译码系统的构成及工作过程。
3、观察和分析 PCM 编译码过程中的信号波形,理解量化和编码的概念。
二、实验原理PCM 是一种将模拟信号变换成数字信号的编码方式。
其基本原理是对模拟信号进行周期性采样,然后将每个采样值进行量化,并将量化后的数值用二进制编码表示。
采样过程遵循奈奎斯特采样定理,即采样频率应大于模拟信号最高频率的两倍,以保证能够从采样后的信号中无失真地恢复出原始模拟信号。
量化是将采样值在幅度上进行离散化,分为若干个量化级。
量化级的数量决定了量化误差的大小。
编码则是将量化后的数值用二进制代码表示。
常见的编码方式有自然二进制编码、折叠二进制编码等。
在 PCM 编译码系统中,发送端完成采样、量化和编码的过程,将模拟信号转换为数字信号进行传输;接收端则进行相反的过程,即解码、反量化和重建模拟信号。
三、实验仪器与设备1、通信原理实验箱2、示波器3、信号源四、实验内容与步骤1、连接实验设备将通信原理实验箱接通电源。
用信号线将信号源与实验箱的输入端口连接,将实验箱的输出端口与示波器连接。
2、产生模拟信号设置信号源,产生频率为 1kHz、幅度为 2V 的正弦波模拟信号。
3、观察采样过程调节实验箱上的采样频率旋钮,分别设置为不同的值,观察示波器上的采样点。
4、量化与编码观察实验箱上的量化和编码模块,了解量化级的设置和编码方式。
5、传输与接收发送端将编码后的数字信号传输给接收端。
观察接收端解码、反量化后的模拟信号。
6、改变输入信号参数改变模拟信号的频率和幅度,重复上述实验步骤,观察 PCM 编译码的效果。
五、实验结果与分析1、采样频率对信号的影响当采样频率低于奈奎斯特频率时,示波器上的信号出现失真,无法准确还原原始模拟信号。
当采样频率高于奈奎斯特频率时,信号能够较好地还原,随着采样频率的增加,还原效果更加理想。
pcm编码实验报告PCM编码实验报告一、引言在数字通信领域,PCM(脉冲编码调制)是一种常用的信号编码技术。
本实验旨在通过对PCM编码的实际操作,深入了解PCM编码的原理、特点以及应用。
二、实验目的1. 理解PCM编码的基本原理;2. 掌握PCM编码的实验操作方法;3. 分析PCM编码的优缺点及其在通信领域的应用。
三、实验设备和原理1. 实验设备:计算机、PCM编码器、PCM解码器、示波器等;2. PCM编码原理:PCM编码是通过对模拟信号进行采样和量化,然后将量化结果转换为二进制码流的过程。
采样率越高,量化精度越高,PCM编码的质量越好。
四、实验过程1. 连接实验设备:将模拟信号输入PCM编码器,再将PCM编码器的输出连接到PCM解码器,最后将解码器的输出连接到示波器;2. 设置采样率和量化精度:根据实验要求,设置合适的采样率和量化精度;3. 进行PCM编码:通过PCM编码器对输入信号进行采样和量化,得到二进制码流;4. 进行PCM解码:将PCM编码器的输出连接到PCM解码器,解码器将二进制码流转换为模拟信号;5. 观察示波器显示:将PCM解码器的输出连接到示波器,观察解码后的信号波形。
五、实验结果与分析1. 通过示波器观察,可以看到PCM编码器输出的二进制码流经过解码后,波形与输入信号基本一致,证明PCM编码解码过程的准确性;2. 随着采样率的增加,PCM编码的质量提高,但同时也会增加数据传输量;3. 在实际应用中,PCM编码常用于音频信号的数字化处理,如CD、MP3等。
六、实验总结通过本次实验,我们深入了解了PCM编码的原理和实验操作方法。
PCM编码作为一种常用的信号编码技术,在数字通信领域有着广泛的应用。
通过对模拟信号的采样和量化,PCM编码可以将信号转换为二进制码流,实现信号的数字化处理。
实验结果表明,PCM编码解码过程准确可靠,能够保持原始信号的质量。
同时,我们也意识到采样率和量化精度对PCM编码的影响,需要在实际应用中进行合理的选择。
实验2、PCM实验实验 2 PCM 编译码实验⼀、实验⽬的1.理解 PCM 编译码原理及 PCM 编译码性能;2.熟悉 PCM 编译码专⽤集成芯⽚的功能和使⽤⽅法及各种时钟间的关系;3.熟悉语⾳数字化技术的主要指标及测量⽅法。
⼆、实验原理1.抽样信号的量化原理模拟信号抽样后变成在时间离散的信号后,必须经过量化才成为数字信号。
模拟信号的量化分为均匀量化和⾮均匀量化两种。
把输⼊模拟信号的取值域按等距离分割的量化就称为均匀量化,每个量化区间的量化电平均取在各区间的中点,如下图所⽰。
图 2-1 均匀量化过程⽰意图均匀量化的主要缺点是⽆论抽样值⼤⼩如何,量化噪声的均⽅根值都固定不变。
因此,当信号m(t ) 较⼩时,则信号量化噪声功率⽐也很⼩。
这样,对于弱信号时的量化信噪⽐就难以达到给定的要求。
通常把满⾜信噪⽐要求的输⼊信号取值范围定义为动态范围,那么,均匀量化时的信号动态范围将受到较⼤的限制。
为了克服这个缺点,实际中往往采⽤⾮均匀量化的⽅法。
⾮均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值⼩的区间,其量化间隔D v 也⼩;反之,量化间隔就⼤。
⾮均匀量化与均匀量化相⽐,有两个突出的优点:⾸先,当输⼊量化器的信号具有⾮均匀分布的概率密度(实际中往往是这样)时,⾮均匀量化器的输出端可以得到较⾼的平均信号量化噪声功率⽐;其次,⾮均匀量化时,量化噪声功率的均⽅根值基本上与信号抽样值成⽐例,因此量化噪声对⼤、⼩信号的影响⼤致相同,即改善了⼩信号时的信噪⽐。
⾮均匀量化的实际过程通常是将抽样值压缩后再进⾏均匀量化。
现在⼴泛采⽤两种对数压缩,美国采⽤压缩律,我国和欧洲各国均采⽤ A 压缩律。
本实验中 PCM 编码⽅式也是采⽤ A 压缩律。
A 律压扩特性是连续曲线,实际中往往都采⽤近似于 A 律函数规律的 13 折线(A=)的压扩特性。
这样,它基本保持连续压扩特性曲线的优点,⼜便于⽤数字电路来实现,如下图所⽰。
图2-2 13 折线特性表 2-1 列出了 13 折线时的x 值与计算得的x 值的⽐较。
pcm编译码器实验报告PCM编码器实验报告引言在现代通信领域中,数字信号处理技术扮演着至关重要的角色。
PCM编码器作为一种数字信号处理技术的应用,被广泛应用于音频和语音通信系统中。
本文将介绍PCM编码器的原理、实验过程和结果,并对其性能进行评估和分析。
一、PCM编码器的原理PCM编码器(Pulse Code Modulation Encoder)是一种将模拟信号转换为数字信号的技术。
其基本原理是将连续的模拟信号离散化,然后将每个采样值用二进制数表示。
PCM编码器由采样、量化和编码三个步骤组成。
1. 采样采样是将连续的模拟信号在时间上进行离散化的过程。
在实验中,我们使用了一个采样频率为Fs的采样器对模拟信号进行采样。
采样频率决定了信号在时间轴上的离散程度,过低的采样频率会导致信号失真,而过高的采样频率则会浪费计算资源。
2. 量化量化是将连续的采样值映射为离散的量化级别的过程。
在实验中,我们使用了一个分辨率为N的量化器对采样值进行量化。
分辨率决定了量化级别的数量,过低的分辨率会导致信息丢失,而过高的分辨率则会增加编码的复杂性。
3. 编码编码是将量化后的离散值用二进制数表示的过程。
在实验中,我们使用了一种线性编码的方法,将每个量化级别映射为一个二进制码字。
编码后的二进制数可以通过数字信号传输或存储。
二、实验过程为了验证PCM编码器的性能,我们设计了一套实验方案,包括信号生成、PCM 编码器实现和性能评估三个步骤。
1. 信号生成我们选择了一个简单的音频信号作为实验输入信号。
通过声卡输入设备,我们将音频信号输入到计算机中。
在计算机上,我们使用MATLAB软件对音频信号进行处理,包括采样频率和量化分辨率的设置。
2. PCM编码器实现为了实现PCM编码器,我们使用MATLAB编程语言编写了一段代码。
该代码根据采样和量化的参数,对输入信号进行采样、量化和编码,最终输出PCM编码的二进制数据。
3. 性能评估为了评估PCM编码器的性能,我们使用了两个指标:信噪比(SNR)和失真度。
实验二:PCM系统仿真一、实验目的:1、掌握脉冲编码调制原理;2、理解量化级数、量化方法与量化信噪比的关系。
3、理解非均匀量化的优点。
二、实验内容:1、对模拟信号进行抽样和均匀量化,改变量化级数和信号大小,根据MATLAB仿真获得量化误差和量化信噪比。
(必做)2、对模拟信号进行抽样、A律压缩量化,改变量化级数和信号大小,根据MATLAB仿真获得量化误差和量化信噪比。
(选做)3、对抽样值进行A律13折线编码。
(选做)三、实验步骤1、均匀量化(必做)1) 产生一个周期的正弦波x(t) = cos (2 * pi *t ),以1000Hz频率进行采样,并进行8级均匀量化,用plot函数在同一张图上绘出原信号和量化后的信号。
(保存为图2-1)2) 以32Hz的抽样频率对x(t)进行抽样,并进行8级均匀量化。
绘出正弦波波形(用plot函数)、样值图,量化后的样值图、量化误差图(后三个用stem函数)。
(保存为图2-2)3) 以2000Hz对x(t)进行采样,改变量化级数,分别仿真得到编码位数为2~8位时的量化信噪比,绘出量化信噪比随编码位数变化的曲线。
另外绘出理论的量化信噪比曲线进行比较。
(保存为图2-3)4)在编码位数为8和12时采用均匀量化,在输入信号衰减为0~50 dB时,以均匀间隔5 dB仿真得到均匀量化的量化信噪比,绘出量化信噪比随信号衰减变化的图形。
注意,输入信号减小时,量化范围不变;抽样频率为2000 Hz。
(保存为图2-3-2)2) 在编码位数为8和12时均匀量化、编码位数为8时A律压扩量化,在输入信号衰减为0~50dB 时,以均匀间隔5dB仿真得到量化信噪比,绘出量化信噪比随信号衰减变化的图形。
另外绘出8和12位编码时采用均匀量化的理论量化信噪比曲线进行比较。
注意,输入信号减小时,量化范围不变;抽样频率为2000Hz。
(保存为图2-5)二、实验思考题:1、图2-3表明均匀量化信噪比与量化级数(或编码位数)的关系是怎样的?答:量化信噪比随着量化级数的增加而提高,当量化级数较小是不能满足通信质量的要求2、分析图2-5,A律压缩量化相比均匀量化的优势是什么?(选做)答:量化信噪比随着量化级数的增加而提高,当量化级数较小是不能满足通信质量的要求源程序:。
实验四脉冲编码调制(PCM)实验一、实验目的通过本实验,学生应达到以下要求:1,了解语音信号PCM编译码的工作原理及实现过程.2,验证PCM编译码原理.3,初步了解PCM专用大规模集成电路的工作原理和应用.4,了解语音信号数字化技术的主要指标,学习并掌握相应的测试方法.二、实验内容本实验可完成以下实验内容:⏹观察测量PCM调制解调的各种时隙信号⏹观察编译码波形⏹测试动态范围、信噪比和系统频率特性⏹对系统性能指标进行测试和分析◆系统输出信噪比特性测量◆编码动态范围和系统动态范围测量◆系统幅频特性测量◆空载噪声测量三、基本原理脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用.十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积,减轻重量,降低功耗,简化调试以及方便维护等方面都有了显著的改进.目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化.本实验是以这些产品编排的 PCM 编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术.PCM 数字电话终端机的构成原理如图 4.1 所示.实验只包括虚线框内的部分,故名 PCM 编译码实验.图4.1 PCM 数字电话终端机的结构示意图1、实验原理和电路说明PCM 编译码系统由定时部分和PCM 编译码器构成,电路原理图附于本章后.◆ PCM 编译码原理为适应语音信号的动态范围,实用的PCM 编译码必须是非线性的.目前,国际上采用的 均是折线近似的对数压扩特性.ITU-T 的建议规定以 13 段折线近似的 A 律(A=87.56)和 15段折线近似的μ律(μ=255)作为国际标准.A 律和μ律的量化特性初始段如图 4.2 和图 4.3所示.A 律和μ律的编译码表分别列于表1和表2.(附本章后) 这种折线近似压扩特性的特点是:各段落间量阶关系都是 2 的幂次,在段落内为均匀分层量化,即等间隔16个分层,这些对于用数字电路实现非线性编码与译码是极为方便的. ◆ PCM 编译码器简介鉴于我国国内采用的是A 律量化特性,因此本实验采用TP3067专用大规模集成电路,它 是CMOS 工艺制造的单片PCMA 律编译器,并且片内带输入输出话路滤波器. TP3067的管脚如图4.4所示,内部组成框图如图4.5所示. TP3067的管脚定义简述如下:(1)VPO+ 收端功率放大器的同相输出端.(2)GNDA 模拟地.所有信号都以此管脚为参考. (3)VPO- 收端功放的反相输出端. (4)VPI 收端功放的反相输入端.(5)VFRO 接收部分滤波器模拟输出端. (6)VCC +5V 电压输入.(7)FSR 接收部分帧同步时隙信号,是一个8KHz 脉冲序列. (8)DR 接收部分PCM 码流解码输入端.(9)BCLKR/CLKSEL 位时钟(bitclock),它使PCM 码流随着FSr 上升沿逐位移入Dr 端,位时钟 可以为从 64KHz 到 2048MHz 的任意频率.或者作为一个逻辑输入选择 1536MHz,1544MHz 或2048MHz,用作同步模式的主时钟.混合装置V oice发滤波器波器收滤编码器器码译分路路合发收(10)MCLKR/PDN 接收部分主时钟,它的频率必须为1536MHz,1544MHz 或2048MHz.可以和MCKLx异步,但是同步工作时可达到最佳状态.当 MCLKx 接低电平,MCLKR 被选择为内部时钟,当 MCLKx 接高电平,该芯片进入低功耗状态.(11)MCLKx 发送部分主时钟,必须为1536MHz,1544MHz 或2048MHz.可以和MCLKR 异步,但 是同步工作时可达到最佳状态.(12)BCLKx 发送部分时钟,使PCM 码流逐位移入DR 端.可以为从64KHz 到2048MHz 的任意 频率,但必须和MCLKx 同步.(13)Dx 发送部分PCM 码流编码输出端.(14)FSx 发送部分帧同步时隙信号,为一个8KHz 的脉冲序列. (15)TSx 漏极开路输出端,它在编码时隙输出低电平.(16)ANLB 模拟反馈输入端.在正常工作状态下必须置成逻辑"0".当置成逻辑"1"时,发送 部分滤波器的输入端并不与发送部分的前置滤波器相连,而是和接收部分功放的VPO+相连. (17)GSx 发送部分输入放大器的模拟基础,用于在外部同轴增益. (18)VFxI 发送部分输入放大器的反相输入端。
实验 2 PCM 编译码实验一、实验目的1.理解 PCM 编译码原理及 PCM 编译码性能;2.熟悉 PCM 编译码专用集成芯片的功能和使用方法及各种时钟间的关系;3.熟悉语音数字化技术的主要指标及测量方法。
二、实验原理1.抽样信号的量化原理模拟信号抽样后变成在时间离散的信号后,必须经过量化才成为数字信号。
模拟信号的量化分为均匀量化和非均匀量化两种。
把输入模拟信号的取值域按等距离分割的量化就称为均匀量化,每个量化区间的量化电平均取在各区间的中点,如下图所示。
图 2-1 均匀量化过程示意图均匀量化的主要缺点是无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号m(t ) 较小时,则信号量化噪声功率比也很小。
这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常把满足信噪比要求的输入信号取值范围定义为动态范围,那么,均匀量化时的信号动态范围将受到较大的限制。
为了克服这个缺点,实际中往往采用非均匀量化的方法。
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区间,其量化间隔D v 也小;反之,量化间隔就大。
非均匀量化与均匀量化相比,有两个突出的优点:首先,当输入量化器的信号具有非均匀分布的概率密度(实际中往往是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例,因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的信噪比。
非均匀量化的实际过程通常是将抽样值压缩后再进行均匀量化。
现在广泛采用两种对数压缩,美国采用μ压缩律,我国和欧洲各国均采用 A 压缩律。
本实验中 PCM 编码方式也是采用 A 压缩律。
A 律压扩特性是连续曲线,实际中往往都采用近似于 A 律函数规律的 13 折线(A=87.6)的压扩特性。
这样,它基本保持连续压扩特性曲线的优点,又便于用数字电路来实现,如下图所示。
图2-2 13 折线特性表 2-1 列出了 13 折线时的x 值与计算得的x 值的比较。
《信息处理综合实验》实验报告(二)班级:姓名:学号:日期:2020-11-16实验二 PCM 编译码实验一、实验目的1. 理解PCM 编译码原理及PCM 编译码性能;2. 熟悉PCM 编译码专用集成芯片的功能和使用方法及各种时钟间的关系;3. 熟悉语音数字化技术的主要指标及测量方法。
二、实验内容及步骤PCM 编码原理验证(1). 设置工作参数设置原始信号为:“正弦”,1000hz,幅度为15(约2Vp-p);(2). PCM 串行接口时序观察输出时钟和帧同步时隙信号观测:用示波器同时观测抽样脉冲信号(3TP7)和输出时钟信号(3TP8),观测时以3TP7 做同步。
分析和掌握PCM 编码抽样脉冲信号与输出时钟的对应关系(同步沿、脉冲宽度等)。
(3). PCM 串行接口时序观察抽样时钟信号与PCM 编码数据测量:用示波器同时观测抽样脉冲信号(3TP7)和编码输出信号(3TP4),观测时以3TP7 做同步。
分析和掌握PCM 编码输出数据与抽样脉冲信号(数据输出与抽样脉冲沿)及输出时钟的对应关系。
PCM 译码观测用导线连接3P4 和3P5,此时将PCM 输出编码数据直接送入本地译码器,构成自环。
用示波器同时观测输入模拟信号3TP1 和译码器输出信号3TP6,观测信号时以3TP1 做同步。
定性的观测解码信号与输入信号(1000HZ、2Vpp)的关系:质量、电平、延时。
PCM 频率响应测量将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测译码恢复出的模拟信号电平。
观测输出信号信电平相对变化随输入信号频率变化的相对关系。
用点频法测量。
测量频率范围:200Hz~4000Hz。
PCM 译码失真测量将测试信号频率固定在1000Hz,改变测试信号电平(输入信号的最大幅度为5Vp-p。
),用示波器定性的观测译码恢复出的模拟信号质量(通过示波器对比编码前和译码后信号波形平滑度)。
PCM 编译码系统增益测量DDS1 产生一个频率为1000Hz、电平为2Vp-p 的正弦波测试信号送入信号测试端口3P1。
实验 2 PCM 编译码实验一、实验目的1.理解 PCM 编译码原理及 PCM 编译码性能;2.熟悉 PCM 编译码专用集成芯片的功能和使用方法及各种时钟间的关系;3.熟悉语音数字化技术的主要指标及测量方法。
二、实验原理1.抽样信号的量化原理模拟信号抽样后变成在时间离散的信号后,必须经过量化才成为数字信号。
模拟信号的量化分为均匀量化和非均匀量化两种。
把输入模拟信号的取值域按等距离分割的量化就称为均匀量化,每个量化区间的量化电平均取在各区间的中点,如下图所示。
图 2-1 均匀量化过程示意图均匀量化的主要缺点是无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号m(t ) 较小时,则信号量化噪声功率比也很小。
这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常把满足信噪比要求的输入信号取值范围定义为动态范围,那么,均匀量化时的信号动态范围将受到较大的限制。
为了克服这个缺点,实际中往往采用非均匀量化的方法。
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区间,其量化间隔D v 也小;反之,量化间隔就大。
非均匀量化与均匀量化相比,有两个突出的优点:首先,当输入量化器的信号具有非均匀分布的概率密度(实际中往往是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例,因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的信噪比。
非均匀量化的实际过程通常是将抽样值压缩后再进行均匀量化。
现在广泛采用两种对数压缩,美国采用压缩律,我国和欧洲各国均采用 A 压缩律。
本实验中 PCM 编码方式也是采用 A 压缩律。
A 律压扩特性是连续曲线,实际中往往都采用近似于 A 律函数规律的 13 折线(A=)的压扩特性。
这样,它基本保持连续压扩特性曲线的优点,又便于用数字电路来实现,如下图所示。
图2-2 13 折线特性表 2-1 列出了 13 折线时的x 值与计算得的x 值的比较。
表 2-1 A 律和 13 折线比较y0182838485868781x011281111111按折线分段的x 011281641321161814121段落12345678斜率16168421121 4表中第二行的x 值是根据A 计算得到的,第三行的x 值是 13 折线分段时的值。
可见,13折线各段落的分界点与A 曲线十分逼近,同时x 按2 的幂次分割有利于数字化。
2.脉冲编码调制的基本原理量化后的信号是取值离散的数字信号,下一步是将这个数字信号编码。
通常把从模拟信号抽样、量化,编码变换成为二进制符号的基本过程,称为脉冲编码调制(Pulse Code Modulation,PCM)。
在 13 折线法中,无论输入信号是正是负,均用 8 位折叠二进制码来表示输入信号的抽样量化值。
其中,用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。
具体的做法是:用第二至第四位表示段落码,它的 8 种可能状态来分别代段落序号段落码8111 7110 6101 5100 4011 3010 2001 1000量化级段内码151111 141110 131101 121100 111011 1010109100181000701116011050101表8 个段落的起点电平。
其它四位表示段内码,它的 16 种可能状态来分别代表每一段落的16 个均匀划分的量化级。
这样处理的结果,使 8 个段落被划分成 27=128 个量化级。
段落码和 8 个段落之间的关系如表 2-2 所示,段内码与 16 个量化级之间的关系见表 2-3。
上述编码方法是把压缩、量化和编码合为一体的方法。
表2-2 段落码表2-3 段内码3.PCM 编码硬件实现完成 PCM 编码的方式有多种,最常用的是采用集成电路完成 PCM 编译码,如等,集成电路的优点是电路简单,只需几个外围元件和三种时钟即可实现,不足是无法展示编码的中间过程,这种方法比较适合实际通信系统。
另一种 PCM 编码方式是用软件来实现,这种方法能分离出 PCM编码原理很有帮助;TP3057 实现 PCM 编译码,原理框图如下图所示图2-3 PCM 编译码框图集成芯片 TP3057 完成 PCM 编译码除了相应的外围电路外,主要需要 3 种时钟,即:编码时钟 MCLK、线路时钟 BCLK、帧脉冲 FS。
三个时钟需有一定的时序关系,否则芯片不能正常工作:编码时钟 MCLK:是一个定值,2048K;线路时钟 BCLK:是 64K 的n 倍,即:64K、128K、256K、512K、1024K、2048K 几种;帧脉冲FS:是 8K,脉宽必须是 BCLK 的一个时钟周期;4.PCM 编码算法实现(1)基于软件算法完成 PCM 编码,框图如下图所示:图 2-4 软件实现 PCM 编码框图本实验我们采用软件方式完成 PCM 编码、集成芯片 TP3057 完成 PCM 译码,目的是希望通过微处理器和液晶能形象展示 PCM 编码的的完整过程,即:带限、抽样、量化、编码的过程,便于学生理解 PCM 编码原理。
译码采用集成芯片 TP3057 的目的是验证软件编码是否正确。
(2)软件 PCM 编码原理在A 律13折线编码中,正负方向共16个段落,在每一个段落内有16个均匀分布的量化电平,因此总的量化电平数L 256 。
编码位数N 8 ,每个样值用8比特代码C1 ~C8来表示,分为三部分。
第一位C1 为极性码,用1和0分别表示信号的正、负极性。
第二到第四位码C2C3C4 为段落码,表示信号绝对值处于那个段落,3位码可表示8个段落,代表了8个段落的起始电平值。
上述编码方法是把非线性压缩、均匀量化、编码结合为一体的方法。
在上述方法中,虽然各段内的16个量化级是均匀的,但因段落长度不等,故不同段落间的量化间隔是不同的。
当输入信号小时,段落小,量化级间隔小;当输入信号大时,段落大,量化级间隔大。
第一、二段最短,归一化长度为1/128 ,再将它等分16段,每一小段长度为1/ 2048 ,这就是最小的量化级间隔。
根据13折线的定义,以最小的量化级间隔为最小计量单位,可以计算出13折线A 律每个量化段的电平范围、起始电平I si 、段内码对应电平、各段落内量化间隔i。
具体计算结果如表2-4所示。
表2-4 13折线A律有关参数表电平范围()段落起始电平I si()量化间隔i()段内码对应权值()C5C6C7C87512~1024 1 1 0512322561286432 6256~512 1 0 125616128643216 5128~256 1 0 012886432168 464~1280 1 1644321684 332~640 1 032216842 216~320 0 1161842110~160 0 0018421处理器自带的12位ADC,对应的寄存器采样值0~4095,采样值在0~2047,第一位 1 的极C1 的极性码为正,用1表示。
PCM的其它性码为负,用0表示;采样值在2048~4095,第一位比特我们通过量化值查表方式产生。
STM32同时将模拟信号、抽样脉冲、量化值、编码值显示在彩色液晶,学生能清晰观察到这4个信号的相互关系,如下图所示:图2-5 PCM 编码显示上图竖线表示抽样位置,图中上方数字是量化值,样值范围-2048~2048;图中下方二进制值是A 律13折线编码。
如量化值:-1600量化值为负值,故极性码C1 为:0;电平范围位于1024~2048,段落码C2C3C4为:111,;量化间隔为64,段落起始电平为1024,1600-1024 = 576;576/64=9;段内码C5C6C7 C8 为:1001那么量化值-1600对应的PCM编码值为:011110015.实验框图说明下图为 PCM 编译码原理的实验原理框图:图 2-6 PCM 编译码流程框图框图说明:本实验中需要用到以下功能单元:PCM编码由A2单元完成,模拟信号经300-3400Hz带通滤波器后送入算法处理器进行模数转换,模数转换精度12位,其AD采样后量化范围为0-4095,编码数据从2P6输出;PCM 译码由 A7 单元,译码数据从 7TP5 输入,PCM 数据经译码插值滤波,恢复信号从 7P8 输出。
图中“原始信号”按钮用于对模拟信号类型、频率、幅度; 6.各模块测量点说明(1)信源编码模块-A22P1:原始信号的输入铆孔;2P7:带限输出铆孔2P6:编码输出2TP9:抽样脉冲2TP8:PCM 编码时钟(2).信源译码模块-A77TP5:PCM 译码数据输入7TP4:恢复译码时钟7TP2:恢复帧同步时钟7TP7:PCM 译码输出(滤波前)7P8:PCM 译码输出(滤波后)三、实验任务1.PCM 编码原理验证,理解带限滤波器作用、A 律编码规则;2.PCM 编译码性能测量,观测编译码电路频响、时延、失真、增益等;四、实验步骤1.实验准备(1)获得实验权限,从浏览器进入在线实验平台;(2)选择实验内容使用鼠标在通信原理实验目录选择:PCM 编译码实验,进入 PCM 编译码实验页面。
2.PCM 编码原理验证(1)设置工作参数设置原始信号为:“正弦”,频率:1KHz,幅度设置指示为45;(2)PCM 串行接口时序观察输出时钟和帧同步时隙信号观测:用示波器同时观测抽样脉冲信号 2TP9 和输出时钟信号2TP8,观测时以 2TP9 做同步。
分析和掌握 PCM 编码抽样脉冲信号与输出时钟的对应关系(同步沿、抽样脉冲宽度等)。
(3)PCM 串行接口时序观察抽样时钟信号与 PCM 编码数据测量:用示波器同时观测抽样脉冲信号 2TP9 和编码输出信号 2P6,观测时以 2TP9 做同步。
分析和掌握 PCM 编码输出数据与抽样脉冲信号(数据输出与抽样脉冲沿)及输出时钟的对应关系。
(4)在液晶观测 PCM 编码用鼠标点击PCM编译码框图(图)右上角“!”号,液晶屏上会出现PCM编码解析图(下图),我们可以观察模拟信号、抽样脉冲、量化值、编码值等相关波形和参数,根据实验原理,研究量化值和编码值间的对应规则,即 PCM 编码规则;实验时,鼠标移至抽样脉冲上时,屏幕上显示该抽样信号的 PCM 编码值及对应的编码规则;注:PCM 编码数据从抽样脉冲的下沿开始,高位在前,考虑到商用 PCM 编译码芯片数据偶数位反转,因此编码数据(2P6)也应偶数位反转,上图中量化值 1792 的 PCM 编码值反转后为:;(5)PCM 编码输出数据观测用示波器同时观测抽样脉冲信号(2TP9)和编码输出数据端口(2P6),观测时以2TP9做同步。