第02章 热力学第一定律 2011-02-24
- 格式:ppt
- 大小:6.16 MB
- 文档页数:62
热力学第一定律热力学是一门研究能量转换与传递规律的学科,它主要研究热现象与其他物理现象之间的相互关系。
热力学第一定律,也称作能量守恒定律,是热力学的基本原理之一。
本文将介绍热力学第一定律的基本概念和应用。
一、热力学第一定律的概念热力学第一定律是能量守恒定律在热学领域的表述。
它指出:在一个孤立系统中,总能量的变化等于系统所接受的热量与所做的功之和。
这个定律可以用以下公式表示:ΔE = Q - W其中,ΔE表示系统内能的变化,Q表示系统所接受的热量,W表示系统所做的功。
二、热力学第一定律的应用1. 热力学循环热力学循环是指一系列经历几个步骤的热能转换过程,最后回到初始状态的过程。
根据热力学第一定律,一个理想的热力学循环的净输入输出功为零,即总输入热量等于总输出功。
这一定律被广泛应用于热能转换设备的设计和研究中。
2. 热机效率热机效率是衡量热能转化的性能指标,是指输出功与输入热量之比。
根据热力学第一定律,对于一个正循环热机,其效率可以通过以下公式计算:η = 1 - Qc / Qh其中,η表示热机效率,Qc表示效率造成的能量损失,Qh表示输入的热量。
3. 热力学过程热力学过程是一个系统经历的状态变化过程,根据热力学第一定律,对于一个孤立系统来说,其内能的变化等于系统所接受的热量和所做的功之和。
这一定律不仅适用于准静态过程,也适用于非准静态过程,为热力学过程的分析提供了基础。
4. 热力学平衡热力学平衡是指在一个封闭系统中,各部分之间没有能量的净交换,即系统内外没有能量的流动。
根据热力学第一定律,当一个系统达到热力学平衡时,系统内能的变化为零,即ΔE = 0。
热力学平衡在热力学研究中起着重要的作用。
三、总结热力学第一定律是热力学的基本原理之一,它描述了系统能量转换与传递的规律。
在热力学循环、热机效率、热力学过程和热力学平衡等方面都有广泛的应用。
热力学第一定律的核心是能量守恒定律,对于热学领域的研究具有重要意义。
热力学第一定律热力学是研究能量转化和能量传递规律的学科,其核心定律是热力学第一定律。
热力学第一定律是指能量守恒定律,亦即能量既不可以被创造也不可以被毁灭,只能由一种形式转化为另一种形式。
本文将详细探讨热力学第一定律的原理和应用。
一、热力学第一定律的原理热力学第一定律的原理可以用以下数学表达式表示:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所做的功。
根据能量守恒定律,系统内能的变化等于系统所吸收的热量减去系统所做的功。
这个表达式也可以解释为:系统内能的增加等于热量增加减去工作所做的减少。
二、热力学第一定律的应用热力学第一定律在热力学领域的应用非常广泛,下面将介绍几个常见的应用。
1. 热功等价关系根据热力学第一定律,热量和功可以相互转化。
当系统吸收热量时,系统内能增加,从而可以转化为对外做功;反之,当系统对外做功时,系统内能减少,相应地会释放热量。
这种热量和功的转化关系被称为热功等价原理。
2. 热机效率热机是指将热能转化为机械能的装置,例如蒸汽机、内燃机等。
根据热力学第一定律,热机的效率可以用以下公式表示:η = (W_net / Q_in) * 100%其中,η表示热机的效率,W_net表示净功,Q_in表示输入的热量。
热机的效率即净功和输入热量的比值,通常以百分比表示。
通过热力学第一定律的应用,可以评估和改善热机的性能。
3. 热力学循环热力学循环是指在特定条件下,将工质(如气体、液体等)依次进行一系列热量转换和功转换后回到起始状态的过程。
常见的热力学循环有卡诺循环和斯特林循环等。
热力学第一定律在热力学循环研究中起到了重要的作用,通过应用该定律可以分析循环系统内能的变化和热量转化情况,从而优化循环效率。
4. 热传导热传导是指通过物质内部的振动和碰撞,热能从高温区传递到低温区的现象。
根据热力学第一定律,热能传导的过程中不会产生或消耗热量,能量守恒。
通过热力学第一定律的应用,可以计算热传导的速率和热量的流动情况,为热传导的工程应用提供理论依据。
第二章热力学第一定律1.1概述本章的主要内容是通过热力学第一定律计算系统从一个平衡状态经过某一过程到达另一平衡状态时,系统与环境之间交换的能量。
、恒压条件下,△H =Q p 。
系统状态变化时,计算系统与环境间交换的能量状态),m dT1.2主要知识点1.2.1状态函数的性质状态函数也称热力学性质或变量,其值由系统所处的状态决定。
当系统的状态变化时,状态函数Z 的改变量Z 只决定于系统始态函数值1Z 和终态函数值2Z ,而与变化的途径过程无关。
即21Z Z Z 如21T T T ,21U U U 。
另外,状态函数也即数学上的全微分函数,具有全微分的性质。
例如,(,)U f T V ,则d (/)d (/)d V T U U T T U V V热力学方法也即是状态函数法,所谓状态函数法就是利用状态函数①改变值只与始、末态有关而与具体途径无关以及②不同状态间的改变值具有加和性的性质,即殊途同归,值变相等;周而复始,其值不变的特点,用一个或几个较容易计算的假设的变化途径代替一个难以计算的复杂变化过程,从而求出复杂的物理变化或化学变化过程中系统与环境之间交换的能量或其它热力学状态函数的变化值。
1.2.2平衡态在一定条件下,将系统与环境隔开,系统的性质不随时间改变,这样的状态称为平衡态。
系统处于平衡态一般应满足如下四个条件:①热平衡:系统各点温度均匀;②力学平衡:系统各点压力相等;③相平衡:即宏观上无相转移;④化学平衡:化学反应已经达到平衡。
应该特别注意平衡态与稳态的不同。
一个处于热力学平衡态的系统必然达到稳态,即各热力学性质不随时间而变化。
但是处于稳态的系统并不见得达到平衡态。
稳态只不过是系统的各物理量不随时间变化而已。
例如,稳定的热传导过程,系统各处温度并不相等,但不随时间变化;还有,稳定的扩散过程,各点浓度并不相等,但却不随时间变化。
1.2.3热系统与环境间由于温差而交换的能量。
热是物质分子无序运动的结果,是过程量。
第二章热力学第一定律§2-1 热力学概论1.热力学热力学是研究能量相互转换过程中所应遵循的规律的科学。
它所研究的基本问题有:(1)利用热一律解决各种变化过程的能量效应问题。
(2)利用热二律解决某指定过程的可能性、方向和限度问题。
如,在一定的条件下,某过程能否自动进行,如能进行,进行到什么程度。
(3)利用热第三律和热力学数据解决有关平衡计算问题。
热力学的基础主要是热力学第一、第二定律,它们是人类经验的总结,具有牢固的实践基础、严密的逻辑推理。
之后,又建立了热力学第三律和热力学第零定律。
2. 化学热力学化学热力学,就是热力学基本原理在化学过程以及与化学过程密切相关的物理过程(化学-物理过程)中的应用。
主要研究的问题是:(1)化学过程以及化学-物理过程中的能量效应问题。
(2)化学反应的方向和限度问题、相平衡和化学平衡等问题。
具体就是:判断在一定条件下,某一反应能否进行,如能进行,限度如何;确定一定条件下,某物质的稳定性;确定某一反应取得最大产率的条件,等等。
3. 热力学的局限性(1)热力学的研究对象是具有大量微观粒子的集合体-宏观物体,研究物质的宏观性质,对物质的微观性质-个别粒子行为,无从作出解答。
结论具有统计性。
(2)热力学只考虑平衡问题以及变化前后总结果。
热力学只要知道系统始、终态以及过程外界条件,就可进行计算,从而得出结论,无需知道物质的微观结构以及过程进行的机理,因而热力学简易而方便地得到广泛应用。
正因为如此,热力学对过程能否进行的判断,只知其然,而不知其所以然,不知变化的根本原因和变化的具体途径。
(3)热力学没有时间的概念,不涉及过程进行的速度问题。
它只指出过程能否发生以及进行到什么程度,至于什么时候发生,什么时候终止,需多少时间无法预知。
§2-2几个基本概念1.系统与环境热力学研究问题时,首先要确定研究对象。
从周围其它部分划分出来的作为研究对象的那一部分物质或空间,叫系统、体系或物系。