22.3.1圆的对称性11
- 格式:ppt
- 大小:10.29 MB
- 文档页数:25
《圆的对称性》圆日期:目录•圆的定义与基本性质•圆的对称性概述•圆的轴对称性•圆的中心对称性•圆的对称性在日常生活中的应用•总结与展望圆的定义与基本性质定义圆是平面上所有与给定点(称为圆心)距离相等的点的集合。
几何表示通常,我们用圆心O和半径r来表示一个圆,记为⊙O(r)。
圆的定义圆中心的点,记作O,是圆的对称中心。
圆心、半径与直径圆心从圆心到圆上任一点的线段,记作r,长度等于圆的半径。
半径通过圆心,且两个端点都在圆上的线段,记作d,长度等于半径的两倍,即d=2r。
直径圆的基本性质同心性:所有与给定圆同心的圆都共享同一个圆心。
等距性:圆上任意两点到圆心的距离相等。
这些基本性质不仅定义了圆,也为后续研究圆的性质和其在各种应用中的作用奠定了基础。
圆周角定理:同弧所对的圆周角相等,等于圆心角的一半。
对称性:圆具有旋转对称性,任何经过圆心的角度旋转后,圆保持不变。
圆的对称性概述对称性,在几何学中,是指图形在某个变换下保持不变的性质。
例如,一个图形在旋转、翻折等操作后,如果与原图形重合,那么这个图形就具有对称性。
对称性定义几何变换包括旋转、翻折、平移等。
如果一个图形在这些变换下保持不变,我们说这个图形具有相应的对称性。
变换的种类对称性的定义实际应用圆的对称性在建筑设计、艺术设计、工程学等领域都有广泛应用,对这些应用的理解和分析需要深入研究圆的对称性。
几何基本图形圆是最基本的几何图形之一,对于理解更复杂的几何形状和结构至关重要。
数学理论圆的对称性研究也有助于推动数学理论的发展,如群论、拓扑学等。
为何研究圆的对称性圆的对称性的种类旋转对称性:圆具有旋转对称性,即无论沿着哪个方向旋转,只要旋转的角度相同,都能与原始图形重合。
平移对称性:由于圆是各向同性的,它在任何方向的平移都不会改变它的形状,这也是圆的一种对称性。
翻折对称性:圆也具有翻折对称性,即无论沿着哪条直径翻折,都能与原始图形重合。
总结起来,圆的对称性是其在各个方向上均匀性的体现,这也是它在几何学和应用领域中重要地位的原因之一。
圆的对称性—知识讲解(基础)【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2. 圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3. 圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015•巴中模拟)如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.【答案与解析】解:∵E为弧AC的中点,∴OE⊥AC,∴AD=AC=4cm,∵OD=OE﹣DE=(OE﹣2)cm,OA=OE,∴在Rt△OAD中,OA2=OD2+AD2即OA2=(OE﹣2)2+42,又知0A=OE,解得:OE=5,∴OD=OE﹣DE=3cm.【总结升华】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形.举一反三:【变式】如图,⊙O中,弦AB⊥弦CD于E,且AE=3cm,BE=5cm,求圆心O到弦CD 距离。