聚类分析与主成分分析SAS的程序(DOC)
- 格式:doc
- 大小:389.46 KB
- 文档页数:11
广东金融学院实验报告课程名称:数据分析与SAS实验St 吐i sties for Remova I , OF - 3r 20IEVariable Label Partial Fl-SquareF Yalue Pr 》F code cod&0.007S 5.36 0.0011 CaM 0.8708 4SG0.46 <.C0C1 Car)7 0.0414 23.02 <.C001 Can®a.no302.020J0S7No variables can be removedStatistics for Entry. OF = 8, 2015No further steps are possible.结果分析:通过逐步判别过程最后保留的变量为canl can7 can8;can4 can5 can6.4.判别分析(Stepdise 过程)VariableLabelPart SalR-SquareF ValuePr > F Tolerance Can20.0010o.es 0,5004 0.963$C4h3 0.00110.720.5393 0.9G31Can40.0Q15 1.040,3745 0.3540o,oonU25 0.283? 0.969Can6(1.00110.750.5221O.SENo variables canbe entered^0.60.8 1.)3.逐步判断SAS 系蛻The STEPDISC Procedure Steprise Select ion! Step 52011年12月0汨 星期五下^08^23^42秒12然后去掉 can2 can3 can4codeSemi-Partial R-Squaredhlumber of Observ^it ions and Percent Classified into CLUSTERFrom CLUSTER1234ToUI1 W0a01W100.CO O.QO0.000.00100.002138戒504卿30.7$68 J E 1.110,00100.00g il0S60昶o.co O.DO loc.oa0.00100.00400630360.000.00It.6?83.5?lOOi.ftO结果分析:从上面判别分析结果中可以看出,上面聚类分析分成四类中第二类中有143个误判,误判概率为31.85%.第四类中有6个误判,误判概率为16.67%.五、实验总结(包括心得体会、问题回答及实验改进意见,可附页)通过这次试验我学会了运用SAS系统中的Stepdisc和Cluster过程进行判别分析和聚类分析,并基本掌握它们的一般方法以及如何结合使用•六、教师评语附程序:导入数据data asd;set aa;if xj> 0;run ;预处理proc aceclus data =asd out =ace p= 0.03 noprint var xj hsl syd hangye zongjiner liutsz mgsy quanyibi;run聚类分析proc cluster data =ace outtree =TREE method =ward cccpseudo pr int=15 ;var can1 can2 can3 can4 can5 can6 can7 can8;id code;run ;作谱系图axis order =( 0 to 1 by 0.2 );proc tree data =tree out =new n clusters =4 graphics haxis =axis1 horiz ontalcopy can1 can2 can3 can4 can5 can6 can7 can8;id code;run ;作散点图:proc gplot data =n ew;haxis=-3.0to41 by0.5vaxis =- 0.2to0.15by0.0005 plot can 1*ca n3 =cluster/run ;逐步判别:proc gplot data =n ew;plot can 1*ca n2 =cluster/haxis=-4.0to44 by0.05vaxis =- 0.1to0.25by0.005 run ;判别分析proc discrim data =new outstat=n ewstat method=normal pool =yes list crossvalidate class cluster;priors proporti onal ;var can1 can2 can3 can4 can5 can6 can7 can8;run ;。
一、主成分分析1、数据引入PROC IMPORT OUT= WORK.shuruDA TAFILE= "E:\****\****\数据分析\试验\shouru.xls"DBMS=EXCEL2000 REPLACE;GETNAMES=YES;RUN;2、程序proc princomp data=shouru out=defen;var x1-x9;run;proc sort data=defen;by prin1 prin2;run;proc print data=defen;run;二、判别分析程序2.2方法1:先改变shuru 数据的结构,把待判的数据去掉,再引入数据data shouru1;input diqu $ x1-x9;cards;广东211.3 114 41.44 33.2 11.2 48.72 30.77 14.9 11.1西藏175.93 163.8 57.89 4.22 3.37 17.81 82.32 15.7 0;run;proc discrim data=shourutestdata=shouru1 method=normallist all crosslist testlist;class leixing;var x1-x9;run;方法2:原shuru数据不变,直接判别,但此法虽可判断待判的两省属于那类,但无法给出误判率;proc discrim data=shouruout=a1outstat=a2 outcross=a3method=normallist all crosslist testlist;class leixing;var x1-x9;run;程序2.3proc discrim data=shourutestdata=shouru1 method=normallist all crosslist crossvalidate testlist;class leixing;var x1-x9;priors prop;run;三、聚类分析程序proc cluster data=yjshr method=sin outtree=y1 ;/*最短距离法*/ var x1-x9;run;proc tree data=y1 nclusters=3 out=z1;run;proc print data=z1;run;proc cluster data=yjshr method=com outtree=y2 ;/*最长距离法*/ var x1-x9;run;proc tree data=y2 nclusters=3 out=z2;run;proc print data=z2;run;proc cluster data=yjshr method=ave outtree=y3 ;/*类平均距离法*/ var x1-x9;run;proc tree data=y3 nclusters=3 out=z3;run;proc print data=z3;run;proc fastclus data=yjshr out=a1maxc=3 cluster=c distance list; /*快速聚类分三类情况*/ proc plot;plot x2*x1=c;run;。
SAS聚类分析程序:聚类分析过程命令Data pgm33b;Input x1-x3;cards;9.30 30.55 8.7(样品数据)1.85 20.66 12.75;Proc cluster standard method= single nonormnosquare ccc pseudo out=tree;Proc tree data=tree horizontal spaces=1; run;Data pgm33bInput x1-x4;cards;9.30 30.55 8.7(样品数据)1.85 20.66 12.75;Proc cluster standard method=complete nonormnosquare ccc pseudo out=tree;Proc tree data=tree horizontal spaces=1; run;刷黑该块过程命令程序,提交便计算出相应聚类结果。
语句解释: 聚类指定的方法是在“method=”后面填入一个相应的选择项,它们是:single(最短距离法),complete(最长距离法),average(类平均法), centroid(重心法),median(中位数法),ward(离差平方和法),flexible (可变类平均法),density(非参数概率密度估计法),eml(最大似然法),twostage(两阶段密度法)。
主成分分析程序:1. 主成分分析实验程序例:主成分分析过程命令data socecon;input x1-x6;cards;16369 3504887 66047 2397739 198.46 104395513379 566257 4744 456100 76.96 2026379707 397183 1303 887034 18.88 10594810572 414932 1753 751984 27.67 12826112284 876667 18269 1015669 60.09 3327009738 604935 5822 1307908 30.54 22279916970 778830 2438 630014 76.64 27220310006 617436 13543 866013 58.59 22279410217 636760 9967 996912 34.55 16102520946 1380781 16406 526527 150.15 42693711469 720416 7141 853778 43.41 15727414165 1504005 29413 1025363 149.17 56889912795 966188 11580 723278 45.13 16531912762 584696 13583 343107 65.31 16645412008 501780 4986 278310 15.04 86575 11208 981367 13364 1295189 79.8 337947 12719 716491 4448 408796 15.68 99949 ;proc princomp out=aaa prefix=z;var x1-x6; run;data a2;set aaa;proc print;var z1-z2 ;run;。
实验三我国各地区城镇居民消费性支出的主成分分析和聚类分析(王学民编写)一、实验目的1.掌握如何使用SAS软件来进行主成分分析和聚类分析;2.看懂和理解SAS输出的结果,并学会以此来作出分析;3.掌握对实际数据如何来进行主成分分析;4.对同一组数据使用五种系统聚类方法及k均值法,学会对各种聚类效果的比较,获取重要经验;5.掌握使用主成分进行聚类二、实验内容数据集sasuser.examp633中含有1999年全国31个省、直辖市和自治区的城镇居民家庭平均每人全年消费性支出的八个主要变量数据。
对这些数据进行主成分分析,可将这31个地区的前两个主成分得分标示于平面坐标系内,对各地区作直观的比较分析。
对同样的数据使用五种系统聚类方法及k均值法聚类,并对聚类效果作比较。
最后,对主成分的图形聚类和正规聚类的效果进行比较。
实验1进行主成分分析,根据前两个主成分得分所作的散点图对31个地区进行比较分析。
实验2分别使用最长距离法、中间距离法、两种类平均法、离差平方和法和k均值法进行聚类分析,并比较其聚类效果。
实验3主成分聚类,并与上述正规的聚类方法进行比较三、实验要求1.用SAS软件的交互式数据分析菜单系统完成主成分分析;2.完成五种系统聚类方法及k均值法,比较其聚类效果;3.根据前两个主成分得分的散点图作直观的聚类,并与上述正规的聚类方法进行比较。
四、实验指导1.进行主成分分析在inshigt中打开数据集sasuser.examp633,见图1。
选菜单过程如下:在图1中选分析⇒多元(Y X)⇒在变量框中选x1,x2,x3,x4,x5,x6,x7,x8(见图2)⇒Y⇒选输出⇒选主分量分析,主分量选项(见图3)⇒在图4中作图中的选择(主成分个数缺省时为“自动”选项,此时只输出特征值大于1的主成分)⇒确定⇒确定⇒确定图1图2图3图4 得到如图5、图6所示的结果:图5图6从图5可以看出,前两个和前三个主成分的累计贡献率分别达到80.6%和87.8%,第一主成分1ˆy 在所有变量(除在*2x 上的载荷稍偏小外)上都有近似相等的正载荷,反映了综合消费性支出的水平,因此第一主成分可称为综合消费性支出成分。
spss聚类分析步骤什么是聚类分析聚类分析是一种通过将相似的样本数据进行分组的方法,以便于研究者可以更好地理解数据中的模式和结构。
在聚类分析中,研究者希望将数据样本划分为若干个互不重叠的群体,每个群体内的样本相似度较高,而不同群体之间的样本相似度较低。
spss的聚类分析功能spss是一种功能强大的统计分析软件,它提供了丰富的数据分析功能。
在spss中,可以使用聚类分析功能来进行数据样本的分组和分类。
聚类分析功能可以帮助研究者发现数据中的模式、规律和群体。
使用spss的聚类分析功能,可以根据变量之间的相似性将样本分成若干个组,从而更好地理解数据。
spss聚类分析步骤以下是使用spss进行聚类分析的基本步骤:1.打开数据文件:首先,需要打开包含要进行聚类分析的数据的spss数据文件。
可以通过点击菜单栏的“文件”选项打开数据文件,或者通过键盘快捷键“Ctrl + O”。
2.转换变量类型:在进行聚类分析之前,需要将数据中的所有变量转换为合适的类型。
例如,如果有一些分类变量,需要将其转换为因子变量。
可以通过点击菜单栏的“数据”选项,然后选择“转换变量类型”来进行变量类型的转换。
3.选择变量:在进行聚类分析之前,需要确定要使用的变量。
可以选择所有的变量,也可以只选择特定的变量。
选择变量可以通过点击菜单栏的“数据”选项,然后选择“选择变量”来进行。
4.进行聚类分析:选择好变量之后,可以进行聚类分析。
可以通过点击菜单栏的“分析”选项,然后选择“聚类”来进行聚类分析。
5.配置聚类分析参数:在进行聚类分析之前,需要配置一些参数。
例如,确定要使用的聚类方法和相似性测度。
可以根据具体的研究目的和数据特点来选择合适的参数。
6.运行聚类分析:配置好参数之后,可以点击“确定”按钮来运行聚类分析。
spss会根据选择的变量和参数,对样本数据进行聚类,并生成相应的结果。
7.分析聚类结果:在进行聚类分析之后,可以对聚类结果进行进一步的分析。
SAS数据分析应用实例及相关程序正态性检验及T检验【例1】已知玉米单交种群105的平均穗重为300g。
喷药后,随机抽取9个果穗,其穗重分别为:308,305,311,298,315,300,321,294,320g。
问喷药后与喷药前的果穗平均重量之间的差别是否具有统计学意义?2.配对T检验【例2】对血小板活化模型大鼠以ASA进行实验性治疗,以血浆TXB2(ng/L)为指标,其结果如表2-1,试进行统计分析。
表2-1 2的变化(ng/L)3. 秩和检验【例3】探讨正己烷职业接触人群生化指标特征,用气相色谱法检测受检者尿液2,5-己二酮浓度(mg/L),为该人群的健康监护寻找动态观察依据。
正己烷职业接触组(A组)为广州市印刷行业彩印操作位作业人员64 人,其均在同一个大的车间轮班工作,工作强度相当;对照组(B组)选同厂其他车间工人53 人。
两组人员除接触正己烷因素不同外,生活水平、生活习惯、劳动强度、吸烟、饮酒情况基本相同。
问两组间尿液中2,5-己二酮浓度(mg/L)平均含量之间的差别是否有统计学意义?数据如下所示。
正己烷职业接触组:2.89、1.85、2.27、2.07、1.62、1.77、2.53、2.02、2.07、2.07、1.93、3.01、1.93、1.88、1.55、1.36、2.23、2.55、1.73、2.65、1.95、2.45、1.41、2.46、2.38、1.55、2.16、2.01、1.37、2.16、2.00、2.07、2.57、2.11、2.37、1.39、2.18、2.33、1.46、2.16、2.03、2.96、2.21、2.00、2.58、2.19、2.41、1.68、1.93、1.93、1.93、1.87、1.74、2.70、1.83、2.17、2.52、2.09、2.28、1.65、1.19、1.58、0.89、1.65对照组:0.27、0.36、0.26、0.16、0.49、0.58、0.16、0.45、0.22、0.25、0.66、0.05、0.31、0.12、0.51、0.30、0.37、0.14、0.28、0.33、0.36、0.51、0.37、0.36、0.47、0.34、0.72、0.39、0.55、0.17、0.27、0.33、0.30、0.26、0.50、0.17、0.22、0.18、0.17、0.62、0.27、0.26、0.34、0.17、0.61、0.42、0.39、0.28、0.36、0.43、0.24、0.15、0.194.两独立正态总体的检验【例4】一个小麦新品种经过6代选育,从第5代(A组)中抽出10株,株高为:66、65、66、68、62、65、63、66、68、62(cm),又从第6代(B组)中抽出10株,株高为:64、61、57、65、65、63、62、63、64、60(cm),问株高性状是否已经达到稳定?5.单因素K(K≥3)水平方差分析【例5】从津丰小麦4个品系中分别随机抽取10株,测量其株高(cm),数据如下所示,问不同品系津丰小麦的平均株高之间的差别是否具有统计学意义?品系0-3-1:63、65、64、65、61、68、65、65、63、64品系0-3-2:56、54、58、57、57、57、60、59、63、62品系0-3-3:61、61、67、62、62、60、67、66、63、65品系0-3-4:53、58、60、56、55、60、59、61、60、596. 双因素无重复试验的方差分析【例6】某医生欲研究回心草各单体成分对试验性心肌缺血血流动力学的影响,选取健康新西兰家兔若干只,体重(2.0±0.3)kg,雌雄不计,将其随机分成9组:胡椒碱高剂量组(100nmol/L)、胡椒碱中剂量组(10nmol/L)、胡椒碱低剂量组(1nmol/L)、胡椒酸甲酯高剂量组(100nmol/L)、胡椒酸甲酯中剂量组(10nmol/L)、胡椒酸甲酯低剂量组(1nmol/L)、咖啡酸甲酯高剂量组(100nmol/L)、咖啡酸甲酯中剂量组(10nmol/L)、咖啡酸甲酯低剂量组(1nmol/L)。
中药聚类分析spss步骤操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!中药聚类分析在SPSS中的操作流程详解中药,作为中国传统医学的重要组成部分,其复杂性和多样性使得对其进行科学分类和研究显得尤为重要。
系统工程论文主成分分析与聚类分析姓名:学号:班级:学院:指导教师:数据为2012年全国各省城镇民平均每人全年家庭收入来源的各项数据。
数据来源位国家统计局/easyquery.htm?cn=E0103表1-1 2012年全国各省城镇民平均每人全年家庭收入来源一 主成分分析主成分分析(Principal Component Analysis ,PCA ), 是一种统计方法。
通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
其分析步骤如下:1.1.1 首先将样本数据写成矩阵的形式⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=6,312,311,310262221161211Y Y Y Y Y Y Y Y Y Y (1)对样本进行标准化处理 标准化处理计算式位∑∑∑===⎪⎭⎫⎝⎛--=311311311311311311i i ij ij i ijij ij Y Y Y Y X (2)经过标准化处理后可得到标准化矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=6,312,3101,31262221161211X X X X X X X X X X (3)数据标准化是为了消除量纲的影响。
矩阵元素如表1-2所示,标准化矩阵是通过MATLAB 程序实现,源程序在文章最后。
表1-2 标准化数据1.1.2 计算6个指标的协方差矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==6,312,311,31262221161211311r r r r r rr r r X X R T (4)矩阵(4)是一个实对称矩阵。
经计算,矩阵(4)的每一个元素如表格3所示。
表1-3 相关系数矩阵1.1.3 求相关系数的特征矩阵和特征值,表1-4 特征向量系数表1-5 特征值表1-6 特征值及主成分贡献率一般区累计贡献率为85%-95%的特征值1λ,2λ分别对应第一主成分和第二主成分1.1.4计算主成分载荷二,聚类分析法聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程。
第二十章 聚类分析SAS 程序设计一、聚类基本思想1. 什么是聚类分析聚类分析(cluster analysis):是一种将样本数据按一定科学方法分为若干类的统计方法。
聚类使得在同一类的事物具有高度的同质性(homogeneity),不同类事物具有高度的异质性(heterogeneity)。
聚类分析是为达到“物以类聚”目的分类。
聚类分析是研究事物的分类,事先对事物个体没有分类信息,完全根据数据的内在规律按相近原则划分新的类别。
对一个指标分类相对容易,当有多个指标,要进行分类就不是很容易了,对于事物按多指标同时考虑进行分类需要进行多元分类,即聚类分析。
聚类分析是依赖一批样本,不知道它们的分类,甚至连分成几类也不知道,希望用某种方法把观测样本进行合理的分类,使得同一类的观测比较接近,不同类的观测相差较多。
聚类分析依赖于对观测样本间的接近程度(距离)或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。
聚类是相将近或相似的个体归为一类,聚类的实质就是相似性衡量。
类就是相似元素的集合。
聚类分析所要研究的是(1)、如何衡量事物之间的相似性---相似性度量。
(2)、如何将相似事物归为一类---聚类方法。
(3)、分类后如何描述这些类。
如何根据专业知识对所分的真实的类,自然客观的而非主观加工的类,进行经济意义或社会意义的解释。
2、相似度量聚类分析就是要找出具有相近程度的样本聚为一类;相似性度量的种类有多种,主要衡量这个“相近程度”的有距离、相似系数、相关系数、夹角余弦等。
距离的四个条件1.(,)(,)2.(,)0,3.(,)0,4.(,)(,)(,)d P Q d Q P d P Q Q Pd P Q Q Pd P Q d Q R d P R =>≠==≤+若若相似性度量的结果是得到一个相似测度矩阵。
若样本容量为n,n个样本的相似测度矩阵为n*n的对称矩阵。
样本间距离用欧式距离Euclid),马式距离(Mathalanobis),相关系数,夹角余弦等。
第一部分:基本统计方法注:主要讲述过程:means(描述性统计);freq(算频数表);univariate(检验);anova(方差分析);ttest(检验);glm(广义线性回归);npar1way(非参,wilcox)一:计量资料的统计分析方法1.01均值+频数表+百分位数+正态检验、茎叶图、箱形图、正态概率图data ex2_1;input x@@;low=2.3;dis=0.3;z=x-mod(x-low,dis);cards;3.964.23 4.42 3.595.12 4.02 4.32 3.72 4.76 4.164.61 4.263.774.20 4.36 3.07 4.89 3.97 4.28 3.64 4.66 4.044.55 4.254.63 3.91 4.41 3.525.03 4.01 4.30 4.19 4.75 4.144.57 4.264.56 3.79 3.89 4.21 4.95 3.98 4.29 3.67 4.69 4.124.56 4.264.66 4.28 3.83 4.205.24 4.02 4.33 3.76 4.81 4.173.96 3.274.61 4.26 3.96 4.23 3.76 4.01 4.29 3.67 3.39 4.124.27 3.614.98 4.24 3.83 4.20 3.71 4.03 4.34 4.69 3.62 4.184.26 4.365.28 4.21 4.42 4.36 3.66 4.02 4.31 4.83 3.59 3.973.964.495.11 4.20 4.36 4.54 3.72 3.97 4.28 4.76 3.21 4.044.56 4.254.92 4.23 4.47 3.605.23 4.02 4.32 4.68 4.76 3.694.61 4.263.894.21 4.36 3.425.01 4.01 4.29 3.68 4.71 4.134.57 4.264.035.46 4.16 3.64 4.16 3.76;/*freq语句,算频数表*/proc freq;tables z;run;proc means data=ex2_1n mean std stderr clm;var x;run;data ex2_1;input x f@@;cards;3.07 23.27 33.47 93.67 143.87 224.07 304.27 214.47 154.67 104.87 65.07 45.27 2;run;proc means;freq f;var x;run;/*把freq f改成weight f就是把f当权重或频数来算,f则在0,1之间*//*计算x的95%的置信区间*/proc univariate data=ex2_1;var x;output out=pctpctlpre=ppctlpts=2.5 97.5;run;proc print data=pct;run;/*正态检验、茎叶图、箱形图、正态概率图*/proc univariate data=ex2_1normalplot;var x;run;/*Extreme Observation显示的值是最小的5个极值和最大的5个极值*/1.02几何均值data ex2_5;input x f@@;y=log10(x);cards;10 420 340 1080 10160 11320 15640 141280 2;proc means noprint;/*调用means过程,不显示结果*/var y;freq f;output out=b/*结果输出到数据集b中*/mean=logmean;/*把数据集b中均数的变量名mean改为logmean*/run;data c;/*新建数据集c*/set b;/*调用数据集b*/g=10**logmean;/*计算变量logmean的反对数,该值就是x的几何均数,将该值赋值给变量g*/ proc print data=c;var g;run;/*这个是计算平通平均数的值*/proc means data=ex2_5;var x;freq f;run;1.03已知均值和方差求置信区间-单样本+单样本与总体/*单样本*/data ex3_2;n=10;mean=166.95;std=3.64;t=tinv(0.975,n-1);pts=t*std/sqrt(n);lclm=mean-pts;uclm=mean+pts;proc print;var lclm uclm;run;/*单样本与总体均值*/data ex3_5;n=36;/*样本量*/s_m=130.83;/*样本均值*/std=25.74;/*样本标准差*/p_m=140;/*总体均值*/df=n-1;/*自由度*/t=(s_m-p_m)/(std/sqrt(n));p=(1-probt(abs(t),df))*2;/*根据t值计算p值*/run;proc print;var t p;run;1.06双样本均值相等检验+两组分开+两组一起算+两组样本量不同/*双样本分开算*/data ex3_4;n1=29;n2=32;m1=20.10;m2=16.89;s1=7.02;s2=8.46;ss1=s1**2*(n1-1);ss2=s2**2*(n2-1);sc2=(ss1+ss2)/(n1+n2-2);se=sqrt(sc2*(1/n1+1/n2));t=tinv(0.975,n1+n2-2);lclm=(m1-m2)-t*se;uclm=(m1-m2)+t*se;proc print;var t se lclm uclm;run;/*双样本相减后再算*//*用MEANS作配对资料两个样本均数比较的t检验*/data ex3_6;input x1 x2 @@;d=x1-x2;cards;0.840 0.5800.591 0.5090.674 0.5000.632 0.3160.687 0.3370.978 0.5170.750 0.4540.730 0.5121.200 0.9970.870 0.506;proc means t prt;var d;run;/*用UNIVARIATE过程作配对资料两样本均数比较的t检验*/ proc univariate data=ex3_6;var d;run;/*双样本两组样本量不同*/data ex3_7;input x@@;if _n_<21 then c=1;/*当观测数小于21时,变量c的值为1,表示试验组*/else c=2;/*其余变量c的值为2,表示对照组*/cards;-0.70 -5.60 2.00 2.80 0.70 3.50 4.00 5.80 7.10 -0.502.50 -1.60 1.703.00 0.404.50 4.60 2.50 6.00 -1.403.70 6.50 5.00 5.20 0.80 0.20 0.60 3.40 6.60 -1.106.00 3.80 2.00 1.60 2.00 2.20 1.20 3.10 1.70 -2.00;proc ttest;/*调用ttest过程*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;1.08-1.13anova方差分析过程+一维分组+二维分组+三维分组/*只有一组分组因素*/data ex4_2;input x c @@;cards;3.53 1 2.42 2 2.86 3 0.89 44.59 1 3.36 2 2.28 3 1.06 44.34 1 4.32 2 2.39 3 1.08 42.66 1 2.34 2 2.28 3 1.27 43.59 1 2.68 2 2.48 3 1.63 43.13 1 2.95 2 2.28 3 1.89 43.30 1 2.36 2 3.48 3 1.31 44.04 1 2.56 2 2.42 3 2.51 43.53 1 2.52 2 2.41 3 1.88 43.56 1 2.27 2 2.66 3 1.41 43.85 1 2.98 2 3.29 3 3.19 44.07 1 3.72 2 2.70 3 1.92 41.37 12.65 2 2.66 3 0.94 43.93 1 2.22 2 3.68 3 2.11 42.33 1 2.90 2 2.65 3 2.81 42.98 1 1.98 2 2.66 3 1.98 44.00 1 2.63 2 2.32 3 1.74 43.55 1 2.86 2 2.61 3 2.16 42.64 1 2.93 23.64 3 3.37 42.56 1 2.17 2 2.58 3 2.97 43.50 1 2.72 2 3.65 3 1.69 43.25 1 1.56 2 3.21 3 1.19 42.96 13.11 2 2.23 3 2.17 44.30 1 1.81 2 2.32 3 2.28 43.52 1 1.77 2 2.68 3 1.72 43.93 1 2.80 2 3.04 3 2.47 44.19 1 3.57 2 2.81 3 1.02 42.96 1 2.97 23.02 3 2.52 44.16 1 4.02 2 1.97 3 2.10 42.59 1 2.31 2 1.68 33.71 4;proc anova;/*调用anova过程*/class c;/*定义分组变量为c*/model x=c;/*定义模型,分析g对x的影响*/means c/dunnett;/*用LSD法对多组均数过行两两比较*/means c/hovtest;/*作方差齐性检验,默认levene法,p值大于0.05,则认为是g组方差相等*/run;quit;/*有两组分组因素*/data ex4_4;input x a b@@;cards;0.82 1 10.65 2 10.51 3 10.73 1 20.54 2 20.23 3 20.43 1 30.34 2 30.28 3 30.41 1 40.21 2 40.31 3 40.68 1 50.43 2 50.24 3 5;proc anova;class a b;/*定义分组变量a和b*/model x=a b;/*定义模型,分析a和b对x影响*/means a/snk;/*用SNK法对变量a的多组均数进行两两比较*/run;quit;1.15嵌套设计资料的方差分析glm过程一级因素+二组因素/*嵌套设计资料的方差分析*/data ex11_6;input x a b @@;cards;82 1 184 1 191 1 288 1 285 1 383 1 365 2 461 2 462 2 559 2 556 2 660 2 671 3 767 3 775 3 878 3 885 3 989 3 9;proc glm;/*调用glm过程*/class a b;/*定义分组变量为a和b*/model x=a a(b);/*定义模型,以a为一组因素,b为二级因素*/run;quit;1.17重复测量资料的方差分析data ex12_2;input t1 t2 g@@;/*确定变量名称,t1和t2分别为两个时间点的分析变量,g为处理因素变量,b为区组变量*/cards;130 114 1124 110 1136 126 1128 116 1122 102 1118 100 1116 98 1138 122 1126 108 1124 106 1118 124 2132 122 2134 132 2114 96 2118 124 2128 118 2118 116 2132 122 2120 124 2134 128 2;proc glm;/*调用glm过程*/class g;/*定义分组变量g*/model t1 t2=g;/*定义模型,分析g对变量t1和t2的影响*/repeated time 2/*命名重复因子为time,有2个水平*/contrast(1)/*表示以第一时间点为对照点*//summary;/*考察不同时间点与对照时间点比较的结果*/run;quit;data ex12_3;input t0-t4 g@@;cards;120 108 112 120 117 1118 109 115 126 123 1119 112 119 124 118 1121 112 119 126 120 1127 121 127 133 126 1121 120 118 131 137 2122 121 119 129 133 2128 129 126 135 142 2117 115 111 123 131 2118 114 116 123 133 2131 119 118 135 129 3129 128 121 148 132 3123 123 120 143 136 3123 121 116 145 126 3125 124 118 142 130 3;proc glm;class g;model t0-t4=g;repeated time 5/*命名重复因子为time,有2个水平*/contrast(1);run;quit;二:计数资料的统计分析方法2.1四格表资料的卡方检验data ex7_1;input r c f@@;/*确定变量名称,r为行变量,c为列变量,f为频数变量*/ cards;1 1 991 2 52 1 752 2 21;proc freq;/*调用freq过程*/weight f;/*定义f为频数变量*/tables r*c/*作r*c的列联表*//chisq/*对列联表作卡方检验*/expected;/*输出每个格的理论频数*/run;2.5阳性事件发生的概率(二项分布)data ex6_1;do x=6 to 8;/*建立循环,变量x从6到8*/p1=probbnml(0.7,10,x);/*计算二项分布随机变量不大于x的概率*/p2=probbnml(0.7,10,x-1);/*计算二项分布随机变量不大于x-1的概率*/p=p1-p2;*/计算出现x的概率*/output;/*结果输出*/end;proc print;var x p;run;2.6正态分布法计算总体率的可信区间data ex6_3;n=100;x=55;p=x/n;sp=sqrt(p*(1-p)/n);u=probit(0.975);usp=u*sp;lclm=p-usp;uclm=p+usp;proc print;var n p sp lclm uclm;run;2.7样本率与总体率的比较(直接法——单侧检验)data ex6_4;d=probbnml(0.55,10,8);p=1-d;proc print;var p;run;2.8样本率与总体率的比较(直接法——双侧检验)data ex6_5;p01=probbnml(0.6,10,9);p02=probbnml(0.6,10,8);p0=p01-p02;/*计算出现9的概率*/do i=0to10;/*建立循环,变量i从0到10*/p11=probbnml(0.6,10,i);p12=probbnml(0.6,10,i-1);p1=p11-p12;/*计算出现i的概率*/if i=0then p1=p11; /*定义出现0的概率*/if p1<=p0 then output; /*如果出现i的概率小于出现9的概率,则保留在数据集中*/ end;proc means sum;var p1;run;2.9两个样本率比较的z检验data ex6_7;n1=120;n2=110;x1=36;x2=22;p1=x1/n1;p2=x2/n2;pc=(x1+x2)/(n1+n2);/*计算合并发生率*/sp=sqrt(pc*(1-pc)*(1/n1+1/n2));/*计算两个率相差的标准误差*/u=(p1-p2)/sp;/*计算u值*/p=(1-probnorm(abs(u)))*2;/*计算p值*/format u p 5.4;/*输出格式为小数点后保留4位*/proc print;var pc sp u p;run;2.10.Poisson分布的样本均数与总体均数比较(直接法)data ex6_12;n=120;/*确定样本例数*/pai=0.008; /*确定总体率*/lam=n*pai; /*计算总体均数lamda*/x=4; /*确定实际发生数*/p=1-poisson(lam,x-1);/*计算实际发生数所对应的概率*/proc print;var lam p;run;2.11 Poisson分布的样本均数与总体均数比较(正态近似法)data ex6_12;n=25000;/*样本量*/x=123; /*样本均数*/pi=0.003; /*确定总体率*/lam=n*pi; /*计算总体均数*/u=(x-lam)/sqrt(lam*(1-pi)); /*计算u值*/p=1-probnorm(abs(u)); /*计算u值所对应的p值*/proc print;var lam u p;run;2.14负二项分布的参数估计data ex6_16;input x f@@;cards;0 301 142 83 44 25 06 2;proc univariate;var x;freq f;output out=mv2var=v;run;data k;set mv2;k=mu**2/(v-mu);proc print;var mu k;run;三、非参数统计方法3.2单个样本中位数和总体中位数比较data ex8_2;input x1@@;median=45.30;/*假设中位数为45.30*/d=x1-median; /*计算x1和假设中位数的差值*/cards;44.21 45.30 46.39 49.47 51.05 53.1653.26 54.37 57.16 67.37 71.05 87.37;proc univariate; /*调用univariate过程度*/var d;run;proc means median; /*调用means过程计算x1实际的中位数*/var x1;run;3.3两个独立样本比较的Wilcoxon秩和检验(R对应函数wilcox.test())data ex8_3;input x c @@;/*确定变量名称,x、c分别为分析变量和分组变量(类别多于两类一样的写法)*/2.78 13.23 14.20 14.87 15.12 16.21 17.18 18.05 18.56 19.60 13.23 23.50 24.04 24.15 24.28 24.34 24.47 24.64 24.75 24.82 24.95 25.10 2;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;3.4等级资料的两样本比较data ex8_4;input c g f@@;/*确定变量名称,f为频数,c为分类,g为要分析的变量(分类多种类似)*/ cards;1 1 11 2 81 3 161 4 101 5 42 1 22 2 232 3 112 5 0;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/freq f;/*确定频数变量为f*/var g;/*定义分析变量g*/class c;/*定义分组变量c*/run;第二部分:多元统计分析方法注:主要讲述过程:reg(回归),corr(相关分析),nlin(对数曲线回归),logistic(逻辑回归),phreg(条件logistic回归分析+cox回归),life test(生存分析),discrim(判别分析),stepdisc(逐步回归),cluster(聚类),varclus(指标聚类),princomp(主成分分析),factor(因子分析),cancorr(典型相关分析)一:回归和相关分析1.1两个变量的直线回归分析data ex9_1;input x y;/*确定变量名称*/cards;13 3.5411 3.019 3.096 2.488 2.5610 3.3612 3.187 2.65;proc reg;/*调用reg过程*/model y=x;/*定义模型,以y为应变量,以x为自变量*//*在model语句后面加上选项,得到一些有用的统计量,常用的有:stb(输出标准化偏回归系数)、p(输出每个观测的实际值、预测值和残差)、cli(输出每个观测预测值均数的双侧95%置信区间)、clm(输出每个观测预测值的双侧95%置信范围)*//*例如:model y=x /stb p cli */plot y*x;/*画出散点图*/run;1.2两个变量的直线相关分析data ex9_5;input x y;cards;43 217.2274 316.1851 231.1158 220.9650 254.7065 293.8454 263.2857 271.7367 263.4669 276.5380 341.1548 261.0038 213.2085 315.1254 252.08;proc corr;/*若要求作spearman相关分析,则可以写成proc corr spearman */ var x y;run;/*得到一个相关系数矩阵*/1.4加权直线加回data ex9_9;input x y;w=1/(x*x); /*设置权重变量w*/cards;0.11 4.000.12 5.100.21 9.500.30 9.000.34 17.200.44 14.000.56 18.900.60 29.400.69 22.100.80 41.50;proc reg;weight w;/*定义权重变量w*/model y=x;/*定义模型,以y为因变量,以x为自变量*/run;1.5两个直线回归系数的比较data ex9_12;input x y c@@;cards;13 3.54 111 3.01 19 3.09 16 2.48 18 2.56 110 3.36 112 3.18 17 2.65 110 3.01 29 2.83 211 2.92 212 3.09 215 3.98 216 3.89 28 2.21 27 2.39 210 2.74 215 3.36 2;proc glm;class c;model y=x c x*c;/*定义模型,分析x、c以及x和c的交互作用对y的影响,即判断两总体直线回归系数是否相同*/run;proc glm;class c;model y=x c;/*上一步已排除协变量的影响,然后再分析两分析变量是否来自同一总体*/run;1.6两个变量的对数曲线回归data ex9_13;input x y;cards;0.005 34.110.050 57.990.500 94.495.000 128.5025.000 169.98;proc nlin;/*调用nlin过程*/parms a=0 b=0; /*定义初始值*/model y=a+b*log10(x); /*定义对数模型,以y为因变以量,x为自变量*/ run;1.7两个变量的指数曲线回归分析data ex9_14;input x y;cards;2 545 507 4510 3714 3519 2526 2031 1634 1838 1345 852 1153 860 465 6;proc nlin;parms a=4 b=0.03;/*定义初始值*/model y=exp(a+b*x);/*定义指数模型,以y为因变量,x为自变量*/run;1.8多元回归data ex15_1;input x1-x4 y@@;/*确定变量名称,x1,x2,x3,x4分别为自变量,y为应变量*/ cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4;/*也可以写成model y=x1 x2 x3 x4;*/run;1.9逐步回归data ex12_2;input x1-x4 y@@;cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4/selection=stepwise/*定义模型,以y因变量,x1-x4为变量进行多元回归分析*/ sle=0.10/*定义入先变量的界值*/sls=0.10;/*定义剔除变量的界值*/run;三:logistic回归3.1 两个变量logistic回归分析data ex16_1;input y x1 x2 f@@;/*确定变量名称,y为发病情况,x1为吸烟情况,x2为饮酒情况,f为发生频数*/cards;1 0 0 631 0 1 631 1 0 441 1 1 2650 0 0 1360 0 1 1070 1 0 570 1 1 151;proc logistic;/*调用logistic过程*/freq f;/*定义频数变量f*/model y=x1 x2;/*定义模型,以y为因变量,x1和x2为自变量*/run;3.2 1:M配对资料的条件logistic回归分析data ex16_3;input i y x1-x6 @@;/*确定变量名称,i为区组变量,y为病人情况,1为病例,0为对照,x1-x6为危险因素*/t=2-y;/*定义时间变量*/cards;1 1 3 5 1 1 1 01 0 1 1 1 3 3 01 0 1 1 1 3 3 02 1 13 1 1 3 02 0 1 1 13 2 02 0 1 2 13 2 03 1 14 1 3 2 03 0 1 5 1 3 2 03 0 14 1 3 2 04 1 1 4 1 2 1 14 0 2 1 1 3 2 05 1 2 4 2 3 2 0 5 0 1 2 1 3 3 05 0 2 3 1 3 2 06 1 1 3 1 3 2 1 6 0 1 2 1 3 2 06 0 1 3 2 3 3 07 1 2 1 1 3 2 1 7 0 1 1 1 3 3 07 0 1 1 1 3 3 08 1 1 2 3 2 2 0 8 0 1 5 1 3 2 08 0 1 2 1 3 1 09 1 3 4 3 3 2 0 9 0 1 1 1 3 3 09 0 1 4 1 3 1 010 1 1 4 1 3 3 1 10 0 1 4 1 3 3 010 0 1 2 1 3 1 011 1 3 4 1 3 2 0 11 0 3 4 1 3 1 011 0 1 5 1 3 1 012 1 1 4 3 3 3 0 12 0 1 5 1 3 2 012 0 1 5 1 3 3 013 1 1 4 1 3 2 0 13 0 1 1 1 3 1 013 0 1 1 1 3 2 014 1 1 3 1 3 2 1 14 0 1 1 1 3 1 014 0 1 2 1 3 3 015 1 1 4 1 3 2 0 15 0 1 5 1 3 3 015 0 1 5 1 3 3 016 1 1 4 2 3 1 0 16 0 2 1 1 3 3 016 0 1 1 3 3 2 017 1 2 3 1 3 2 0 17 0 1 1 2 3 2 017 0 1 2 1 3 2 018 1 1 4 1 3 2 0 18 0 1 1 1 2 1 0 18 0 1 2 1 3 2 019 0 1 1 1 2 1 019 0 2 2 2 3 1 020 1 1 4 2 3 2 120 0 1 5 1 3 3 020 0 1 4 1 3 2 021 1 1 5 1 2 1 021 0 1 4 1 3 2 021 0 1 2 1 3 2 122 1 1 2 2 3 1 022 0 1 2 1 3 2 022 0 1 1 1 3 3 023 1 1 3 1 2 2 023 0 1 1 1 3 1 123 0 1 1 2 3 2 124 1 1 2 2 3 2 124 0 1 1 1 3 2 024 0 1 1 2 3 2 025 1 1 4 1 1 1 125 0 1 1 1 3 2 025 0 1 1 1 3 3 0;proc phreg;/*调用phreg过程*/model t*y(0)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,x1-x6为自变量*//selection=stepwise/*选择逐步回归方法筛选变量*/sle=0.1sls=0.1/*入选和剔除的界值均为0.1*/ties=discrete;/*用离散logistic模型替代比例危险模型*/strata i;/*定义区组变量*/run;2.3 应变量为多分类资料的logistic回归data ex16_5;input x1 x2 y f;/*x1是两个社区,x2是性别,Y是获取健康知识途径(传统大众媒介=1,网络=2,社区宣传=3,f为频数)*/cards;0 0 1 200 0 2 350 0 3 260 1 1 100 1 2 270 1 3 571 0 1 421 02 171 1 1 161 12 121 1 3 26;proc logistic;freq f;/*定义频数变量为f*/model y(ref='3')/*定义模型,以y为因变量,ref语句指时参照的类别为“社区宣传”,最后得到结果均为与“社区宣传”相对应*/=x1 x2/*定义x1和x2为自变量*//link=glogit;/*指定多分类应变量回归模型*/run;四:生存分析4.1乘积极限法估计生存率,例17-2甲、乙两种手术方法的生存率估计data ex17_2;input t d@@;/*确定变量名称,t为时间变量,d为截尾变量*/cards;1 13 15 15 15 16 16 16 17 18 110 110 114 017 119 020 022 026 034 134 044 159 1;proc lifetest;/*调用lifetest过程*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.2寿命表法估计生存率data ex17_3;input t d f@@;cards;0 0 00 1 4561 0 391 1 2262 0 222 1 1523 0 233 1 1714 0 244 1 1355 0 1075 1 1256 0 1336 1 837 0 1027 1 748 0 688 1 519 0 649 1 4210 0 4510 1 4311 0 5311 1 3412 0 3312 1 1813 0 2714 0 3314 1 615 0 2015 1 0;proc lifetest method=life/*调用lifetest过程,指定用寿命表法估计生存率*/ width=1;/*表示每间隔1估计生存率*/freq f;/*表示以f为频数变量*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.3生存曲线比较的log-rank检验及制作生存曲线data ex17_4;input t d g @@;cards;1 1 13 1 15 1 15 1 15 1 16 1 16 1 16 1 17 1 18 1 110 1 110 1 114 0 117 1 119 0 120 0 122 0 126 0 131 0 134 1 134 0 144 1 159 1 11 1 21 1 22 1 23 1 23 1 24 1 24 1 24 1 26 1 26 1 28 1 29 1 29 1 210 1 211 1 212 1 213 1 215 1 217 1 218 1 2;proc lifetest plot=(s);/*调用lifetest过程并做生存曲线图*/ time t*d(0);strata g;/*定义变量g为分组变量*/run;4.4.cox回归分析data ex17_5;input x1-x6 t y @@;cards;54 0 0 1 1 0 52 057 0 1 0 0 0 51 058 0 0 0 1 1 35 143 1 1 1 1 0 103 048 0 1 0 0 0 7 140 0 1 0 0 0 60 044 0 1 0 0 0 58 036 0 0 0 1 1 29 139 1 1 1 0 1 70 042 0 1 0 0 1 67 042 0 1 0 0 0 66 042 1 0 1 1 0 87 051 1 1 1 0 0 85 049 1 1 1 0 1 76 0 52 1 1 1 0 1 74 0 48 1 1 1 0 0 63 0 54 1 0 1 1 1 101 0 38 0 1 0 0 0 100 0 40 1 1 1 0 1 66 1 38 0 0 0 1 0 93 0 19 0 0 0 1 0 24 1 67 1 0 1 1 0 93 0 37 0 0 1 1 0 90 0 43 1 0 0 1 0 15 149 0 0 0 1 0 3 150 1 1 1 1 1 87 0 53 1 1 1 0 0 120 0 32 1 1 1 0 0 120 0 46 0 1 0 0 1 120 043 1 0 1 1 0 120 044 1 0 1 1 0 120 0 62 0 0 0 1 0 120 0 40 1 1 1 0 1 40 1 50 1 0 0 1 0 26 1 33 1 1 0 0 0 120 0 57 1 1 1 0 0 120 0 48 1 0 0 1 0 120 0 28 0 0 0 1 0 3 1 54 1 0 1 1 0 120 1 35 0 1 0 1 1 7 1 47 0 0 0 1 0 18 1 49 1 0 1 1 0 120 0 43 0 1 0 0 0 120 0 48 1 1 0 0 0 15 1 44 0 0 0 1 0 4 1 60 1 1 1 0 0 120 0 40 0 0 0 1 0 16 1 32 0 1 0 0 1 24 1 44 0 0 0 1 1 19 1 48 1 0 0 1 0 120 0 72 0 1 0 1 0 24 1 42 0 0 0 1 0 2 1 63 1 0 1 1 0 120 0 55 0 1 1 0 0 12 1 39 0 0 0 1 0 5 1 44 0 0 0 1 0 120 074 0 0 0 1 1 7 161 0 1 0 1 0 40 145 1 0 1 1 0 108 038 0 1 0 0 0 24 162 0 0 0 1 0 16 1;proc phreg;model t*y(1)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,变量值1表示截尾数据,x1-x6为危险因素*//selection=stepwisesle=0.05sls=0.05;run;五:判别和聚类分析5.1判别分析data ex18_4;input x1-x4 g; /*确定变量名称,x1-x4为用于进行判别分析的指标,g为分组变量*/ cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc discrim;class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(结果横向是真实值,竖向的预测值)5.2逐步判别分析data ex18_5;input x1-x4 g;cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc stepdisc /*调用stepdisc过程*/slentry=0.2/*确定入选标准为0.2*/slstay=0.3;/*确定剔除标准为0.3*/class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(筛选出变量后,调用discrim过程对筛选出的变量作判别分析,即先做5.2再做5.1)5.3作样品聚类和指标聚类data ex19_3;input x1-x9;cards;46 25 5 2138 1.68 0.35 8.11 4 4 35 12 20 3510 2.76 1.43 6.84 3 3 52 25 20 2784 2.19 0.54 4.11 3 3 32 7 20 2451 1.93 0.47 11.45 9 6 38 22 0 3247 2.56 0.80 11.68 5 5 51 31 30 3710 2.92 0.37 11.60 2 2 40 9 10 3194 2.51 0.40 11.40 5 5 34 17 20 4658 3.67 0.46 11.35 3 3 50 29 0 5019 3.95 0.47 13.45 10 8 42 20 20 7482 5.89 0.12 13.11 0 0 57 30 15 3800 2.99 0.19 10.76 2 236 15 20 2478 1.95 0.25 10.00 0 037 12 0 3827 3.01 0.82 10.50 4 4 52 32 0 2984 2.35 0.16 11.15 3 3 52 32 10 3749 2.95 0.72 11.45 11 10 42 27 30 4941 3.89 0.73 13.80 7 6 44 27 20 3948 3.11 0.33 13.65 16 14 40 21 5 3360 2.64 0.37 11.40 0 0 38 21 5 2936 2.31 0.69 11.40 1 1 44 27 20 6851 5.39 0.99 12.28 7 6 43 27 0 3926 3.09 0.47 11.95 0 0 26 10 3 4381 3.45 0.52 11.80 7 5 37 18 20 7142 5.62 0.85 11.81 5 5 28 9 20 2612 2.06 0.37 11.65 1 1 25 9 30 2638 2.08 0.78 12.25 1 1 34 14 20 4322 3.40 0.41 15.00 5 5 50 32 20 2862 2.25 0.69 8.80 2 2;proc cluster/*调用cluster过程*/method=average;/*采用类平均法进行聚类*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;proc treegraphics haxis=axis1 horizontal;/*调用tree过程输出聚类图,并将图横向输出*/ run;/*对各个指标聚类,即对9个变量聚类*/proc varclus;/*调用varclus过程*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;六、主成分分析和因子分析6.1主成分分析data ex20_1;input x1-x6;cards;92 77 80 95 99 12697 75 77 80 95 12595 80 70 78 89 12075 75 73 88 98 11092 68 72 79 88 11390 85 80 70 78 10372 93 75 77 80 10088 70 76 72 81 10264 70 69 85 93 10570 73 70 87 84 10078 69 75 73 89 9778 72 71 68 75 9675 64 63 76 73 9284 66 77 55 65 7670 64 51 60 67 8858 72 75 62 52 7582 73 40 50 48 6145 65 42 47 43 60;proc princomp;/*调用princomp过程,对6个变量做主成分分析,结果包括主成分累积贡献率,特征向量矩阵*/run;6.2因子分析data ex20_2;input x1-x9;cards;4.34 389 99.06 1.23 25.46 93.15 3.56 97.51 61.663.45 271 88.28 0.85 23.55 94.31 2.44 97.94 73.334.38 385 103.97 1.21 26.54 92.53 4.02 98.484.18 377 99.48 1.19 26.89 93.86 2.92 99.41 63.164.32 378 102.01 1.19 27.63 93.18 1.99 99.71 80.004.13 349 97.55 1.10 27.34 90.63 4.38 99.03 63.164.57 361 91.66 1.14 24.89 90.60 2.73 99.69 73.534.31 209 62.18 0.52 31.74 91.67 3.65 99.48 61.114.06 425 83.27 0.93 26.56 93.81 3.09 99.48 70.734.43 458 92.39 0.95 24.26 91.12 4.21 99.76 79.074.13 496 95.43 1.03 28.75 93.43 3.50 99.10 80.494.10 514 92.99 1.07 26.31 93.24 4.22 100.00 78.954.11 490 80.90 0.97 26.90 93.68 4.97 99.77 80.533.53 344 79.66 0.68 31.87 94.77 3.59 100.00 81.974.16 508 90.98 1.01 29.43 95.75 2.77 98.72 62.864.17 545 92.98 1.08 26.92 94.89 3.14 99.41 82.354.16 507 95.10 1.01 25.82 94.41 2.80 99.35 60.614.86 540 93.17 1.07 27.59 93.47 2.77 99.80 70.215.06 552 84.38 1.10 27.56 95.15 3.10 98.63 69.234.03 453 72.69 0.90 26.03 91.94 4.50 99.05 60.424.15 529 86.53 1.05 22.40 91.52 3.84 98.58 68.423.94 515 91.01 1.02 25.44 94.88 2.56 99.36 73.914.12 552 89.14 1.10 25.70 92.65 3.87 95.52 66.674.42 597 90.18 1.18 26.94 93.03 3.76 99.28 73.813.05 437 78.81 0.87 23.05 94.46 4.03 96.223.94 477 87.34 0.95 26.78 91.784.57 94.28 87.344.14 638 88.57 1.27 26.53 95.16 1.67 94.50 91.673.87 583 89.82 1.16 22.66 93.43 3.55 94.49 89.074.08 552 90.19 1.10 22.53 90.36 3.47 97.88 87.144.14 551 90.81 1.09 23.06 91.65 2.47 97.72 87.134.04 574 81.36 1.14 26.65 93.74 1.61 98.20 93.023.93 515 76.87 1.02 23.88 93.82 3.09 95.46 88.373.90 555 80.58 1.10 23.08 94.38 2.06 96.82 91.793.62 554 87.21 1.10 22.50 92.43 3.22 97.16 87.773.75 586 90.31 1.12 23.73 92.47 2.07 97.74 93.893.77 627 86.47 1.24 23.22 91.17 3.40 98.98 89.80;proc factor/*调用factor过程*/n=4;/*确定因子数为4,如果不写就默认为3*/run;proc factorn=4rotate=quartimax;/*因子旋转的方法为四次方最大正交旋转*/run;七、典型相关分析data ex21_1;input x1-x4 y1-y4;cards;1210 120.1 23.8 61.0 10.2 66.3 2.01 2.731210 120.7 23.4 59.8 11.3 67.6 1.92 2.711040 121.2 22.9 59.0 10.1 66.5 1.92 2.601620 121.5 24.6 59.5 9.5 67.8 1.95 2.641690 122.5 24.4 60.7 11.0 69.2 2.08 2.641150 122.7 27.2 64.5 10.5 69.1 2.19 2.841460 123.3 24.9 58.4 10.5 69.0 2.01 2.72 1190 123.4 21.8 59.0 10.6 67.4 1.90 2.71 1840 123.9 23.5 60.2 9.6 67.1 2.00 2.84 1250 124.5 25.2 63.0 11.2 67.8 2.05 2.78 1480 124.8 22.3 58.1 10.7 67.9 2.05 2.73 1310 124.9 22.0 58.0 10.5 67.8 1.98 2.68 1660 125.3 24.7 60.0 10.8 69.3 1.95 2.80 1580 125.6 22.8 59.0 9.4 69.1 2.00 2.65 1460 125.8 25.7 61.0 10.2 69.6 1.95 2.70 1240 126.0 30.2 68.0 9.2 67.1 2.14 2.88 1100 126.2 25.2 60.5 9.8 68.4 1.98 2.72 1250 126.8 23.6 58.5 10.2 67.5 1.94 2.74 1270 127.1 23.0 57.7 10.8 69.8 1.90 2.78 1300 127.6 24.3 59.0 10.3 67.9 1.93 2.84 1350 127.7 24.1 60.0 11.0 69.7 2.03 2.77 1250 128.3 21.6 55.5 10.4 68.5 1.83 2.70 1720 128.5 27.1 62.0 11.4 71.2 2.03 2.75 1480 128.5 22.6 57.4 10.0 67.3 2.04 2.83 1380 129.4 24.9 60.5 11.5 69.8 2.04 2.76 1170 129.0 26.7 63.7 9.6 67.4 2.13 2.98 1640 129.8 26.1 62.0 9.8 71.0 2.00 2.84 1640 131.6 28.7 62.8 9.7 70.7 1.89 2.89 1150 130.2 25.0 58.6 10.5 71.8 1.96 2.78 1430 130.5 26.1 60.7 10.8 68.6 2.05 2.77 1150 130.6 23.4 54.4 11.8 69.2 1.96 2.78 1150 131.4 25.5 63.2 10.2 70.4 2.05 2.84 1320 131.6 25.6 58.9 10.9 70.2 2.06 2.86 1360 131.7 27.4 62.0 10.9 73.5 1.99 2.70 1460 132.0 26.3 61.5 11.1 71.2 2.17 2.13 1380 132.2 25.7 61.4 10.1 70.1 1.96 2.83 1300 132.5 24.5 57.0 10.8 71.8 2.02 2.84 1220 132.7 27.0 61.3 10.1 72.2 2.08 2.80 1320 132.9 25.2 60.5 11.2 73.1 2.01 2.73 1910 133.1 30.1 67.0 9.0 87.1 2.15 2.97 1800 133.5 26.5 62.5 9.8 71.7 2.07 2.82 1560 133.6 24.8 58.5 10.3 72.2 1.93 2.79 1840 134.0 26.0 60.5 10.4 73.0 1.98 2.74 1470 134.3 28.2 62.0 11.3 87.2 2.66 4.03 1590 134.4 25.5 60.7 9.6 69.9 1.99 2.81 1430 134.1 26.6 63.0 11.2 72.2 2.06 2.90 1760 134.6 32.5 66.0 9.9 87.4 2.61 2.98 1470 135.3 27.9 61.8 10.1 73.3 2.20 2.78 1580 135.6 28.1 65.8 9.8 73.1 2.05 2.891840 137.1 27.6 62.8 9.5 72.4 2.11 2.91 1810 137.4 28.3 62.5 9.4 74.2 2.06 3.00 1850 138.1 29.5 62.4 9.7 72.3 2.12 4.02 2120 140.0 34.9 68.8 9.5 87.9 2.74 4.15 1760 140.7 32.0 64.4 10.2 74.0 2.17 4.05 1800 141.0 32.5 63.8 9.5 88.2 2.65 4.08 1260 141.7 29.1 65.0 9.7 88.2 2.68 2.90 1860 142.4 19.3 70.0 10.1 89.6 2.71 4.06 1800 144.7 27.0 58.3 10.8 74.8 2.10 2.82 1470 136.8 26.3 61.4 10.0 72.2 2.07 2.93 1260 121.1 22.9 59.0 10.6 66.3 2.05 2.76 1570 132.7 25.3 58.6 11.5 73.6 2.16 2.78 1290 125.0 25.7 60.5 10.1 68.8 2.00 2.69 1580 133.2 27.3 60.7 9.6 71.7 2.11 2.85 1690 132.8 28.6 64.7 9.6 72.9 2.19 4.08 1670 131.6 25.4 59.7 10.6 69.8 2.14 2.76 1300 133.1 25.9 58.0 10.1 69.7 2.12 2.83 1610 134.0 25.8 59.6 9.4 70.8 2.10 2.88 1580 134.3 26.3 61.2 10.2 72.2 2.14 2.84 1570 129.1 27.7 62.2 11.1 72.9 2.09 2.93 1660 140.1 32.1 67.0 9.3 87.1 2.15 4.03 1040 132.6 27.9 62.0 10.3 72.5 2.08 2.81 1290 128.3 23.6 58.5 9.3 69.0 1.97 2.76 1980 145.8 34.5 68.0 9.8 89.7 2.68 4.25 1210 133.3 25.6 61.5 9.9 71.0 2.11 2.82 1300 134.3 25.6 61.0 10.5 73.2 2.02 2.83 1310 138.1 27.8 61.2 9.9 73.5 2.09 2.78 1590 135.6 25.9 59.6 9.6 72.8 2.10 2.91 1270 128.3 24.1 58.5 10.3 69.2 1.92 2.77 1310 129.7 24.7 61.7 10.1 69.4 2.03 2.80 2280 143.6 37.6 70.0 9.7 88.8 2.17 4.18 1580 136.6 32.3 67.2 10.3 87.1 2.66 4.04 2370 147.4 38.8 73.0 10.8 90.7 2.82 4.38 ;proc cancorr;/*调用cancorr过程*/var x1-x4;/*定义一组变组变量*/with y1-y3;/*定义另一组变量*/run;。
聚类分析的sas过程课程设计一、课程目标知识目标:1. 掌握聚类分析的基本概念和原理;2. 学习使用SAS软件进行聚类分析的过程和步骤;3. 了解不同聚类方法的优缺点及适用场景;4. 掌握对聚类结果进行解释和评价的方法。
技能目标:1. 能够运用SAS软件进行数据预处理,为聚类分析做好准备;2. 熟练操作SAS软件,运用合适的聚类方法对数据进行聚类分析;3. 学会对聚类结果进行可视化展示,并从中提取有价值的信息;4. 能够结合实际案例,运用聚类分析方法解决实际问题。
情感态度价值观目标:1. 培养学生对数据分析的兴趣,提高数据挖掘和统计分析的意识;2. 增强学生的团队协作能力,学会在团队中发挥个人特长,共同完成数据分析任务;3. 培养学生严谨的科学态度,注重实证研究,形成基于数据说话的习惯;4. 引导学生关注社会热点问题,运用所学知识为社会发展和决策提供支持。
课程性质:本课程为数据分析方向的专业课,旨在帮助学生掌握聚类分析方法,提高数据挖掘能力。
学生特点:学生具备一定的统计学基础和SAS软件操作能力,具有较强的学习兴趣和动手实践能力。
教学要求:结合课程性质和学生特点,采用案例教学、课堂讨论与实践操作相结合的教学方式,注重培养学生的实际操作能力和数据分析思维。
通过本课程的学习,使学生能够独立完成聚类分析任务,并为后续相关课程打下坚实基础。
二、教学内容1. 聚类分析基本概念:介绍聚类分析的定义、类型和基本原理,引导学生了解聚类分析在数据分析中的应用和价值。
2. 聚类方法选择:讲解常用的聚类方法(如K-means、系统聚类等),分析各种方法的优缺点及适用场景,帮助学生根据实际需求选择合适的聚类方法。
3. 数据预处理:介绍在聚类分析之前进行数据预处理的必要性,包括数据清洗、标准化、降维等操作,提高学生数据预处理的能力。
4. SAS软件操作:详细讲解SAS软件中进行聚类分析的步骤,包括数据导入、聚类过程调用、参数设置等,使学生熟练掌握SAS软件操作。
实验报告实验项目名称聚类分析与判别分析所属课程名称统计分析及SAS实现实验类型验证性实验实验日期2016-12-19班级数学与应用数学学号姓名成绩图8.1 聚类谱系图图8.1为proc cluster过程不得出的谱系图,为更方便直观,我们利用proc tree过程步得出图8.2。
②利用proc tree过程步得出聚类谱系图。
过程步:proc tree data=Lmf.tree1 horizontal;id region;run;结果:The TREE ProcedureWard's Minimum Variance Cluster Analysis图8.2 聚类谱系图由表8.2、图8.2得出,分为三类较合适,第一类为北京、天津、上海,第二类为河北、山东、河南、内蒙、江苏、浙江、山西、湖北、四川、福建、江西、湖南、海南、广东、新疆、广西、吉林、黑龙江、辽宁、陕西,第三类为安徽、宁夏、贵州、云南、甘肃、青海、西藏。
【练习8-2】有6个铅弹头,用“中子活化”方法测得7种微量元素含量数据。
表 7种微量元素含量数据Num Ag Al Cu Ca Sb Bi Sn10.05798 5.515347.121.918586174261.6920.08441 3.97347.219.7179472000244030.07217 1.15354.85 3.05238601445949740.1501 1.702307.515.0312290146163805 5.744 2.854229.69.657809912661252060.2130.7058240.313.91898028204135①试用多种系统聚类分析方法对6个铅弹头和7种微量元素进行分类,并进行分类结果。
②试用VARCLUS过程对7中微量元素进行分类。
【解答】①通过比较⑴⑵⑶三种系统聚类的方法类平均法、ward离差平方和法、最长距离法,对6个铅弹头进行分类。
实验三我国各地区城镇居民消费性支出的
主成分分析和聚类分析
(王学民编写)
一、实验目的
1.掌握如何使用SAS软件来进行主成分分析和聚类分析;
2.看懂和理解SAS输出的结果,并学会以此来作出分析;
3.掌握对实际数据如何来进行主成分分析;
4.对同一组数据使用五种系统聚类方法及k均值法,学会对各种聚类效果的比较,获取重要经验;
5.掌握使用主成分进行聚类
二、实验内容
数据集sasuser.examp633中含有1999年全国31个省、直辖市和自治区的城镇居民家庭平均每人全年消费性支出的八个主要变量数据。
对这些数据进行主成分分析,可将这31个地区的前两个主成分得分标示于平面坐标系内,对各地区作直观的比较分析。
对同样的数据使用五种系统聚类方法及k均值法聚类,并对聚类效果作比较。
最后,对主成分的图形聚类和正规聚类的效果进行比较。
实验1
进行主成分分析,根据前两个主成分得分所作的散点图对31个地区进行比较分析。
实验2
分别使用最长距离法、中间距离法、两种类平均法、离差平方和法和k均值法进行聚类分析,并比较其聚类效果。
实验3
主成分聚类,并与上述正规的聚类方法进行比较
三、实验要求
1.用SAS软件的交互式数据分析菜单系统完成主成分分析;
2.完成五种系统聚类方法及k均值法,比较其聚类效果;
3.根据前两个主成分得分的散点图作直观的聚类,并与上述正规的聚类方法进行比较。
四、实验指导
1.进行主成分分析
在inshigt中打开数据集sasuser.examp633,见图1。
选菜单过程如下:
在图1中选分析⇒多元(Y X)⇒在变量框中选x1,x2,x3,x4,x5,x6,x7,x8(见图2)⇒Y⇒选输出⇒选主分量分析,主分量选项(见图3)⇒在图4中作图中的选择(主成分个数缺省时为“自动”选项,此时只输出特征值大于1的主成分)⇒确定⇒确定⇒确定
图1
图2
图3
图4 得到如图5、图6所示的结果:
图5
图6
从图5可以看出,前两个和前三个主成分的累计贡献率分别达到80.6%和87.8%,第一
主成分1ˆy 在所有变量(除在*2x 上的载荷稍偏小外)上都有近似相等的正载荷,反映了综合消费
性支出的水平,因此第一主成分可称为综合消费性支出成分。
第二主成分2ˆy 在变量*2x 上有
很高的正载荷,在变量*4x 上有中等的正载荷,而在其余变量上有负载荷或很小的正载荷。
可以认为这个主成分度量了受地区气候影响的消费性支出(主要是衣着2x ,其次是医疗保健4x ①)在所有消费性支出中占的比重(也可理解为一种消费倾向),第二主成分可称为消费倾向成分。
第三主成分很难给出明显的解释,因此我们只取前面两个主成分。
在图1中选分析⇒散点图(Y X )⇒选 PCR1→X ;PCR2→Y ;region →标签变量 (见图7)⇒确定
随即出现如图8所示的散点图,接下来我们对该图进行设置、调整,使之符合我们的要求。
图7
①可从表1计算出医疗保健在消费性总支出中占的比率841i i x x
=∑,然后进行由大到小的排序,各地区的顺
序依次为:宁夏、黑龙江、青海、河北、辽宁、北京、浙江、陕西、甘肃、山西、吉林、河南、新疆、内蒙古、天津、云南、山东、广东、湖北、四川、重庆、湖南、海南、江苏、上海、西藏、贵州、广西、安徽、江西和福建,大致由寒冷的北方地区排到温暖的南方地区。
这是由于气候的寒冷易导致医疗保健费用的增加,因此,可以认为除衣着2x 外医疗保健4x 也是受地区气候影响的变量。
图8
在图9的数据窗口中点击左上角的“31”,以使所有观测都选中⇒将鼠标移至观测号中,点击右键,选在图中加标签⇒在图8中点击左下角,出现上托菜单⇒刻度…⇒作图10中的选择⇒确定⇒作图11中的选择⇒确定⇒调整好散点图:拉大图外围方框;图8 中点击标记大小,选择6号字;下拉横坐标,左拉纵坐标;图8 中点击参考线。
图9
图10
图11
图12
随即得到图12,该图是关于第一和第二主成分得分的散点图,该图对各地区的综合消费性支出和受地区气候影响的消费性支出占的比重有较直观的描述。
从图中可以看出,上海、广东和北京在最右边,城镇居民综合消费性支出是最高的;其次是浙江和天津;江西在散点图的最左边,表明综合消费性支出是最低的;北京和西藏在散点图的最上边,说明受地区气候影响的消费性支出占的比重最高;广东在最底部,表明受地区气候影响的消费性支出占的比重最低。
2.用五种系统聚类法及k均值法聚类,并比较其效果
(1)分别使用最长距离法、中间距离法、两种类平均法和离差平方和法进行聚类分析,为此编制如下的SAS程序:
proc cluster data=sasuser.examp633 method=com std;
id region;
proc tree horizontal;
id region;
proc cluster data=sasuser.examp633 method=med std;
id region;
proc tree horizontal;
id region;
proc cluster data=sasuser.examp633 method=ave std;
id region;
proc tree horizontal;
id region;
proc cluster data=sasuser.examp633 method=ave nosquare std;
id region;
proc tree horizontal;
id region;
proc cluster data=sasuser.examp633 method=war std;
id region;
proc tree horizontal;
id region;
run;
程序说明:
“proc cluster”是一个聚类分析过程;“data=sasuser.examp633”规定过程分析的是sasuser逻辑库中的examp633数据集;“method=com”规定了采用的系统聚类方法是最长距离法(“method= med”是采用中间距离法;“method=ave”是采用类平均法,缺省时类之间的距离为均方距离,如使用选项“nosquare”,则类之间的距离为平均距离;“method= war”是采用离差平方和法);选项“std”规定了在聚类之前须先对各变量数据作标准化变换,缺省时是直接对原始数据进行聚类,而不作事先的标准化处理。
语句“id region”用于识别打印输出中的观测,并以变量region的取值显示;如果缺省,则用OBn 显示,其中n为观测序号。
“proc tree”是一个使用由cluster过程产生的数据集来画树形图的过程;选项“horizontal”要求树形图的取向为水平方向,且树根在左边。
如果没有指明此选项,则其高度轴为垂直方向,树根在上部。
聚类树形图的输出:
图13 最长距离法
图14 中间距离法
图15 类平均法(均方距离)
图16 类平均法(平均距离)
图17 离差平方和法
(2)使用k均值法进行聚类分析,编制如下的SAS程序:
proc standand data=sasuser.examp633 mean=0 std=1 out=stan;
proc fastclus data=stan maxc=5 drift list;
var x1-x8;
id region;
run;
程序说明:
“proc standand”是一个将SAS数据集中的一些或所有变量按给定的均值和标准差进行标准化变换;“data=sasuser.examp633”规定过程是对sasuser逻辑库中的examp633数据集进行;选项“mean=0 std=1”规定按均值为0、标准差为1进行标准化变换;选项“out=stan”要求生成一个包含标准化值的新数据集,并命名为stan,这是一个临时数据集,属于临时库work。
“proc fastclus”是一个动态聚类分析过程;“data= stan”规定对数据集stan 进行;“maxc=5”指定所允许的最大分类个数为5,如果缺省,其值假定为100;“var x1-x8”指定用于聚类分析中的数值型变量。
如果缺省,则使用所有未列入其他语句中的数值型变量;选项“drift”表明使用k均值法;选项“list”要求列出各观测归属的类别。
3.主成分聚类,并与上述正规的聚类方法进行比较
从图12中直观地进行聚类,将其结果与上述正规的聚类方法进行比较。
11。