SAS软件与统计应用教程-主成分分析(1)
- 格式:ppt
- 大小:2.03 MB
- 文档页数:12
SAS学习系列33.-主成分分析33. 主成分分析(一)原理一、基本思想主成份分析,是数学上对数据降维的一种方法,是将多个变量转化为少数综合变量(集中了原始变量的大部分信息)的一种多元统计方法。
其主要目的是将变量减少,并使其改变为少数几个相互独立的线性组合形成的新变量(主成份,其方差最大),使得原始资料在这些成份上显示最大的个别差异来。
在所有的线性组合中所选取的F1应该是方差最大的,称为第一主成分。
如果第一主成分不足以代表原来所有指标的信息,再考虑选取第二个线性组合F2, 称为第二主成分。
为了有效地反映原有信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1,F2)=0. 依此类推可以构造出第三、第四、…、第p个主成分。
主成份分析,可以用来综合变量之间的关系,也可用来减少回归分析或聚类分析中的变量数目。
二、基本原理设有n个样品(多元观测值),每个样品观测p项指标(变量):X1,…,X p,得到原始数据资料阵:其中,X i = (x1i,x2i,…,x ni)T,i = 1, …, p.用数据矩阵X的p个列向量(即p个指标向量)X1,…,X p作线性组合,得到综合指标向量:简写成:F i = a1i X1 + a2i X2+…+a pi X p i = 1, …, p限制系数a i = (a1i,a2i,…,a pi)T为单位向量,即且由下列原则决定:(1)F i与F j互不相关,即COV(F i, F j)=a i T∑a i=0,其中∑为X 的协方差矩阵;(2)F1是X1,X2,…,X p的所有满足上述要求的线性组合中方差最大的,即F2是与F1不相关的X1,…,X p所有线性组合中方差最大的,…,F p是与F1,…,F p-1都不相关的X1,…,X p所有线性组合中方差最方向对应。
F1,F2,…,F p可以理解为p维空间中互相垂直的p 个坐标轴。
三、基本步骤1. 计算样品数据协方差矩阵Σ = (s ij)p p,其中2. 求出Σ的特征值及相应的特征向量λ1>λ2>…>λp>0, 及相应的正交化单位特征向量:则X的第i个主成分为F i= a i T X,i=1, …, p.3. 选择主成分在已确定的全部p个主成分中合理选择m个来实现最终的评价分析。
如何正确应用SPSS软件做主成分分析如何正确应用SPSS软件做主成分分析一、概述主成分分析(Principal Component Analysis, PCA)是一种常用的多变量分析方法,通过将原始变量进行线性组合,得到少数几个新的主成分,用于降低原始变量的维度,并揭示变量之间的结构关系。
SPSS软件是目前主流的数据分析工具之一,本文旨在介绍如何正确应用SPSS软件进行主成分分析。
二、数据准备进行主成分分析前,首先需要将数据导入SPSS软件。
数据应以矩阵形式呈现,每一行代表一个观测对象,每一列代表一个变量。
确保数据清洗完整,并检查是否有缺失值。
若有缺失值,可以选择删除含有缺失值的观测对象,或者使用插补方法填充缺失值。
在数据导入完成后,可以根据需求选择进行标准化操作,以消除不同变量间的量纲差异。
三、主成分分析步骤1. 启动SPSS软件并打开数据文件。
2. 选择"分析"(Analyze)菜单中的"降维"(Dimension Reduction),然后选择"主成分"(Principal Components)。
3. 在"主成分"对话框中,将需要进行主成分分析的变量移动到"变量"框中的右侧。
4. 点击"图"按钮,弹出"主因子图"对话框。
可以选择生成散点图,查看主成分之间的关系。
5. 点击"提取"选项卡,查看提取出的主成分的方差解释比。
6. 可根据需要点击"选项"按钮进行参数设置,如旋转方法、因子得分计算等。
7. 点击"统计"按钮,可以查看每个主成分的特征值以及贡献度。
8. 点击"摘要"按钮,生成主成分分析结果的摘要信息。
四、结果解释与应用主成分分析结果可以通过以下几个方面进行解释与应用:1. 主成分贡献度:通过方差解释比可以判断每个主成分对原始变量的贡献程度。
主成分分析实验报告实验内容:表1的数据是广东省各地市经济发展的基本数据,其中X1-城镇人口占常住人口比例(%),X2-固定资产投资(亿元),X3-人均可支配收入(元),X4-人均消费支出(元),X5-社会消费品零售总额(亿元),X6-第三产业占GDP百分比(%),X7-出口总额(亿美元),X8-人均地区生产总值(元)。
表1 安徽省各地市经济发展的基本数据城市X1X2X3X4X5X6X7X8广州82.532659.8527609.622820.93615.7760.9374.0588424.71189深圳1001709.1529244.521526.12567.9453.21619.7992022.45885珠海87.16410.5122858.617948.4404.4644.8177.8369652.80797汕头69.58291.913650.911659.5661.9639.540.1620282.83847佛山92.361470.5624577.919295.61408.7835245.7880391.16195韶关47.29356.516288.711467.6278.3645 5.7919490.55365河源40.5198.1512137.998054.92139.534.914.1313729.38507梅州46.2162.9813113.310365.7267.9839.3 6.7112528.23307惠州61.27758.972127817913.9491.137.8171.4935615.98569汕尾57289.4312560.218735.73282.0638.29.4813287.30274东莞86.391094.0833044.624269.9959.0751.2551.6759274.23927中山86.34545.6123088.3917414.7549.7639.4177.3662222.89651江门50.08492.0719003.7614262.87562.0734.279.4931915.39277阳江46.72239.4913075.219164.85305.383612.321999.29294湛江38.99393.2313665.210470.1559.9439.913.6516537.29201茂名37.5180.0113160.649764.1591.0543.1 5.3219853.45836肇庆44.89462.771506311030.3275.7843.720.322169.19445清远34.93841.2414314.799851.89303.5631.914.1522513.00645潮州62.1162.9812398.210758.29207.8937.618.718653.62032揭阳45.36393.513169.2410463.1341.4633.625.2514093.4095云浮50.2240.191321111383.48117.9133.7 6.1614128.88059利用主成分分析综合出适当的主成分及相应的主成分得分;利用上面的主成分得分对样品进行聚类分析,并给出适当的结论。
主成分分析的操作过程原始数据如下(部分)调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示:单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框:其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。
①KMO和Bartlett球形检验结果:KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显著性P值为0.000<0.05,亦说明数据适合做因子分析。
②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。
本表在主成分分析中用处不大,此处列出来仅供参考。
③总方差分解表如下表。
由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。
④因子截荷矩阵如下:根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U 与因子载荷矩阵A 以及特征值λ的数学关系如下面这个公式:λiiiAU=故可以由这二者通过计算变量来求得主成分载荷矩阵U 。
新建一个SPSS 数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示:计算变量(Transform-Compute Variables )的公式分别如下二张图所示:计算变量得到的两个特征向量U1和U2如下图所示(U1和U2合起来就是主成分载荷矩阵):所以可以得到两个主成分Y1和Y2的表达式如下:Y1=0.456X1+0.401X2+0.428X3+0.490X4+0.380X5+0.253X6Y2=-0.367X1+0.322X2-0.323X3-0.303X4+0.453X5+0.602X6由上面两个表达式,可以通过计算变量来得到Y1、Y2的值。
主成分分析操作步骤1)先在spss中录入原始数据。
2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话框,将要分析的变量都放入【变量】窗口中。
3)设计分析的统计量点击【描述】:选中“Statistics”中的“原始分析结果”和“相关性矩阵”中的“系数”。
(选中原始分析结果,SPSS自动把原始数据标准差标准化,但不显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。
点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的第一个选项即可。
点击【旋转】:选取第一个选项“无”。
(当因子分析的抽取方法选择主成分法时,且不进行因子旋转,则其结果即为主成分分析)点击【得分】:选中“保存为变量”,方法中选“回归”;再选中“显示因子得分系数矩阵”。
点击【选项】:选择“按列表排除个案”。
4)结果解读5)A. 相关系数矩阵:是6个变量两两之间的相关系数大小的方阵。
通过相关系数可以看到各个变量之间的相关,进而了解各个变量之间的关系。
相關性矩陣食品衣着燃料住房交通和通讯娱乐教育文化相關食品 1.000 .692 .319 .760 .738 .556 衣着.692 1.000 -.081 .663 .902 .389 燃料.319 -.081 1.000 -.089 -.061 .267 住房.760 .663 -.089 1.000 .831 .387 交通和通讯.738 .902 -.061 .831 1.000 .326 娱乐教育文化.556 .389 .267 .387 .326 1.000B. 共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和通讯最多,而娱乐教育文化损失率最大。
munalities起始擷取食品 1.000 .878衣着 1.000 .825燃料 1.000 .841住房 1.000 .810交通和通讯 1.000 .919娱乐教育文化 1.000 .584擷取方法:主體元件分析。
SPSS进行主成分分析主成分分析(Principal Component Analysis,PCA)是一种基本的多变量分析方法,是一种对多个连续变量进行缩减的技术。
该方法可将一组相关性较高的变量转化为一组不相关或低度相关的变量,即主成分,并用较少的主成分代表原始变量集合,从而简化了数据。
在SPSS中,进行主成分分析有几个步骤,下面将详细讲解。
步骤一:导入数据首先,要导入需要进行主成分分析的数据。
在SPSS软件中,点击文件(File)-导入(Import)-数据(Data)菜单,选择要导入的数据文件,然后选择适当的文件格式并打开。
步骤二:选择变量导入数据后,需要选择要进行主成分分析的变量。
在SPSS中,可以通过几种不同的方式选择变量。
其中最常用的是从变量视图中选择变量。
在变量视图中,可以看到所有可用的变量和它们的属性。
要选择变量进行主成分分析,只需单击变量视图中的相应名称。
选择完成后,单击左上角的“变量”选项卡,然后单击“从选定变量生成”下拉列表中的“主成分”选项。
步骤三:设置主成分选项在选择生成主成分之后,SPSS将显示选项设置对话框。
这个对话框允许用户输入有关生成主成分的选项信息,例如是否旋转主成分、选定的变量数量、主成分提取方法等。
在这个对话框中,用户也可以选择性地过滤数据、指定变量标签、指定文件名等。
步骤四:生成主成分设置主成分选项后,可以单击“确定”按钮完成生成主成分的进程。
SPSS将根据所选的选项执行主成分分析,并将结果显示在输出区域中。
输出区域将显示主成分的概括、默认图形和标志所需的任何统计信息。
步骤五:解释主成分生成主成分后,需要对结果进行解释。
毕竟,生成的主成分只是代表原始变量的一小部分,因此它所代表的含义可能不明显。
有几种不同的方法可以解释主成分生成的结果,例如特征值分析、成分矩阵、旋转矩阵等。
结论通过SPSS进行主成分分析需要按照以上步骤进行操作。
主成分分析是一种有效的数据处理方法,对数据进行简化和解释非常有用。
SAS 大作业主成分分析法理学院07统计学01班孙禹40708030104SAS 主成分分析利用SAS 程序我们可以进行主成分分析以及因子分析,因此首先要明白主成分分析与因子分析的概念与步骤,以方便进行后续工作1. 主成分分析的基本思想主成分分析是数学上对数据降维德一种方法。
其基本思想是设法将原来众多的具有一定相关性的指标,重新组合成一组新的互不相关的综合指标来代替原来指标。
这种线性组合有很多种,选取时,在所有的线性组合中所选取的F1应该是方差最大的,故称F1为第一主成分。
如果第一主成分不足以代表原来P 个指标的信息,再选取F2即第二个线性组合,依次类推。
一般地说,利用主成分分析得到的主成分与原始变量之间有如下的关系:(1)、每个主成分都是各原始量的线性组合。
(2)、主成分的数目大大少于原始变量的数目。
(3)、主成分保留了原始变量绝大多数信息。
(4)、各主成分之间互不相关2主成分分析的基本理论假设我们所讨论的实际问题中,有p 个指标,我们把这p 个指标看作p 维随机变量,记为X=(X 1,X 2,…,X p )T ,主成分分析就是要把这p 个指标的问题,转变为讨论p 个指标的线性组合的问题,而这些新的指标F 1,F 2,…,F k (k ≤p ),按照保留主要信息量的原则充分反映原指标的信息,并且相互独立。
3主成分分析步骤根据研究问题选取初始分析变量;根据初始变量特性判断由协方差阵求主成分还是由相关阵求主成分; 求协方差阵或相关阵的特征根与特征向量;11112121212122221122p p p p p p p pp pY u X u X u X Y u X u X u X Y u X u X u X =+++=+++=+++判断是否存在明显的多重共线性,若存在,则回到第一步;得到主成分表达式并确定主成分个数,选取主成分;结合主成分对研究问题进行分析并深入研究。
4主成分的上机实验例:北京1961~1986年冬季的气温资料如表,变量个数p=3,对这些资料进行主成分分析。
利用SPSS进行主成分分析主成分分析是一种用于数据降维和探索关联性的统计方法。
它可以通过将一组相关变量转换成一组不相关的主成分,来帮助我们理解变量之间的关联关系。
利用SPSS进行主成分分析的步骤如下:1.打开SPSS软件,并导入要进行主成分分析的数据。
选择“文件”菜单下的“导入”选项,然后选择要导入的数据文件。
2.在数据文件导入成功后,点击“分析”菜单,然后选择“降维”子菜单中的“主成分”选项。
3.在弹出的“主成分”对话框中,将所有的变量移到右侧的“变量”框中。
这些变量将会是主成分分析的输入变量。
4. 可以选择“提取”选项卡来设置主成分的提取方法。
常用的方法有Kaiser准则和自由值大于1的原则。
选择适合自己数据的方法,并设置提取的主成分数目。
5.可以选择“旋转”选项卡来设置主成分的旋转方法。
常用的方法有旋转后的成分的内生性、方差最大化等。
同样,选择适合自己数据的方法,并设置旋转的方法。
6.设置好主成分分析的参数后,可以点击“统计”按钮来选择要计算的统计量,如特征值、方差解释比等。
7.设置完所有参数后,点击“确定”按钮开始进行主成分分析。
SPSS将会自动进行计算,并将结果显示在输出窗口中。
8.结果中会包含主成分的特征值、特征向量、方差解释比等信息。
通过分析这些信息,我们可以判断每个主成分的解释能力和重要性,进而得到主成分分析的结论。
需要注意的是,在进行主成分分析之前,需要对数据进行必要的预处理,如数据清洗、缺失值处理等。
此外,主成分分析的结果需要谨慎解释,因为主成分分析是一种线性降维方法,可能会损失一部分信息。
总之,SPSS是一种强大的统计软件,可以方便地进行主成分分析,并得到结果。
通过合理设置参数和分析结果,可以帮助我们更好地理解变量之间的关联关系,为进一步的数据分析提供依据。
如何用SPSS软件进行主成分分析如何用SPSS软件进行主成分分析一、引言主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,用于分析多变量之间的相互关系。
通过将原始变量转化为一组线性无关的新变量,利用这些新变量来解释原始变量的变化,从而降低数据的维度。
SPSS软件是一款广泛应用于社会科学、市场调研、数据分析等领域的统计分析工具,本文将介绍如何使用SPSS软件进行主成分分析。
二、数据准备在进行主成分分析之前,首先需要准备好待分析的数据。
SPSS 软件支持导入多种数据格式,包括Excel、CSV等。
在导入数据后,需要对数据进行清洗和预处理,确保数据的质量和一致性。
如果数据中存在缺失值,可以使用SPSS的数据清洗工具进行处理。
三、进行主成分分析1. 打开SPSS软件,并创建一个新的数据文件。
2. 在菜单栏中选择“分析(Analyze)”,然后选择“数据准备(Data Preparation)”,再选择“主成分分析(Principal Components)”。
3. 在弹出的对话框中,选择要进行主成分分析的变量。
可以通过拖拽变量到“已选择”栏中或使用“添加”按钮来选择变量。
4. 在“变量列表”中,可以对每个变量选择分析方法。
默认为主成分分析(PCA),也可以选择常量法(Constant)、特殊值法(Special Value)等分析方法。
5. 点击“统计”按钮,在弹出的对话框中选择输出的统计量。
可以选择主成分得分、特征根等信息。
6. 点击“提取”按钮,在弹出的对话框中选择提取的因子个数。
可以通过查看特征根的大小来确定提取的因子个数。
7. 点击“旋转”按钮,选择因子旋转的方法。
常用的旋转方法包括方差最大旋转(Varimax)和直角旋转(Orthogonal)等。
8. 点击“选项”按钮,可以进一步设置分析的参数,如缺失值处理、小数位数等。
9. 点击“确定”按钮开始进行主成分分析。