磁路基本定律、计算方法
- 格式:ppt
- 大小:253.50 KB
- 文档页数:15
磁路的基本定律磁路的基本定律磁路是指由铁芯和线圈组成的电器元件,在电机、变压器、电磁铁等电气设备中广泛应用。
学习磁路的基本定律对于理解和分析这些设备的工作原理具有重要意义。
一、磁通量1.1 磁通量的定义磁通量是指通过一个闭合曲面内部的总磁场线数,通常用字母Φ表示,单位为韦伯(Wb)。
1.2 磁通量的计算公式根据高斯定理,一个闭合曲面内部的总磁场线数等于该曲面上法向量方向上的磁感应强度积分。
因此,可以用以下公式计算:Φ = ∫B·dS其中,B为磁感应强度(单位为特斯拉),dS为曲面微元(单位为平方米),积分范围为该闭合曲面内部。
二、安培环路定理2.1 安培环路定理的定义安培环路定理是指在一个闭合回路上,沿着任意一条路径积分得到的电流总和相等。
即:∮H·dl = I其中,H为磁场强度(单位为安培/米),dl为路径微元(单位为米),I为该回路内的电流(单位为安培)。
2.2 安培环路定理的应用安培环路定理可以用于分析磁路中的磁通量和磁场强度之间的关系。
例如,在一个闭合回路上,如果有一段铁芯,那么根据安培环路定理,该铁芯内部的磁场强度H应该等于该回路内部电流I所产生的磁通量Φ与铁芯长度l之比。
即:H = Φ / l三、法拉第电磁感应定律3.1 法拉第电磁感应定律的定义法拉第电磁感应定律是指当一个闭合线圈中的磁通量发生变化时,会在线圈中产生感应电动势。
即:ε = -dΦ/dt其中,ε为感应电动势(单位为伏特),Φ为线圈内部的磁通量,t为时间。
3.2 法拉第电磁感应定律的应用法拉第电磁感应定律可以用于分析变压器、发电机等设备中的工作原理。
例如,在一个变压器中,当一侧线圈中的交流电流产生变化时,会在另一侧线圈中产生感应电动势,从而实现电能的传输和变换。
四、磁化曲线4.1 磁化曲线的定义磁化曲线是指在给定条件下,磁通量Φ和磁场强度H之间的关系。
通常用图表或曲线表示。
4.2 磁化曲线的特点磁化曲线的形态取决于铁芯材料的性质和工作状态。
磁路的基本概念和基本定律在很多电工设备(象变压器、电机、电磁铁等)中,不仅有电路的问题,同时还有磁路的问题,这一章,我们就学习磁的相关知识。
一、磁铁及其性质:人们把物体能够吸引铁、钴等金属及其合金的性质叫做磁性,把具有磁性的物体叫做磁体(磁铁)。
磁体两端磁性最强的区域叫磁极。
任何磁体都具有两个磁极,而且无论把磁体怎样分割总保持有两个异性磁极,也就是说,N极和S极总是成对出现的。
与电荷间的相互作用力相似,磁极间也存在相互的作用力,且同极性相互排斥,异极性相互吸引。
1.1磁场与磁感应线磁铁周围和电流周围都存在磁场。
磁场具有力和能的特征。
磁感应线能形象地描述磁场。
它们是互不交叉的闭合曲线,在磁体外部有N极指向S极,在磁体内部由S极指向N极,磁感应线上某点的切线方向表示该点的磁场方向,其疏密程度表示磁场的强弱。
1.2描述磁场的物理量:磁感应强度B:在磁场中垂直于磁场方向的通电导线所受电磁力F与电流I和导线有效长度L的乘积IL的比值即为该处的磁感应强度,即B=F/IL,单位:特斯拉。
磁感应强度是表示磁场中某点磁场强弱和方向的物理量,它是一个矢量,它与电流之间的方向关系可用右手螺旋定则来确定。
磁通∮:磁感应强度B和与它垂直方向的某一截面积S的乘积,称为通过该面积的磁通,即∮=BS,由上式可知,磁感应强度在数值上可以看作与磁场方向相垂直的单位面积所通过的磁通,故又称为磁通密度,单位是伏.秒,通常称为“韦”。
磁通∮是描述磁场在空间分布的物理量。
磁导率u是说明媒体介质导磁性能的物理量。
1.3定则电流与其产生磁场的方向可用安培定则(又称右手螺旋法则)来判断。
安培定则既适用于判断电流产生的磁场方向,也可用于在已知磁场方向时判断电流的方向。
1.直线电流产生的磁场,以右手拇指的指向表示电流方向,弯曲四指的指向即为磁场方向。
2.环形电流产生的磁场:以右手弯曲的四指表示电流方向,拇指所指的方向即为磁场方向。
3.通电导体在磁场内的受力方向,用左手定则来判断。
磁路的三个基本定律一、磁路的欧姆定律1. 内容- 磁路中的磁通Φ(单位为韦伯,Wb)与磁动势F(单位为安匝,At)成正比,与磁阻R_m(单位为H^-1)成反比,即varPhi=(F)/(R_m)。
2. 相关概念- 磁动势F:磁动势是产生磁通的激励,等于线圈的匝数N与通过线圈的电流I 的乘积,即F = NI。
例如,一个线圈匝数为100匝,通过的电流为2A,则磁动势F=100×2 = 200安匝。
- 磁阻R_m:磁阻表示磁路对磁通的阻碍作用,它与磁路的长度l(单位为米,m)成正比,与磁路的横截面积S(单位为平方米,m^2)和磁导率μ(单位为亨/米,H/m)成反比,即R_m=(l)/(μ S)。
例如,对于一段长度l = 0.5m,横截面积S=0.01m^2,磁导率μ = 4π×10^-7H/m的磁路,其磁阻R_m=(0.5)/(4π×10^-7)×0.01≈3.98×10^7H^-1。
二、磁路的基尔霍夫第一定律(磁通连续性定律)1. 内容- 对于磁路中的任一闭合面,进入该闭合面的磁通等于离开该闭合面的磁通,即∑varPhi = 0。
2. 理解与示例- 这一定律类似于电路中的基尔霍夫电流定律。
例如,在一个有分支的磁路中,假设一个节点处有三条磁路分支,磁通分别为varPhi_1、varPhi_2和varPhi_3,如果规定进入节点为正,离开节点为负,则varPhi_1-varPhi_2-varPhi_3 = 0。
也就是说,磁通在磁路的节点处是连续的,不会凭空产生或消失。
三、磁路的基尔霍夫第二定律(安培环路定律的推广)1. 内容- 在磁路的任一闭合回路上,磁动势的代数和等于各段磁路磁压降(Hl,其中H为磁场强度,单位为安/米,A/m)的代数和,即∑ F=∑ Hl。
2. 相关概念与示例- 磁场强度H:磁场强度与磁导率μ和磁感应强度B(单位为特斯拉,T)的关系为B = μ H。