解:设需截第一种钢板x张、第二种钢板y张,满足
的条件是
2x y 15,
xx
2y 3y
18, 27,
x
0,
x
N
,
y 0, y N .
目标函数:z=x+y.
可行域如图
y
M(18/5,39/5) x+y=0
BB(3,9) CC(4,8)
M
x
0 作出一组平行直线z=x+y2,x+y=15 x+y=12 x+2y=18 x+3y=27
解:设每月生产甲产品x件,生产乙产品y件,每月收
入为Z千元,目标函数为Z=3x+2y,满足的条件是y 500,
x
0,
y 0.
目标函数Z=3x+2y,可行域如图所示。
当直线经过点M时,截距最大,Z最大。
易得M(200,100), Zmax=3x+2y=800。
2、解线性规划问题的步骤:
一列(设未知数,列出不等式组及目标函数式) 二画(画出线性约束条件所表示的可行域和直线l0) 三移(平在移线性直目线标l函0到数取所得表最示的值一的组位平置行)线中,利用平
移的方法找出与可行域有公共点且纵截距最大或
四解(通过解方程组求最出小最的优直线解;) 五答(作出答案)
当直线经过点M时z=x+y=11.4,但它不是最优整数解.
作直线x+y=12.
解得交点B,C的坐标B(3,9)和C(4,8).
直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解.
{ 2x+y≥15, x+2y≥18,