计算方法-4.6-4.7龙贝格、高斯求积公式
- 格式:ppt
- 大小:1.16 MB
- 文档页数:43
一、 引言介绍高斯型求积公式,并使用其求积分⎰=1sin I xdx 。
要求:数值实验结果要体现出随高斯点的增加误差的变化。
我们知道,求积公式⎰∑=≈bani i ix f Adx x f 0)()( (1.1)含有22+n 个待定常数i x 及),,2,1,0(n i A i =,如果它具有n 次代数精确度,则它应使1+m 个方程mk dx x x A bakni ki i ,,2,1,0,==⎰∑= (1.2)精确成立。
作为插值型求积公式(1.1)它至少具有n 次代数精确度;另一方面,令)())(()(101n n x x x x x x x ---=+ ω,则对22+n 次多项式)()(21x x f n +=ω而言,(7.5.1)右端为零,而左端严格大于零,即(7.5.1)式对22+n 次多项式)(21x n +ω不准确成立。
但要确定方程组(7.5.2)中的22+n 个待定常数i x 与i A ,最多需要给出22+n 个独立条件,所以m最大取12+n 。
因此,插值型求积公式(1.1)的代数精确度最小是n ,最大是12+n .由此可见,高斯公式的代数精度比牛顿-科特斯公式高,求解高斯求积公式的关键就是解出上述2n+2个待定常数。
为解决上述问题,首先要先给出三个定理:定理一:以n x x x ,,,10 为节点的插值型求积公式(7.5.1)具有12+n 次代数精确度的充要条件是以这些节点为零点的多项式)())(()(101n n x x x x x x x ---=+ ω与任意次数不超过n 的多项式)(x P 均在区间],[b a 上正交,即⎰=+ban dx x x P 0)()(1ω (1.3)定理二:高斯公式(1.1)的求积系数k A 全为正,且nk dx x l dx x l A bak bak k ,1,0,)()(2===⎰⎰(1.4)定理三:对于高斯公式(1.1),其余项为dxx fn f R ban n ⎰+++=)()()!22(1)(21)22(ωη (1.5)其中).())(()(],,[101n n x x x x x x x b a ---=∈+ ωη证明 以n x x x ,,,10 为节点构造)(x f 的埃尔米特插值多项式)(x H),()(i i x f x H = ni x f x H i i ,1,0),()(='='因为)(x H 是12+n 次多项式,而它的余项是)()()!22(1)()(21)22(x fn x H x f n n +++=-ωξ所以高斯公式(7.5.1)对)(x H 能准确成立,即∑∑⎰====ni i in i iibax f Ax H A dx x H 0)()()(从而dxx fn dxx H dx x f x f A dx x f f R n ban babani i i ba)()()!22(1)()()()()(21)22(0++=⎰⎰⎰∑⎰+=-=-=ωξ若)()22(x fn +在区间],[b a 上连续,由于)(21x n +ω在],[b a 上不变号,故应用积分中值定理可得],[,)()()!22(1)(21)22(b a dx x fn f R ban n ∈+=⎰++ηωη上述定理说明,与牛顿—科兹公式进行比较,高斯公式不但具有高精度,而且它还是数值稳定的,但是节点和求积系数的计算比较麻烦。
龙贝格(Romberg )求积法1.算法理论Romberg 求积方法是以复化梯形公式为基础,应用Richardson 外推法导出的数值求积方法。
由复化梯形公式 )]()(2)([2222b f h a f a f h T +++=可以化为)]()]()([2[212112h a f h b f a f hT +++==)]([21211h a f h T ++一般地,把区间[a,b]逐次分半k -1次,(k =1,2,……,n )区间长度(步长)为kk m a b h -=,其中mk =2k -1。
记k T =)1(k T由)1(k T =]))12(([21211)1(1∑=---++km j k k k h j a f h T 从而⎰badxx f )(=)1(kT-)(''122k f h a b ξ- (1)按Richardson 外推思想,可将(1)看成关于k h ,误差为)(2k h O 的一个近似公式,因而,复化梯形公式的误差公式为⎰badxx f )(-)1(k T =......4221++kkh K h K =∑∞=12i i k i h K (2)取1+k h =k h 21有⎰badxx f )(-)1(1+k T=∑∞=+121221i i k iihK (3)误差为)(2jh O 的误差公式 )(j kT=)1(-j kT+141)1(1)1(------j j k j k T T 2.误差及收敛性分析(1)误差,对复化梯形公式误差估计时,是估计出每个子区间上的误差,然后将n 个子区间上的误差相加作为整个积分区间上的误差。
(2)收敛性,记h x i =∆,由于∑=++=ni i i n x f x f h f T 01))]()([2)(=))()((21101∑∑-==∆+∆n i ni i i i i x x f x x f上面两个累加式都是积分和,由于)(x f 在区间],[b a 上可积可知,只要],[b a 的分划的最大子区间的长度0→λ时,也即∞→n 时,它们的极限都等于积分值)(f I 。
龙贝格(Romberg )求积法1.算法理论Romberg 求积方法是以复化梯形公式为基础,应用Richardson 外推法导出的数值求积方法。
由复化梯形公式 )]()(2)([2222b f h a f a f h T +++=可以化为)]()]()([2[212112h a f h b f a f hT +++==)]([21211h a f h T ++一般地,把区间[a,b]逐次分半k -1次,(k =1,2,……,n )区间长度(步长)为kk m a b h -=,其中mk =2k -1。
记k T =)1(k T由)1(k T =]))12(([21211)1(1∑=---++km j k k k h j a f h T 从而⎰badxx f )(=)1(kT-)(''122k f h a b ξ- (1)按Richardson 外推思想,可将(1)看成关于k h ,误差为)(2k h O 的一个近似公式,因而,复化梯形公式的误差公式为⎰badxx f )(-)1(k T =......4221++kkh K h K =∑∞=12i i k i h K (2)取1+k h =k h 21有 ⎰ba dx x f )(-)1(1+k T =∑∞=+121221i ik ii hK (3)误差为)(2jh O 的误差公式 )(j kT=)1(-j kT+141)1(1)1(------j j k j k T T2.误差及收敛性分析(1)误差,对复化梯形公式误差估计时,是估计出每个子区间上的误差,然后将n 个子区间上的误差相加作为整个积分区间上的误差。
(2)收敛性,记h x i =∆,由于∑=++=ni i i n x f x f h f T 01))]()([2)(=))()((21101∑∑-==∆+∆n i ni i i i i x x f x x f上面两个累加式都是积分和,由于)(x f 在区间],[b a 上可积可知,只要],[b a 的分划的最大子区间的长度0→λ时,也即∞→n 时,它们的极限都等于积分值)(f I 。
龙贝格算法例题详解
龙贝格算法是数值计算中一种用于近似计算积分的方法。
它通过对区间进行逐步细分,将积分问题转化为一个递归的加权求和过程。
下面我们以一个简单的例题来详细解释龙贝格算法的运算过程。
假设我们要计算函数f(x)在区间[a, b]上的积分,首先将区间[a, b]等分为n个小区间。
定义h = (b - a) / n为每个小区间的宽度。
首先,我们计算f(a)和f(b),这两个端点的函数值。
然后,我们计算每个小区间的中点的函数值f((a + b) / 2),并将这些中点的函数值乘以h,得到积分的第一次近似值I1。
接下来,我们计算每个相邻的小区间的中点的函数值f((a + x_i) / 2),其中x_i表示第i个小区间的起点。
对于每个小区间,我们将左右两个中点的函数值相加,并乘以h/2,得到积分的第二次近似值I2。
重复上述过程,我们可以得到更高阶的近似值I3、I4、I5,直到达到所需的精度或者迭代次数。
最后,我们将这些近似值进行逐次求平均,得到最终的积分近似值。
具体的计算公式如下:
I(k+1) = (4^k I(k) - I(k-1)) / (4^k - 1)
其中,k表示迭代次数,I(k)表示第k次迭代得到的近似值。
龙贝格算法的优点是收敛速度快,可以达到较高的精度。
但对于某些函数,可能会出现数值不稳定或发散的情况。
因此,在使用龙贝
格算法时,需要根据具体问题进行调整和判断,选择合适的参数和判据,以确保计算的准确性和稳定性。
学科分类号110.3420本科毕业论文题目几种常用数值积分方法的比较姓名潘晓祥学号1006020540200院(系)数学与计算机科学学院专业数学与应用数学年级2010 级指导教师雍进军职称讲师二〇一四年五月贵州师范学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
本科毕业论文作者签名:年月日贵州师范学院本科毕业论文(设计)任务书毕业设计题目几种常用数值积分方法的比较作者姓名潘晓祥学号1006020540200 年级2010级所属学院数学与计算机科专业数学与应用数学班级四班指导教师签名雍进军讲师职称讲师开题日期2013年7月10日主要目标1.了解什么数值积分基本思想和一些常用的数值积分方法;2.对各种数值积分方法的误差以及代数精度进行分析;3.对各积分方法进行比较总结出优缺点。
主要要求通过对几种常用的数值积分方法进行了的分析,并用这几种方法对被积函数是普通函数做了数值积分,并在计算机上进行实验。
数值积分是计算方法或数值分析理论中非常重要的内容,数值积分方法也是解决实际计算问题的重要方法,对几种常用数值积分方法的分析很必要。
主要内容本文通过对复化求积公式, Newton—Cotes求积公式, Romberg求积公式,高斯型求积公式进行分析讨论并在计算机上积分实验,从代数精度,求积公式误差等角度对这些方法进行分析比较,并总结出每种求积分法的优缺点以及实用性。
贵州师范学院本科毕业论文(设计)开题报告书论文题目几种常用数值积分方法的比较作者姓名潘晓祥学号1006020540200 年级2010级数学与计算机所属学院专业数学与应用数学班级数本(4)班科学学院指导教师姓名雍进军职称讲师预计字数5000.00字题目性质应用研究日期2013年7月05 日选题的原由:研究意义:数值积分是数学上的重要课题之一,是数值分析中的重要内容之一,也是数学的研究重点.并在实际问题及应用中有着广泛的应用.常用于科学与工程的计算中,如涉及到积分方程,工程计算,计算机图形学,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有很重要的意义.数值积分是研究如何求出一个积分的数值.这一课题的起源可追溯到古代,其中一个突出的例子是希腊人用内接与外接正多边形推算出圆面积的方法.也正是此法使阿基米德得以求出π值得上界与下界,若干世纪以来,尤其是十六世纪后,已提出了多种数值积分方法,其中有矩形求积法,内插求积法,牛顿科特斯公式,复化求积公式,龙贝格求积公式,高斯型求积公式.但各种方法都有特点,在不同的情况下试用程度不同,我们将着重从求积公式的代数精度和余项等角度对这些方法进行分析比较. 研究动态:这些年来,有关数值积分的研究已经成为一个很活跃的研究领域,历史上,阿基米德,牛顿,欧拉,高斯,切比雪夫等人都对此有过贡献.研究出各种各样的数值求积公式,但一个好的数值求积公式应该满足:计算简单,误差小,代数精度高.我们将对矩形求积法,内插求积法,牛顿科特斯公式,化求积公式,贝格求积公式,斯型求积公式进行比较.对数值求积公式能有进一步的了解和学习.主要内容:1 数值积分方法的基本思想2 几类常用数值积分方法的基本分析2.1 Newton—Cotes求积公式2.2 复化求积公式2.3 Romberg求积公式2.4 高斯型求积公式3 几类数值积分方法的简单比较评述4利用MATLAB编程应用对几类求积算法的分析比较研究方法:本论文主要通过对相关文献和书籍的参考,合自己的见解,复化求积公式,Newton—Cotes求积公式,Romberg求积公式,高斯型求积公式进行讨论并进行上机实验,从代数精度,求积公式误差等角度对这些方法进行分析比较.完成期限和采取的主要措施:本论文计划用6个月的时间完成,阶段的任务如下:(1)7月份查阅相关书籍和文献;(2)8月份完成开题报告并交老师批阅;(3)9月份完成论文初稿并交老师批阅;(4)10月份完成论文二搞并交老师批阅;(5)11月份完成论文三搞;(6)12月份定稿.主要措施:考相关书籍和文献,合自己的见解,老师的指导下和同学的帮助下完成主要参考文献及资料名称:[1] 关治. 陆金甫. 数学分析基础(第二版)[M]. 北京:等教育出版社.2010.7[2] 胡祖炽. 林源渠. 数值分析[M] 北京:等教育出版社.1986.3[3] 薛毅. 数学分析与实验[M] 北京:业大学出版社2005.3[4] 徐士良. 数值分析与算法[M]. 北京:械工业出版社2007.1[5] 王开荣. 杨大地. 应用数值分析[M] 北京:等教育出版社2010.7[6] 杨一都. 数值计算方法[M]. 北京:等教育出版社 . 2008.4[7] 韩明. 王家宝. 李林. 数学实验(MATLAB)版[M]. 上海:济大学出版社2012.1[8] 圣宝建. 关于数值积分若干问题的研究[J]. 南京信息工程大学. 2009.05.01. : 42[9] 刘绪军. 几种求积公式计算精确度的比较[J]. 南京职业技术学院. 2009.[10] 史万明.吴裕树.孙新.数值分析[M]. 北京理工大学出版社.2010.4.开题报告会纪要时间2013年8月26日地点宁静楼229教师办公室与会人员姓名职务(职称)姓名职务(职称)姓名职务(职称)雍进军导师(讲师)邓喜才副教授李晟副教授龙林林组长指导教师意见:签名:年月日会议记录摘要:指导小组针对课题《二次函数性质的应用》提问了以下问题以及报告人的回答:雍老师问:选择此题目的目的?潘晓祥答:随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。
高斯求积公式
高斯求积公式,也称为高斯积分公式,是一个数学上的重要公式,它是由德国数学家卡尔·高斯提出的。
高斯求积公式可以用来计算一个函数在某个区间内的积分值,因此也可以称为“求积公式”。
高斯求积公式的具体形式如下:
∫a^b f(x)dx = (b-a)/2[f(a)+f(b)+2∑f(x_i)]
其中,f(x)是区间[a,b]内的某个函数,x_i是区间[a,b]的某个中间点,i=1,2,…,n。
为了简化计算,一般情况下,n取值为2或3。
高斯求积公式有许多应用,它可以用来解决许多不同类型的积分问题。
它能够求解函数在某个区间内的积分值,也可以用来求解多元函数的最大值或最小值问题。
此外,它还可以用来计算曲线下面积,求解复杂微分方程等。
总之,高斯求积公式是一个非常有用的数学公式,它可以用来解决许多积分问题,因此被广泛应用于科学研究和工程计算中。