复化求积公式
- 格式:ppt
- 大小:2.11 MB
- 文档页数:3
§3 复化求积公式● 复化求积法的基本思想:将积分区间],[b a n 等分,可得到1+n 个求积节点:kh a x k +=,),,1,0(n k Λ=,其中nab h -=,对积分111()()k kn n bx k axk k I f x dx f x dx I +--=====∑∑⎰⎰在每一个小区间1[,]k k x x +上利用n 阶牛顿-柯特斯公式计算,然后对每个区间的近似积分值求和,用所得的值近似代替原积分值。
如此得到的求积公式称为复化求积公式。
● 复化梯形公式:(每个小区间上利用梯形公式求积)111110()()(()())2k kn bx ax k n k kk k k I f x dx f x dxx x f x f x +-=-++===-≈+∑⎰⎰∑求和展开得:0112111(()())(()())2(()())(()2()())2n n n n k k hT f x f x f x f x f x f x hf a f x f b --==++++++=++∑L其中,na b h -=复化辛甫生公式: (每个小区间上用辛甫生公式求积) 1、公式:112101110()()(()4()())6k kn bxax k n k kk k k k I f x dx f x dxx x f x f x f x +-=-+++===-≈++∑⎰⎰∑ 12k x +表示为区间1[,]k k x x +的中点。
求和展开得:13221201121((()4()())(()4()6())(()4()())n n n n hS f x f x f x f x f x f x f x f x f x --=+++++++++L121101(()4()2()())6n n k k k k hf a f x f x f b --+===+++∑∑ 其中:na b h -=。
复化柯特斯公式:(每个小区间上用柯特斯公式求积)1141324101101()()(7()32()9012()32()7())k kn bxax k n k kk k k k k k I f x dx f x dxx x f x f x f x f x f x +-=-++=+++==-≈++++∑⎰⎰∑ 12k x +为1[,]k k x x +的中点,14k x +,34k x +为1[,]k k x x +的四分之一分点。