【统计】医学统计学重点
- 格式:docx
- 大小:24.90 KB
- 文档页数:5
一、基本概念1.总体与样本总体:所有同质观察单位某种观察值(即变量值)的全体样本:是总体中抽取部分观察单位的观察值的集合2.普查与抽样调查普查:就是全面调查,即调查目标总体中全部观察对象抽样调查:是一种非全面调查,即从总体中抽取一定数量的观察单位组成样本,对样本进行调查3.参数与统计量参数:总体的某些数值特征统计量:根据样本算得的某些数值特征4.Ⅰ型与Ⅱ型错误假设检验的结论真实情况拒绝H0不拒绝H0H0正确Ⅰ型错误(ɑ)推断正确(1−ɑ)H0不正确推断正确(1−β) Ⅱ型错误(β)Ⅰ型错误(ɑ错误):H0为真时却被拒绝,弃真错误Ⅱ型错误(β错误): H0为假时却被接受,取伪错误5.随机化原则与安慰剂对照随机化原则:是将研究对象随机分配到实验组和对照组,使每个研究对象都有同等机会被分配到各组中去,以平衡两组中已知和未知的混杂因素,从而提高两组的可比性,避免造成偏倚。
(意义:①是提高组间均衡性的重要设计方法;②避免有意扩大或缩小组间差别导致的偏倚;③各种统计学方法均建立在随机化基础上)安慰剂对照:是一种常用的对照方法。
安慰剂又称伪药物,是一种无药理作用的制剂,不含试验药物的有效成分,但其感观如剂型、大小、颜色、质量、气味及口味等都与试验药物一样,不能被受试对象和研究者所识别。
(安慰剂对照主要用于临床试验,其目的在于控制研究者和受试对象的心理因素导致的偏倚,并提高依从性。
安慰剂对照还可以控制疾病自然进程的影响,显示试验药物的效应)6.误差与标准误(区分率与均数)㈠均数抽样误差:由个体变异产生的、随机抽样引起的样本统计量与总体参数间的差异。
标准误:是指样本均数的标准差,反映抽样误差大小的定量指标,其公式表示为S x =S/√n㈡样本率率的抽样误差:样本率p和总体率π的差异率的标准误:样本率的标准差,公式为σp=√π(1-π)/n7。
方差分析方差分析:又称F检验,是通过对数据变异按设计类型的不同,分解成两个或多个样本均数所代表总体均数是否有差别的一种统计学方法。
一、名解:1、定量资料:以定量值表达每个观察单位的某项观察指标2、定性资料:以定性方式表达每个观察单位的某项观察指标3、等级资料:以等级方式表达每个观察单位的某项观察指标4、总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。
5、样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。
6、参数:描述某总体特征的指标称为总体参数。
7、统计量:描述某样本特征的指标称为样本统计量。
8、小概率事件:当某事件发生的概率小于或等于0.05时,统计学上称该事件为小概率事件9、小概率原理:其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。
小概率原理是进行统计推断的依据。
(8&9常写在一起)10∙变异,是以具有同质性的观察单位为载体,某项观察指标在其单位之间显示的差别。
11标准化率:用统一的标准对内部构成不同的各组频率进行调整和对比,对比后的率为标准化率。
12参考值范围:又称正常值范围,大多数人正常人某观察指标所在的范围。
由于正常人的形态、功能、生化等各种指标的数据因人而异,而且同一个人的某些指标还会随着时间、机体内外环境的改变而变化,因此需要确定其波动范围,即正常值范围,简称正常值。
13、抽样误差:由抽样引起的样本统计量与总体参数间的差别。
14、中心极限定理:①从均数为U,标准差为。
的总体中独立随机抽样,当样本含量?增加时,样本均数的分布将趋于正态分布,均数为标准差为。
X②从非正态分布的总体中随机抽样,只要样本含量足够大,样本均数趋于正态分布。
15、统计推断:就是根据样本所提供的信息,以一定的概率推断总体的性质。
16、区间估计/参数估计/可信区间:包括点估计和区间估计,由样本信息估计总体参数。
按一定的概率或可信度(La)用一个区间估计总体参数所在范围。
这个范围称作可信度为l-α的可信区间(ConfidenCeinterval,Cl),又称置信区间。
第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。
总体包括有限总体和无限总体。
样本:从总体中随机抽取的部分观察单位,其实测值的集合。
获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。
资料的类型计量资料、计数资料和等级资料。
误差包括随机误差、系统误差和非系统误差。
抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。
概率:是描述随机事件发生可能性大小的一个度量。
取值范围0≤P ≤1。
小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。
P ≤0.05或P ≤0.01。
医学统计学的步骤:设计、收集资料、整理资料和分析资料。
统计分析包括:统计描述和统计推断。
统计推断包括:参数估计和假设检验。
第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。
对称分布:集中位置在中间,左右两侧頻数基本对称。
偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。
(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。
计量资料集中趋势包括算术均数、几何均数和中位数。
算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。
中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。
<<医学统计学>>1. 总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。
2. 样本:按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
3. 同质:影响研究指标的主要因素易控制的因素基本上相同。
4. 抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。
样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为--5. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
6. 截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。
原因:失访/退出/终止(研究时限已到而终止观察)。
7. 卡方基本思想:X2分布是一种连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相等等问题。
X2反应实现了实际频数与理论频数的吻合程度。
如果检验假设成立,则A-T一般不大,X2应很小,即出现大X2值概率很小。
即X2越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则没有理由拒绝H0。
8. X2用途:(1)实际频数与拟合频数拟合优度:A推断两个或两个以上总体率或构成比有无差别(四格表/行x列表)。
B两变量之间有无相互关系。
C频数分布的拟合优度检验(判断次样本是否来自某种分布)。
(2)某些分布可用X2近似。
(3)间接应用:如t分布和F分布就是在X2分布基础上推导出来的。
9. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是否具有统计学意义。
10. 假设检验中P,a,b(倍他)的关系及统计学意义:a:检验水准,即显着性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”,以此判断是否不拒绝H0无效假设,在假设检验中,按a检验水准,拒绝了原来正确的H0,即犯了第1类错误,犯此错误的概率为a。
医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。
(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。
这个范围称作可信度为1-a的可信区间,又称置信区间。
3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。
三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。
分辨一个样本是否属于某特定总体等。
区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。
1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。
≤6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P 25 P 50 P 75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
1.变异:同质事物之间的差别。
2.频数分布的两个特征:集中位置,离散趋势3.数据分布的类型:对称分布和非对称分布。
非对称分布又称偏态分布,包括正偏态和负偏态。
单峰分布,双峰分布,多峰分布。
4.统计描述:用统计表、统计图和统计指标等方法对资料的数量特征与分布规律进行描述。
5.集中位置的描述,集中位置指标又称平均数指标。
有哪些及适用条件?(1)算数平均数:最适用于单峰对称分布资料的平均水平的描述,特别是正态分布资料(2)几何平均数:适用于①等比资料②对数正态分布资料(3)中位数和百分位数:适用于①偏态分布的资料②开口资料③资料分布不明等6.离散趋势的描述(1)全距亦称极差,适用于单峰小样本资料(2)四分位数间距,适用于单峰小样本资料(3)方差和标准差,适用于对称分布尤其是正态分布资料(4)变异系数,常用于①比较度量衡单位不同的两组或多种资料的变异度②比较均数相差悬殊的两组或多组资料的变异度7.常用相对数(1)率,是二分类指标(2)构成比(3)比8.正确应用相对数应注意几个问题:(1)计算相对数的分母不宜过小(2)分析时不能以构成比代替率(3)对观察单位数不等的几个率,不能直接相加求其总率(4)计算率时要注意资料的同质性,对比分析时应注意资料的可比性(5)也有抽样误差,需要假设检验。
9.率的标准法(1)基本思想:采用统一的标准,以消除病情构成不同对治愈率比较的影响,使算得的标准化治愈率有可比性。
(2)目的:控制混杂因素对研究结果的影响。
10.正态分布(1)概念P16(2)标准正态分布,u变换:u=σμ-X,u是标准正态离差,μ是均数,σ是标准差。
u~N(0,1)(3)正态分布的特征:①是单峰分布,高峰位置在均数X=μ处。
②以均数为中心,左右完全对称。
③取决于两个参数,均数μ和标准差σ。
μ为位置参数,μ越大,则曲线沿横轴向右移动;μ越小,则曲线沿横轴向左移动。
σ为形态参数,表示数据的离散程度,若σ小,则曲线形态“瘦高”;σ大,则曲线形态“矮胖”。
一:基本概念:1.参数:反映总体的统计指标。
2. 统计量:反映样本的统计指标称为统计量。
3. 概率:描述随机事件发生的可能性的大小的一个量度4.小概率事件:把p小于等于0.05或小于等于0.01的随机事件。
资料类型:计量资料,计数资料,等级资料。
医学统计的基本步骤:研究设计,收集资料,整理资料,分析资料,结果报告与结论表达。
二:变量分布:1.正态分布:指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布。
特征:(1)正态分布曲线是单峰,对称,钟形曲线,X=μ时曲线达到最高峰。
(2)正态曲线有两个参数,总体均数μ和总体标准差σ,μ越大曲线右移,越小左移,故称位置参数,σ越小曲线越瘦高,越大曲线越矮胖,故称形状参数。
(3)正态分布曲线下的面积分布具有一定的规律。
P80页。
应用:(1)质量控制(2)是统计学的理论基础(3)制定医学参考值范围制定医学参考值范围:包括绝大多数正常人的人体形态功能和代谢反应等各种生理生化指标的波动范围,是作为判定某项指标正常与否的参考标准。
方法:确定正常人对象的范围,统一测量标准,确定分组,样本含量确定,确定参考值范围的但双侧,确定百分界值,医学参考值范围的估计。
2.二项分布特征:(1)二项分布的图形:当π=0.5时图形对称,π≠0.5时,图形呈偏态,且当n的含量增大时,图形趋于对称。
(2)二项分布的均数与标准差:μ=n π;σ²=nπ(1-π);σ=根号下nπ(1-π)(3)二项分布的正态近似:当n无限增大时越趋近于正态分布。
应用:对立性,独立性,重复性三:统计分析:㈠1.统计描述:图表和指标(1)图表:频数分布图分为正偏态和负偏态,长尾向右侧延伸为正偏态,向左侧延伸为负偏态。
频数分布的特点:集中趋势和离散趋势。
(2)指标:分为计数指标和计量指标。
计数指标:相对数。
应用相对数的注意事项:①计算相对数时分母不宜太小②观测单位数不等的几个率不能直接想加求其合计率③资料对比时注意可比性④资料分析时不能以构成比代替率⑤考虑存在抽样误差计量指标:1.集中趋势:①算数均数χ:适用于对称分布资料,特别是正态或近似正态分布的计量资料。
1.总体:是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
2.随机抽样:随机抽样是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
3.变异:在自然状态下,个体间测量结果的差异称为变异。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
4.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(。
计数资料亦称定性资料或分类资料。
其观察值是定性的,表现为互不相容的类别或属性。
如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。
等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。
等级资料又称有序变量。
如患者的治疗结果可分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为+、++、+++等。
等级资料与计数资料不同:属性分组有程度差别,各组按大小顺序排列。
等级资料与计量资料不同:每个观察单位未确切定量,故亦称为半计量资料。
医学统计学重点医学统计学是医学领域中不可或缺的一门学科,它借助数理统计方法研究医学数据和临床试验的结果,为医学决策提供可靠的依据。
以下是医学统计学的几个重点内容。
一、描述统计学描述统计学是医学统计学的基础,主要研究如何分类、整理和描述医学数据。
其主要方法包括测量尺度、频率分布表、中心趋势测量和变异程度测量。
1. 测量尺度在医学统计学中,常见的测量尺度包括名目尺度、有序尺度和数值尺度。
名目尺度适用于无序分类的变量,有序尺度适用于有序分类的变量,而数值尺度适用于具有度量意义的变量。
2. 频率分布表频率分布表用来展示变量的分布情况,主要包括类别、频数和频率等内容。
通过频率分布表,可以直观地了解变量的分布状况。
3. 中心趋势测量中心趋势测量主要包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排列后的中间值,众数是出现次数最多的观测值。
4. 变异程度测量变异程度测量用来描述数据的分散程度,主要包括极差、方差和标准差。
极差是最大观测值与最小观测值之间的差异,方差是观测值与均值之间的差异的平方的平均数,标准差是方差的平方根。
二、推断统计学推断统计学是医学统计学的核心内容,主要研究如何通过样本数据推断总体参数,并对假设进行检验。
其中包括参数估计、假设检验和置信区间等方法。
1. 参数估计参数估计是利用样本数据估计总体参数,常用的方法有点估计和区间估计。
点估计是通过样本数据得到一个单一的数值作为总体参数的估计值,区间估计是通过样本数据得到一个范围作为总体参数的估计区间。
2. 假设检验假设检验是用来检验某个陈述是否与观察数据相符的方法。
在医学研究中,研究者常常根据实验数据对研究假设进行检验,以确定是否有统计显著性。
3. 置信区间置信区间是对总体参数的一个范围估计。
置信区间的计算方法与区间估计相似,通过对样本数据进行分析计算得到。
三、生存分析生存分析是医学统计学中的一个重要分支,主要研究疾病患者的生存时间和生存率等问题。
第一章绪论1、数据 / 资料的分类:①、计量资料,又称定量资料也许数值变量;为观察每个观察单位某项治疗的大小而获取的资料。
②、计数资料,又称定性资料也许无序分类变量;为将观察单位依照某种属性也许种类分组计数,分组汇总各组观察单位数后而获取的资料。
③、等级资料,又称半定量资料也许有序分类变量。
为将观察单位按某种属性的不相同程度分成等级后分组计数,分类汇总各组观察单位数后而获取的资料。
2、统计学常用基本看法:①、统计学( statistics)是关于数据的科学与艺术,包括设计、收集、整理、解析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、整体( population )指的是依照研究目的而确定的同质观察单位的全体。
③、医学统计学( medical statistics):用统计学的原理和方法办理医学资料中的同质性和变异性的科学和艺术,经过一定数量的观察、比较、解析,揭穿那些迷惑难懂的医学问题背后的规律性。
④、样本( sample):指的是从整体中随机抽取的部分观察单位。
⑤、变量( variable):对观察单位某项特点进行测量也许观察,这类特点称为变量。
⑥、频率( frequency ):指的是样本的本质发生率。
⑦、概率( probability):指的是随机事件发生的可能性大小。
用大写的 P 表示。
3、统计工作的基本步骤:①、统计设计:包括对资料的收集、整理和解析全过程的设想④、分组划记并统计频数。
与安排;频数分布的种类包括对称分布和偏态分布;②、收集资料:采用措施获取正确可靠的原始数据;偏态分布主要分为右偏态分布(也称正偏态分布)和左偏态分③、整理资料:将原始数据净化、系统化和条理化;布(也称负偏态分布)。
④、解析资料:包括统计描述和统计推断两个方面。
频数表的用途包括以下几个方面:①、描述频数分布的种类;第二章计量资料的统计描述②、描述频数分布的特点;1.频数表的编制方法,频数分布的种类及频数表的用途③、便于发现一些特大或特小的离群值;①、求极差( range ):也称全距,即最大值和最小值之差,记④、便于进一步做统计解析和办理。
<<医学统计学>>重点1. 总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。
2. 样本:按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
3. 同质:影响究指研标的主要因素易控制的因素基本上相同。
4. 抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。
样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为。
5. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
6. 截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。
原因:失访/退出/终止(研究时限已到而终止观察)。
7. 卡方基本思想:X2分布是一种连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相等等问题。
X2反应实现了实际频数与理论频数的吻合程度。
如果检验假设成立,则A-T一般不大,X2应很小,即出现大X2值概率很小。
即X2越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则没有理由拒绝H0。
8. X2用途:(1)实际频数与拟合频数拟合优度:A推断两个或两个以上总体率或构成比有无差别(四格表/行x列表)。
B两变量之间有无相互关系。
C频数分布的拟合优度检验(判断次样本是否来自某种分布)。
(2)某些分布可用X2近似。
(3)间接应用:如t分布和F分布就是在X2分布基础上推导出来的。
9. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是否具有统计学意义。
10. 假设检验中P,a,b(倍他)的关系及统计学意义:a:检验水准,即显著性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”,以此判断是否不拒绝H0无效假设,在假设检验中,按a检验水准,拒绝了原来正确的H0,即犯了第1类错误,犯此错误的概率为a。
名词解释1、一类错误:拒绝了实际上成立的H。
,这类“弃真”的错误称为I型错误或第一类错误。
2、参数和统计量:这些总体的统计指标或特征值称为参数。
由样本所算出的统计指标或特征值称为统计量。
3、变异系数:亦称离散系数,为标准差与均数之比,常用百分数表示。
4、P值:即概率,反映某一事件发生的可能性大小。
5、检验效能:B称为检验效能或把握度,即两总体却有差别,按α水准能发现它们有差别的能力。
简答题1、描述数值变量资料(统计资料)的集中程度有哪些指标,有何运用条件?算数均数:单峰对称分布的资料几何均数:对数变换后的单峰对称的资料中位数:偏态分布,分布不明资料,有不确定值的资料。
百分位数:当样本含量较少时不宜用靠近俩端的百分位数来估计频数分布范围。
2、实验研究的基本要素和基本原则是什么?基本要素:处理因素、受试对象和实验效应。
基本原则:对照原则、随机化原则和重狂原则大题1、(1)变量资料(2)成组t检验对立性正态性方差齐性(3)H0ιμ1=μ2,新药与常规药物的疗效相同H1rμ1≠μ2,新药与常规药物的疗效不同α=0.05T=1.0195V=n1+n2-2=18(2)t<t0.05z18,p>0.05,按a=0.05水准,不拒绝H0,差别无统计学意义。
结论:t检验结果表明,故尚不能认为新药与常规药物的疗效相同。
2、(1)T=13×17/47=4.7(2)x2检验(3)X2>X2(0.05,1),p<0.05,按a=0.05水准,拒绝H0,接受HQ差别有统计学意义。
结论:x2检验结果表明,乙疗法比甲疗法好。
3、(1)成组设计两样本比较的秩和检验(2)实验组秩次:13、I15、8.5、14、15.5、15.5、17、18对照组秩次:1、2、4、3、5、6、8.5、7、10、11.5(3)H0:两组局部温热的疗效总体分布相同H1:两组局部温热的疗效总体分布不同4(1)Ho:P=O,即母体内时间与体重无线性相关关系H1:P≠0,即母体内时间与体重有线性相关关系a=0.05F>5.23,拒绝HO,接受HI,相关系数有统计学意义。
1、同质:是指观察单位或观察指标受共同因素制约的部分2、观察单位:亦称个体,是统计研究中最基本的单位3、变异:在同质的基础上个体间的差距4、总体:根据研究目的所确定的同质观察单位的全体,既是同质的所有观察单位某项观察值的集合5、有限总体:总体若受一定的时间和空间控制,其观察单位数是有限的,称为有限总体无限总体:理论上其观察单位数是无法穷尽的6、样本:是指从总体中随机抽取部分观察单位其某项指标实测值的集合7、抽样:从总体中抽取部分个体的过程称为抽样8、抽样必须遵循随机化原则,即总体中每一个体都有同等的机会被抽取到9、抽样研究的方法,利用样本的信息推论总体的特征来达到研究目的10、参数:描述总体特征的量11、统计量:根据样本个体值计算得到的描述样本特征的量12、总体参数是常数,而样本统计量可随样本不同而不同13、随机误差:指一类不恒定、随机变化的误差,有多种尚无法控制的因素所引起14、抽样误差:指抽样引起的样本统计量与总体参数之间的差异15、系统误差:在实际观测过程中,由于仪器未校正、观测者感官的某种倾向、研究者掌握的标准偏高或偏低等原因,使观察值不是随机分散在真值两侧,而是具有方向性、系统性或周期性的偏离真值,这类误差称为系统误差16、过失误差:指各种失误所导致的误差17、随机事件:在一定条件下某一现象可能发生也可能不发生的事件18、概率:反映某一随机事件发生可能性大小的量,用符号P表示19、小概率事件:统计学上一般把P≤0。
05的事件称为小概率事件,表示某事件发生的可能性很小20、变量:观察单位的某个特征21、变量值:变量的观察结果或测定值22、按变量值是定性的还是定量的,可将变量分为数值变量和分类变量23、数值变量又称定量变量,其变量值是用定量方法测得的,所的资料是计量资料24、分类变量又称定性变量,其变量值是用定性方法测得的25、分类变量根据类别是否有程度上的差别,可分为无序分类变量(构成的资料为计数资料)和有序分类变量(所得资料为等级资料)25、医学统计工作的基本步骤:一、设计;二、收集资料;三、整理资料;四、分析资料26、统计表和统计图是描述统计资料的重要工具27、统计表的结构:①标题位于统计表的上中方②标目用来说明表内各纵横数字的含义,注意标明指标的单位。
【关键字】统计说明:本重点仅供参考:不能包括所有选择题考题,名词和简答可信度高,计算题熟练运算过程;同时自己要清楚各种检验方法的基本思想,重点程度与星号数量相关)一、名词解释1、★★★医学统计学:用概率论和数理统计方法研究医学事件的群体特征的一门方法。
2、★总体:根据研究目的确定的同质的研究对象的全体(集合)。
3、样本:从总体中随机抽取的部分研究对象4、随机:总体中每个个体有同等的机会进入样本。
5、系统误差:指数据搜集和测量过程中由于仪器不准确、标准不规范等原因,造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差6、随机误差:由于一些非人为的偶然因素使得结果或大或小,是不确定、不可预知的7、★★抽样误差:由于抽样原因造成的样本指标与总体指标之间的差,或者是样本指标与样本指标之间的差。
8、准确度(accuracy)或真实性(validity):观察值与真值的接近程度,受系统误差的影响(9、可靠度(reliabiliy)——也称精密度(precision)或重复性(repeatability):重复观察时观察值与其均值的接近程度,受随机误差的影响10、★★★小概率事件:一般常将p ≤ 0.05或p ≤ 0.01称为小概率事件,表示某事件发生的可能性很小。
通俗讲一次抽样是不可能发生的事件11、★★正态分布定:又称高斯分布,是一条中间高,两头低,左右完全对称地下降,但永远不与横轴相交的钟形曲线。
12、★★医学参考值范围:指绝大多数正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
最常用的是95%参考值范围。
13、★★标准误:用于反映均数抽样误差大小的指标,也叫样本均数的标准差,它反映了样本均数之间的离散程度。
14、★95%的可信区间:如果从同一总体中重复抽取100个独立样本,将可能有95个可信区间包括总体均数,有5个可信区间未包括总体均数。
二、填空题1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。
5、★频数表的用途:揭示计量资料的分布类型;揭示计量资料的分布特征;便于发现特大值和特小值;便于进一步进行统计分析6、★常见的统计资料的类型有:计量资料;计数资料;等级资料7、★t检验的应用条件是:①正态分布:当样本含量较小时,要求样本来自正态总体。
②方差齐性:两样本均数比较时,要求两总体方差相等。
U检验的应用条件是:①大样本(如n>50);②小样本,σ已知且样本来自正态总体。
8、★.描述分类变量常用的指标有率、构成比、相对数。
9、率是指某种现象在一定条件下,实际发生的观察单位数与可能发生该现象的总观察单位数之比,常用来描述某种现象发生的频率大小或强度构成比是指一事物内部某一组成部分的观察单位数与该事物各组成部分的观察单位总数之比,常用来描述某一事物内部各组成部分所占的比重或分布。
10、★四格表卡方专用公式应用条件n≥40,且Tmin≥511、研究事物或现象间的线性关系用相关分析,研究事物或现象间的线性数量依存关系用返回分析。
12、是反映两变量线关系间相关的密切程度与相关方向的指标。
取值范围为-1≤r≤113、★返回系数b 意义是:X 每增加(减)一个单位,Y 平均改变b 个单位14、★制定正常成人肺活量95%参考值范围的公是 。
15、★从总体中抽取样本,一定要遵循科学原则:代表性; 随机性 ;可靠性16、★编制频数表的步骤: 确定全距;确定组距; 确定组段;正字化记:三、判断并改错题1. 科研资料的统计推断包括统计描述和假设检验两部分内容。
2. 相关系数假设检验可代替返回系数假设检验,其结论完全相同。
3. 死因统计中,反映某时、某地居民因某种疾病死亡的水平,应选用该病病死率。
4. 构成比的重要特点是各组成部分的构成比之和必等于100%,而相对比可大于100%,也可小于100%。
5.等级资料采用 检验比采用秩和检验更能充分地说明处理组间的效应有无差别。
6. 估计某地30-49岁健康男子血清总胆固醇值的95%参考值范围,应按 计算。
7. 比较学龄前儿童身高与体重的变异程度时,可以根据其标准差的大小来判断。
8. R×C 表 检验中,若有T<1的情况,适当增加观察单位数是最好的处理办法。
9.只要样本含量足够大,就可以避免 I 型和 I 型错误。
10. 直线返回反映两变量间的依存关系,而直线相关反映两变量间的相关关系。
11. 称作总体均数的(1-α)可信区间,表示总体均数的波动范围。
12.用最小二乘法确定直线返回方程的原则是各观察点与直线的垂直距离的平方和最小。
13.假设检验中,p 值越小,越有理由认为无效假设不成立。
14.同一数值变量资料的均数一定小于标准差。
四、最佳选择题1.表示一组正态分布资料变量值的平均水平,宜选用A. 算术均数( )B. 方差C. 几何均数(G )D. 标准差E. 变异系数2. 为研究缺氧对正常人心率和血压的影响,收集50名志愿者参加试验,随机分为两组,要比较缺氧与非缺氧组收缩压等指标间是否有差别,应采用何种假设检验方法?A .配对设计t 检验B .随机区组设计方差分析C .两独立样本比较的t 检验D .两样本率比较的 检验E .两组资料比较的秩和检验3. 下列有关四分位数间距描述中不正确的是 。
A.四分位数间距= P 75-P 25B.四分位数间距比极差稳定C.四分位数间距即中间50%观测值的极差D.主要用于描述正态分布资料的变异度E.四分位数间距越大,表示变异程度越大4.四组均数比较,经方差分析 ,则备择假设 应为 。
A .4321μμμμ===B .4321μμμμ≠≠≠C .至少有两个样本均数不等D .任两个总体均数间有差别E .各总体均数不等或不全相等5.相对数指标分析中,下列哪种说法正确?A.加权平均率属构成指标B.相对比必须是同类指标之比C.构成比反映某事物现象发生的强度D标化率不反映某现象发生的实际水平E.率可反映某事物现象内部各组成部分的比重。
6.两个小样本数值变量资料比较的假设检验,首先应考虑采用。
A.t检验B.秩和检验C.t检验或秩和检验均可D.u检验E.资料符合t 检验还是秩和检验的条件7. 直线相关系数的假设检验,r>r0.001,34,可认为__________。
A. 回归系数β=0B. 相关系数ρ=0C. 决定系数等于零D. X、Y间线性关系存在E. X、Y差别有统计学意义8.直线相关与回归分析中,下列哪种说法正确__________。
A. |b|≤1 C. 可作回归分析的资料均可作相关分析B. 0<r<1时,b>0 D. X、Y两变量不服从正态分布仍可作积差相关E. r表示X每增加一个单位时,Y平均改变b个单位9.区间的含义是________ 。
A 99 %的总体均数在此范围内B 样本均数的99 %置信区间C 99 %的样本均数在此范围内D 总体均数的99 %置信区间E 99 %的个体值应在此范围10.麻疹疫苗接种后血清阳转率的分母应为__________。
A.麻疹患者人数B.麻疹易感人数C.获得麻疹终身免疫人数D.麻疹疫苗接种人数E.麻疹疫苗接种后的阳转人数五、简述题1. ★★计量资料统计分析中,常用的集中趋势指标有哪些?适用条件有何不同?算术均数、几何均数、中位数,统称为平均数,均反映集中趋势。
算术均数应用:主要适用于对称分布,尤其适合正态分布资料。
几何均数:应用于对数正态分布,也可应用于呈倍数关系的等比资料。
在医院中主要用于抗原(体)滴度资料。
中位数:、适合条件:a、极偏态资料b、有不确定的数据(有>或<)c、有特大值或特小值d、分布不明的资料2. ★离散趋势的指标及适用范围极差适用条件:除了两端有不确定数据之外,均可计算极差。
四分位数间距:用于描述偏态分布资料。
方差和标准差:用于描述正态分布计量资料的离散程度变异系数适用条件:a、均数相差较大,b、单位不同3. ★★★标准差和标准误的联系和区别有哪些?①概念不同:标准差是描述观察值(个体值)之间的变异程度,S越小,均数的代表性越好;标准误是描述样本均数的抽样误差,越小,均数的可靠性越高;②用途不同:标准差与均数结合估计参考值范围,计算变异系数,计算标准误等。
标准误用于估计参数的可信区间,进行假设检验等。
与样本含量的关系不同: 当样本含量n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0联系: 标准差、标准误均为变异指标,当样本含量不变时,标准误与标准差成正比。
4. ★★简述非参数检验的适用范围?分布未知未知的计量资料;等级资料;有不确定的数值;各总体方差不齐。
5. ★★Ⅰ型错误和Ⅱ型错误的区别和联系?区别Ⅰ型错误(弃真):拒绝实际成立的H0,型错误的概率记为α。
(1-a)即置信度:重复抽样时,样本区间包含总体参数(μ)的百分数。
当p≤α而拒绝H0时,只能犯Ⅰ型错误,不可能犯Ⅱ型错误。
Ⅱ型错误(存伪): 不拒绝实际不成立的H0,Ⅱ型错误的概率记为β。
(1-β)即把握度(或检验效能):两总体确有差别,被检出有差别的能力。
当p≥α而拒绝H0时,只能犯Ⅱ型错误,不可能犯Ⅰ型错误。
联系对同一资料,α与β反方向变化,若要同时减小α与β,唯一的办法是增加样本含量。
6. ★★★正态分布的特征?①. 在x= μ处最高,以μ为中心的对称分布②左右完全对称下降,但不与横轴相交.③两个参数决定位置和变异④.曲线下面积分布有规律7. ★何谓假设检验,一般步骤?假设检验:是对总体做出某种假定,然后根据样本信息推断总体是否成立的一类统计学方法总称。
假设检验有三个基本步骤:①建立假设和确定检验水准,②选择检验方法和计算检验统计量③确定P 值和做出统计推断结论8. ★假设检验注意事项?①假设检验的前提是要有严密的抽样设计,保证样本是从同质总体中随机抽取。
并且,组间的均衡性和资料的可比性应予特别注意,除了对比的因素外,其它影响结果的因素应尽可能相同或基本相同。
②选用的检验方法应符合其应用条件。
③正确理解差别有无统计意义的涵义。
④结论不能绝对化。
⑤正确选用单侧还是双侧检验。
⑥报告结论时,应列出现有样本检验统计量值,说明采用的单侧还是双侧检验,并列出P值的确切范围。
9. ★应用相对数时的注意事项①计算相对数时分母不能太小②分析时不能以(构成)比代(替)率③总率(平均率)的计算:不能直接相加求和④资料的可比性:两个率要在相同的条件下进行. 研究方法相同、研究对象同质、观察时间相等、地区、民族、年龄、性别等。
⑤率也有抽样误差,要进行假设检验10. ★什么是率的标准化?标准组的选择原则是什么?标准化的注意事项?当比较的两组资料内部各小组率明显不同,且各小组观测例数的构成比也明显不同时,直接比较两个合计率是不合理的。