医学统计学讲义第十章线性相关
- 格式:ppt
- 大小:476.50 KB
- 文档页数:53
1、答:实验数据为:图一实验数据图首先得到散点图,观察身高与肺死腔容积是否具有线性关系。
Graph-Scatter/Dot-simple scatter,x图二15名儿童身高与肺死腔容积散点图从图中可知,肺死腔容量随着身高增加而增加,且呈直线变化趋势。
回归方程的截距和系数求解为:Analyze-Regression-Linear,将y放入Dependent, x放入Independent中,结果为:图三回归系数和截距结果图从上图得,截距为-89.771,回归系数为1.069.回归系数等于0的假设检验:建立假设、确定检验水准α。
H0:β=0,即儿童的身高与肺死腔容积无直线关系。
H1:β≠0,即儿童的身高与肺死腔容积有直线关系。
检验水准α=0.05计算检验统计量F值,确定P值。
图四方差齐性结果图从上图得,F=42.629,概率P<0.05,即拒绝H0,接受H1,可认为儿童的身高与肺死腔容积有直线关系。
证明:由图三和图四可得,t b=6.529=√F=6.529。
估计回归系数的95%置信区间:Analuze-Regression-Linear-save,勾上Mean,结果如下,图五总体回归系数置信区间得总体回归系数95%置信区间为(13.664,109.797)。
2、答:实验数据为:图一实验数据图首先得到散点图,观察凝血时间与凝血酶浓度是否具有线性关系。
Graph-Scatter/Dot-simple scatter,x变量放入X Axis,与y变量放入Y Axis,OK.结果如下,图二15名健康成人凝血时间与凝血酶浓度散点图从图中可知,凝血酶浓度随着凝血时间增加而减少,且呈直线变化趋势。
其次进行双变量正态检验:对x进行正态检验,结果为,图三 x变量正态检验结果图从上图可知,概率P>0.05,即x变量服从正态变量。
以凝血酶浓度和凝血时间作直线回归,并进行残差分析。
Analyze-Regression-Linear,将y放入Dependent, x放入Independent中,结果为:图四回归系数和截距结果图从上图得,截距为2.816,回归系数为-0.123.并且从上图得,概率P<0.05,即拒绝H0,接受H1,可认为凝血时间与凝血酶浓度有直线关系。