教案一元线性回归
- 格式:doc
- 大小:84.50 KB
- 文档页数:2
8.2.3 一元线性回归模型的应用(一)教学设计最新课标(1)结合具体实例,了解一元线性回归模型的含义,了解模型参数的统计意义,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法,会使用相关的统计软件.(2)针对实际问题,会用一元线性回归模型进行预测.[教材要点]要点一 一元线性回归模型我们称⎩⎪⎨⎪⎧Y =bx +a +e E (e )=0,D (e )=σ2 为Y 关于x 的一元线性回归模型,其中,Y 称为因变量或响应变量,x 称为自变量或解释变量;a 和b 为模型的未知参数,a 称为________参数,b 称为________参数;e 是Y 与bx +a 之间的随机误差.要点二 一元线性回归模型参数的最小二乘估计1.经验回归方程:将y ^ =________称为Y 关于x 的经验回归方程,也称经验回归函数或经验回归公式,其图形称为________________.这种求经验回归方程的方法叫做最小二乘法,求得的b ^ ,a ^ 叫做b ,a 的最小二乘估计,其中⎩⎪⎪⎨⎪⎪⎧b ^=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2,a ^=y --b ^x -. 2.残差:对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y ^称为预测值,观测值减去预测值称为残差.3.用决定系数R 2决定模型的拟合效果:R 2=1-∑i =1n (y i -y ^i )2∑i =1n (y i -y -)2.R 2越大,表示残差平方和越小,即模型的拟合效果越好;R 2越小,表示残差平方和越大,即模型的拟合效果越差. 教学目标:1.能通过具体实例说明一元线性回归模型修改的依据与方法.2.通过对具体问题的进一步分析,能将某些非线性回归问题转化为线性回归问题并加以解决,提高数学运算能力.3.能通过实例说明决定系数R2的意义和作用,提高数据分析能力。
《一元线性回归模型参数的最小二乘估计》教学设计一、 教学内容解析1. “一元线性回归模型参数的最小二乘估计”是人民教育出版社A 版《普通高中教科书选择性必修第三册》第8章“成对数据的统计分析”第2节的内容,是统计思想方法在实际生活中的典型应用案例。
本节内容渗透了数学建模与转化化归的数学思想方法,在具体方法上有观察法、主元、消元等。
本节课的教学重点是一元线性回归模型参数的最小二乘估计和利用残差分析进行数据曲线拟合程度分析。
2 . 本节内容是在学习了“一元线性回归模型”的基础上,继续对一元线性回归模型参数进行估计,并对模型的刻画效果进行检验,是后续非线性回归模型学习的基础。
因此本节内容可以看作一元线性回归模型的下位学习,非线性回归模型的上位学习。
3.本节教学过程呈现了发现问题、提出问题、分析问题、解决问题的特点。
在学习过程中让学生体会最小二乘的思想,积累数据分析的经验。
围绕“人的年龄与脂肪含量的关系”这个案例,完整呈现了从直观寻找与散点整体接近的直线,到用竖直距离i i y bx a --刻画散点与直线的“距离”,再到用()21n i i i Q y bx a ==--∑定量刻画整体接近的程度,最后得到参数估计的数学化过程。
对建立的模型进行应用是利用数学建模解决实际问题的一个重要环节,教学中通过“人的年龄与脂肪含量的关系”这个案例,利用经验回归方程进行预测,并对结果进行合理解释,进而进一步介绍残差分析的方法,据此对模型进行评价和改进。
二、教学目标设置统计学习不应只是记住一些概念、公式或方法实施的操作步骤,更重要的是了解概念和方法产生的必要性,以及方法的合理性,了解统计研究问题的思路和特点,进而学会用统计的眼光看问题,培养数据分析素养。
依据“课程目标——单元目标——课堂教学目标”设置本节课的教学目标如下:1.通过小组合作探究问题:“从直观感知与散点在整体上最接近的直线”,学生了解解决这一问题的各种思路,并能判断可行性。
一元线性回归案例教学设计人教课标版(实用教案设计)教学目标- 了解一元线性回归的概念和基本原理- 掌握一元线性回归的计算方法和应用技巧- 学会通过实例分析和解决实际问题教学准备- 讲义:提供一元线性回归的讲义,明确概念和公式- 例题:准备适当数量的一元线性回归的实例题目- 计算工具:确保每个学生都有计算器或者电脑可以进行回归计算教学过程1. 引入(5分钟)- 通过一个实际场景,引入一元线性回归的概念和应用- 举例说明回归分析在实际问题中的作用和意义2. 概念讲解(10分钟)- 介绍一元线性回归的基本概念、公式和原理- 解释回归方程的含义和解释- 强调自变量和因变量之间的关系及其影响因素3. 计算方法(15分钟)- 演示一元线性回归的计算步骤和方法- 通过实例展示计算公式的具体应用- 解释残差和拟合优度的概念,说明其意义4. 实例分析(20分钟)- 提供多个一元线性回归的实例题目- 让学生依次进行回归计算和分析- 引导学生思考如何解释回归结果和给出建议5. 讨论与总结(10分钟)- 分享学生对实例分析的解答和思考- 引导学生讨论一元线性回归在其他实际问题中的应用- 总结一元线性回归的重要性和局限性教学扩展- 鼓励学生自行寻找更多的一元线性回归的实例进行分析和讨论- 引导学生了解多元线性回归的概念和应用,拓展研究内容教学评估- 布置作业:要求学生独立完成一元线性回归的实例分析报告- 考察学生对回归分析方法的理解和应用能力- 对学生的作业进行评分,并给予反馈和建议参考资料- 《数学必修3》人教课标版- 网络资源:一元线性回归的教学视频和学习资料。
8.5一元线性回归案例湘教版选修2-3第8.5节【教学目标】(一) 知识与技能了解样本、样本容量、线性回归的概念,理解变量之间的相关系数的概念、相关系数、一元线性回归直线等概念。
(二) 过程与方法熟练利用公式求相关系数,掌握求一元线性回归直线方程 的方法,加深理解线性回归模型的意义。
判断变量间是否线性相关。
(三) 情感、态度与价值观培养学生分析问题、解决问题的能力,收集数据和处理数据的能力。
【教材分析】1. 教学重点:让学生了解线性回归的基本思想和方法。
2. 教学难点:掌握建立回归模型的基本步骤。
3. 变量间的关系:函数关系:自变量x 确定y 唯一确定;(确定关系)相关关系:当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系 。
例如:在水稻产量与施肥量的关系中,施肥量是可控制变量,而水稻产量是随机变量。
因此只能说明水稻产量与施肥量是相关关系。
现实生活中相关关系大量存在,从某种意义上看,函数是一种理想的关系模型,而相关关系式一种更为一般的情况,因此更有研究相关关系的必要了。
4. 一元线性回归分析在具有相关关系的变量中如果因变量仅与一个变量有关,相应的统计分析成为一元回归分析;若与因变量与多个自变量有关,称为多元线性回归分析。
5. 线性相关性检验:(相关系数检验法)当 >0时,我们称其正相关; 当 <0时,我们称其负相关; 当 =0时,我们称其不相关。
.ˆ:a bx y l +=xy r xy r xy r212x nx ni i -∑=。
8.2.1一元线性回归模型教学设计一、课时教学内容本节的主要内容是一元线性回归模型,它是线性回归分析的核心内容,也是后续研究两变量间的相关性有关问题的基础.通过散点图直观探究分析得出的直线拟合方式不同,拟合的效果就不同,它们与实际观测值均有一定的偏差.在经历用不同估算方法描述两个变量线性相关关系的过程中,解决用数学方法刻画从整体上看各观测点到拟合直线的距离最小的问题,让学生在此基础上了解更为科学的数据处理方式——最小二乘法,有助于他们更好地理解核心概念“经验回归直线”,并最终体现回归方法的应用价值.就统计学科而言,对不同的数据处理方法进行“优劣评价”是“假设检验”的萌芽.了解最小二乘法思想,将其与各种估算方法进行比较,体会它的相对科学性,既是统计学教学发展的需要,又是在体会此思想的过程中促进学生对核心概念进一步理解的需要.最小二乘法思想作为本节课的核心思想,由此得以体现,而回归思想和贯穿统计学科的随机思想,也是本节课需要渗透的.二、课时教学目标1.结合实例,了解一元线性回归模型的含义,了解模型参数的统计意义2.了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测.三、教学重点、难点1.教学重点:一元线性回归模型的基本思想,经验回归方程,最小二乘法.2.难点:回归模型与函数模型的区别,随机误差产生的原因与影响.四、教学过程设计环节一创设情境,引入课题问题1如何求经验回归方程?提示:求经验回归方程的一般步骤如下:(1)画出散点图,依据问题所给的数据在平面直角坐标系中描点,观察点的分布是否呈条状分布,即是否在一条直线附近,从而判断两变量是否具有线性相关关系;(2)当两变量具有线性相关关系时,求系数的最小二乘估计书",写出经验回归方程;(3)进行残差分析,分析模型的拟合效果,不合适时,分析错因,予以纠正.【师生互动】教师让学生举手回答问题,并及时给予纠正.【设计意图】复习上节课所学知识,为本节课解决与线性回归分析有关的实际问题做好铺垫。
§8.2 一元线性回归模型及其应用教学目标1.结合实例,了解一元线性回归模型的含义,了解模型参数的统计意义.2.了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测. 教学知识梳理知识点一 一元线性回归模型称⎩⎪⎨⎪⎧Y =bx +a +e ,E (e )=0,D (e )=σ2为Y 关于x 的一元线性回归模型.其中Y 称为因变量或响应变量,x 称为自变量或解释变量,a 称为截距参数,b 称为斜率参数;e 是Y 与bx +a 之间的随机误差,如果e =0,那么Y 与x 之间的关系就可以用一元线性函数模型来描述. 知识点二 最小二乘法将y ^=b ^x +a ^称为Y 关于x 的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,这种求经验回归方程的方法叫做最小二乘法,求得的b ^,a ^叫做b ,a 的最小二乘估计,其中b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ^=y -b ^x .思考1 经验回归方程一定过成对样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的某一点吗? 答案 不一定.思考2 点(x ,y )在经验回归直线上吗? 答案 在.知识点三 残差与残差分析 1.残差对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y ^称为预测值,观测值减去预测值称为残差. 2.残差分析残差是随机误差的估计结果,通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析. 知识点四 对模型刻画数据效果的分析 1.残差图法在残差图中,如果残差比较均匀地集中在以横轴为对称轴的水平带状区域内,则说明经验回归方程较好地刻画了两个变量的关系. 2.残差平方和法残差平方和∑i =1n(y i -y ^i )2越小,模型的拟合效果越好.3.R 2法可以用R 2=1-∑i =1n(y i -y ^i )2∑i =1n(y i -y )2来比较两个模型的拟合效果,R 2越大,模型拟合效果越好,R 2越小,模型拟合效果越差.思考 利用经验回归方程求得的函数值一定是真实值吗? 答案 不一定,他只是真实值的一个预测估计值. 教学案例案例一 求经验回归方程例1.某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x (x 取整数)元与日销售量y 台之间有如下关系:(1)y 与x 是否具有线性相关关系?如果具有线性相关关系,求出经验回归直线方程.(方程的斜率保留一个有效数字)(2)设经营此商品的日销售利润为P 元,根据(1)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润.解:(1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量线性相关.设经验回归直线为y ^=b ^x +a ^,由题知x =42.5,y =34, 则求得b ^=∑i =14(x i -x )(y i -y )∑i =14(x i -x )2=-370125≈-3. a ^=y -b ^x =34-(-3)×42.5=161.5. ∴y ^=-3x +161.5. (2)依题意有P =(-3x +161.5)(x -30) =-3x 2+251.5x -4 845=-3⎝⎛⎭⎫x -251.562+251.5212-4 845. ∴当x =251.56≈42时,P 有最大值,约为426.即预测销售单价为42元时,能获得最大日销售利润. 反思感悟 求经验回归方程可分如下四步来完成 (1)列:列表表示x i ,y i ,x 2i ,x i y i . (2)算:计算x ,y,∑i =1nx 2i ,∑i =1nx i y i . (3)代:代入公式计算a ^,b ^的值. (4)写:写出经验回归方程.跟踪训练1.已知线性经验回归方程为=2-2.5x ,则x =25时,y 的估计值为________. 【答案】-60.5【解析】当x =25时,=2-2.5×25=-60.5,即y 的估计值为-60.5. 案例二 线性回归分析例2.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得经验回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( ).A .63.6万元B .65.5万元C .67.7万元D .72.0万元【解析】∵a ^=y -b ^x =49+26+39+544-9.4×4+2+3+54=9.1,∴经验回归方程为y ^=9.4x +9.1.令x =6,得y ^=9.4×6+9.1=65.5(万元). 【答案】B反思感悟 刻画回归效果的三种方法(1)残差图法,残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适. (2)残差平方和法:残差平方和∑i =1n(y i -y ^i )2越小,模型的拟合效果越好.(3)R 2法:R 2=1-∑i =1n(y i -y ^i )2∑i =1n(y i -y )2越接近1,表明模型的拟合效果越好.跟踪训练2.在一段时间内,某种商品的价格x 元和需求量y 件之间的一组数据为:且知x 与y 具有线性相关关系,求出y 对x 的经验回归直线方程,并说明拟合效果的好坏. 解:x =15×(14+16+18+20+22)=18,y =15×(12+10+7+5+3)=7.4,∑i =15x 2i =142+162+182+202+222=1 660, ∑i =15y 2i =122+102+72+52+32=327, ∑i =15x i y i =14×12+16×10+18×7+20×5+22×3=620,∴b ^=∑i =15x i y i -5x y∑i =15x 2i -5x2=620-5×18×7.41 660-5×182=-4640=-1.15. ∴a ^=7.4+1.15×18=28.1,∴经验回归直线方程为y ^=-1.15x +28.1. 列出残差表为:y i -y ^i 0 0.3 -0.4 -0.1 0.2 y i -y4.62.6-0.4-2.4-4.4∴∑i =15(y i -y ^i )2=0.3,∑i =15(y i -y )2=53.2,R 2=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2≈0.994.故R 2≈0.994说明拟合效果较好. 案例三 非线性回归例3.有一个测量水流量的实验装置,测得试验数据如下表:i 1 2 3 4 5 6 7 水深h (厘米)0.71.12.54.98.110.213.5流量Q (升/分钟) 0.082 0.25 1.8 11.2 37.5 66.5 134根据表中数据,建立Q 与h 之间的经验回归方程. 解:由表中测得的数据可以作出散点图,如图.观察散点图中样本点的分布规律,可以判断样本点分布在某一条曲线附近,表示该曲线的函数模型是Q =m ·h n (m ,n 是正的常数).两边取常用对数, 则lg Q =lg m +n ·lg h ,令y =lg Q ,x =lg h ,那么y =nx +lg m ,即为线性函数模型y =bx +a 的形式(其中b =n ,a =lg m ).由下面的数据表,用最小二乘法可求得b ^≈2.509 7,a ^=-0.707 7,所以n ≈2.51,m ≈0.196. ih iQ ix i =lg h iy i =lg Q ix 2ix i y i10.70.082-0.154 9-1.086 20.0240.168 32 1.10.250.041 4-0.602 10.001 7-0.024 93 2.5 1.80.397 90.255 30.158 30.101 64 4.911.20.690 2 1.049 20.476 40.724 258.137.50.908 5 1.574 00.825 4 1.430 0 610.266.5 1.008 6 1.822 8 1.017 3 1.838 5 713.5134 1.130 3 2.127 1 1.277 6 2.404 3∑41251.332 4.022 5.140 1 3.780 7 6.642于是所求得的经验回归方程为Q=0.196·h2.51.反思感悟非线性回归问题的处理方法(1)指数函数型y=e bx+a①函数y=e bx+a的图象,如图所示;②处理方法:两边取对数得ln y=ln e bx+a,即ln y=bx+a.令z=ln y,把原始数据(x,y)转化为(x,z),再根据线性回归模型的方法求出a,b.(2)对数函数型y=b ln x+a①函数y=b ln x+a的图象,如图所示;②处理方法:设x′=ln x,原方程可化为y=bx′+a,再根据线性回归模型的方法求出a,b.(3)y=bx2+a型处理方法:设x′=x2,原方程可化为y=bx′+a,再根据线性回归模型的方法求出a,b.跟踪训练3.在一次抽样调查中测得样本的5个样本点,数值如下表:x0.250.5124y1612521试建立y与x之间的经验回归方程.解:画出散点图如图所示.根据散点图可知y 与x 近似地呈反比例函数关系,设y =k x ,令t =1x,则y =kt ,原数据变为:由置换后的数值表作散点图如下:由散点图可以看出y 与t 呈近似的线性相关关系.列表如下:所以t =1.55,y =7.2.所以b ^=∑i =15t i y i -5t y∑i =15t 2i -5t 2≈4.134 4,a ^=y -b ^t ≈0.8.所以y ^=4.134 4t +0.8.所以y 与x 的经验回归方程是y ^=4.134 4x+0.8. 课堂小结 1.知识清单: (1)一元线性回归模型.(2)最小二乘法、经验回归方程的求法.(3)对模型刻画数据效果的分析:残差图法、残差平方和法和R 2法. 2.方法归纳:数形结合、转化化归.3.常见误区:不判断变量间是否具有线性相关关系,盲目求解经验回归方程致误. 当堂达标1.下表是x 和y 之间的一组数据,则y 关于x 的线性经验回归方程必过点( )A .(2,3) C .(2.5,4) D .(2.5,5)【答案】C【解析】线性经验回归方程必过样本点的中心(x ,y ),即(2.5,4),故选C. 2.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得经验回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元【答案】B【解析】样本点的中心是(3.5,42),则a ^=y -b ^x =42-9.4×3.5=9.1, 所以经验回归直线方程是y ^=9.4x +9.1,把x =6代入得y ^=65.5.3.若施化肥量x (kg)与小麦产量y (kg)之间的经验回归直线方程为y ^=250+4x ,当施化肥量为50 kg 时,预计小麦产量为________.【解析】将x =50代入经验回归方程得y ^=450 kg. 【答案】450 kg4.若对于变量y 与x 的10组统计数据的回归模型中,相关指数R 2=0.95,又知残差平方和为120.53,那么∑i =110(y i -y )2的值为______.【解析】依题意有0.95=1-120.53∑i =110(y i -y)2,所以∑i =110(y i -y )2=2 410.6. 【答案】2 410.65.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x 2 4 5 6 8 y3040605070(1)画出散点图;(2)对两个变量进行相关性检验; (3)求经验回归直线方程. 解:(1)散点图如图所示.(2)计算各数据如下:i 1 2 3 4 5 x i 2 4 5 6 8 y i 30 40 60 50 70 x i y i60160300300560x =5,y =50,∑i =15x 2i =145,∑i =15y 2i =13 500,∑i =15x i y i =1 380 r =(145-5×52)(13 500-5×502)≈0.92,查得r 0.05=0.878,r >r 0.05, 故有95%的把握认为该产品的广告费支出与销售额之间具有线性相关关系.(3)b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x2=1 380-5×5×50145-5×52=6.5,a ^=y -b ^x =50-6.5×5=17.5,于是所求的经验回归直线方程是y ^=6.5x +17.5.。
一元线性回归案例教案设计人教课标版(实用教学设计)引言教案的目的是帮助学生理解并掌握一元线性回归的基本概念和应用。
本教案设计适用于人教课标版教材,旨在提供实用的教学设计方案。
教学目标- 让学生了解一元线性回归的定义和基本原理。
- 培养学生使用一元线性回归进行数据分析和预测的能力。
- 培养学生运用一元线性回归解决实际问题的能力。
教学内容1. 一元线性回归的概念和原理- 引导学生了解线性回归的基本概念,并重点介绍一元线性回归。
- 讲解一元线性回归的原理和数学表达式。
- 实际案例分析,让学生明确一元线性回归的实际应用。
2. 数据集收集和处理- 引导学生研究如何收集适用于一元线性回归的数据集。
- 教授数据处理和清洗的方法,确保数据的准确性和可靠性。
3. 模型建立和拟合- 讲解如何建立一元线性回归模型。
- 引导学生研究如何进行模型参数拟合,并解读拟合结果。
4. 数据分析和预测- 使用建立好的一元线性回归模型,进行数据分析和预测。
- 引导学生分析预测结果,并讨论模型的准确性和可靠性。
5. 实际问题解决- 引导学生应用一元线性回归解决实际问题。
- 带领学生思考如何调整模型参数以获得更好的结果。
教学方法与手段- 课堂讲授:通过讲解基本概念、原理和方法,帮助学生建立知识框架。
- 案例分析:通过实际案例分析,让学生了解一元线性回归的实际应用。
- 数据实践:引导学生收集数据集并进行分析和预测,让学生亲身体验一元线性回归的过程。
教学评价与反馈- 课堂小测验:通过布置小测验,检查学生对一元线性回归的理解和能力。
- 学生作业:布置作业,让学生运用一元线性回归解决实际问题,并提交报告。
- 教师评价与反馈:根据学生的表现和作业报告,评价学生的理解和能力,并提供反馈建议。
结束语通过本教学设计,学生能够全面了解一元线性回归的概念、原理和应用,并具备运用一元线性回归解决实际问题的能力。
希望本设计能为教师提供实用的教学指导,帮助学生取得良好的学习效果。
一元线性回归模型教学设计一、教学目标通过本次教学,学生应该能够:1. 了解一元线性回归模型的基本概念和原理;2. 掌握一元线性回归模型的建立和求解方法;3. 能够运用一元线性回归模型解决实际问题;4. 培养学生的数据分析和模型建立能力。
二、教学内容1. 介绍一元线性回归模型的基本概念- 线性回归模型的基本思想- 回归方程和回归线的含义- 最小二乘法的原理2. 一元线性回归模型的建立和求解方法- 数据收集和变量选择- 模型建立和参数估计- 残差分析和模型检验3. 运用一元线性回归模型解决实际问题- 实际问题的建模方法- 数据处理和分析方法- 结果解释和模型评价三、教学过程1. 导入引入案例通过一个实际案例来引入一元线性回归模型的概念和应用,例如预测房价与房屋面积的关系。
2. 概念讲解- 介绍线性回归模型的基本思想和原理,以及回归方程和回归线的含义;- 解释最小二乘法的原理及其在一元线性回归模型中的应用。
3. 模型建立和参数估计- 数据收集和变量选择:讲解数据收集的方法和重要性,以及对自变量的选择;- 模型建立和参数估计:讲解如何建立一元线性回归模型并通过最小二乘法来估计模型的参数。
4. 残差分析和模型检验- 残差分析:讲解残差的概念及其在回归模型中的含义;- 模型检验:讲解常用的模型检验方法,如回归系数的显著性检验、模型拟合优度检验等。
5. 实际问题的建模和解决- 介绍实际问题的建模方法和步骤,包括数据处理、模型选择和参数估计;- 使用实际数据进行模型的建立和求解,分析结果并给出合理解释。
6. 教学案例练习提供多个一元线性回归的教学案例,供学生进行实践操作和分析讨论。
7. 总结归纳小结一元线性回归模型的基本概念、建立方法和应用步骤,提醒学生需要注意的问题和要点。
四、教学手段教学手段可以采用多种形式,如讲解、示范、案例分析、课堂练习、小组讨论等,通过多种形式的互动与合作,达到知识的传授和能力的培养。
一、内容和内容解析1.内容结合具体实例,了解一元线性回归模型的含义,了解模型参数的统计意义,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法,会使用相关的统计软件.2.内容解析“一元线性回归模型”是北师大版《普通高中课程标准实验教科书·数学3(必修)》(以下统称“教材”)第一章“统计”第8节的内容,是统计思想方法在实际生活中的典型应用案例.在此之前学生学习了数据的统计特征,在实际中经常要研究变量之间的相关关系,以最基本的一元线性回归为载体,通过画散点图描述两个变量之间关系的统计特征,用样本的情况去估计总体的情况,启发学生理解拟合思想,尝试构造函数模型去近似刻画变量之间的相关关系,有利于进一步发展学生的统计观念,培养学生的统计应用意识和能力,也为后面进一步学习独立性检验奠定基础.本节课的教学重点为经历一次完整的统计应用活动,会画散点图直观表示两个变量之间的相关关系,理解直线拟合的思想,理解最小二乘原理,会利用计算器和Excel 软件进行数据处理,会根据最小二乘法建立一元线性回归模型解决实际问题.教材从身高与右手一拃长的相关关系研究出发,通过画散点图,观察发现所有点都在一条直线附近波动,进而判断两个变量之间线性相关,从而可以用一条直线近似刻画两个变量之间的相关关系.引入直线拟合的概念,然后思考如何确定这条直线能更合理地近似刻画这种关系.采取小组讨论的方式,引导学生从定性到定量,建立一种数学上的“理想”的拟合方式,即考虑如何使得所有样本点到一条直线的“整体距离”最小,从而引入最小二乘法,建立一元线性回归模型.会利用信息技术求出两个变量之间的线性回归方程,从而对实际问题进行预判和决策.为了创设有利于学习的实际问题情境,本节课选取中央电视台社会与法频道《见证》栏目《神眼追踪》中足迹鉴定专家神奇破案的真实案例片断导入课题,通过思考怎样根据足迹推断犯罪嫌疑人的身高引出身高与鞋码有相关关系,引导学生经历一个完整的统计活动过程,探究身高与鞋码之间的相关关系.通过从学生中现场收集数据、整理数据,利用散点图描述数据、分析数据(直线拟合,探索回归直线方程的求法),运用最小二乘法刻画数据特征求得回归直线方收稿日期:2021-01-15作者简介:黄润华(1982—),男,中学一级教师,主要从事高中数学教育教学研究.“一元线性回归模型”教学设计黄润华摘要:本节课是统计思想方法在实际生活中的典型应用案例.结合两个变量之间线性相关的具体实例,经历统计活动,理解最小二乘原理,利用计算器和Excel 软件进行数据处理,建立一元线性回归模型,从而进行实际预测,解决实际问题.了解利用回归直线刻画两个变量之间相关关系的代表性,理解回归直线必过样本点的中心,并能对统计活动结果进行反思.关键词:线性回归;统计应用;数学建模;数据处理··9程,对实际问题进行预测,对统计结果分析与反思等环节,理解统计应用的思路与过程.在由散点图得到两个变量之间线性相关的基础上,着力探讨如何确定一条直线来更好地近似刻画这种关系,进行直线拟合.通过小组讨论与交流,引导学生从定性分析到定量计算,建立一种数学上的“理想”的拟合方式,即考虑如何使得所有样本点到一条直线的“整体距离”最小,从而引入最小二乘法建立一元线性回归模型.引导学生理解任一样本点()x i ,y i 与直线上横坐标为x i 的点之间的距离是刻画点到直线的远近的一种新的形式,其平方同样可以近似刻画点到直线的远近,从便于运算的角度我们选择平方,最小二乘法的基本思想即使所有样本点到直线的“距离”的平方和最小.从而,如果能判断两个变量之间具有线性相关关系,就能利用最小二乘法求出两个变量之间的线性回归方程,从而进行预判决策.本节课旨在建立一种统计模型来近似刻画实际问题中两个变量之间的关系,在问题解决的过程中发展学生的统计观念,理解数据分析的新思路和新方法,理解方法中蕴涵的数学思想,理解方法的目的和本质,体会统计模型的必要性和合理性.引导学生陷入机械、烦琐的公式计算中,从数据处理的角度思考如何避免繁杂的运算,认识到根据最小二乘法的思想和公式研发程序是源于生产生活实际需要,有其必然性,把握数据处理的思路,注重与信息技术的融合,对于提高学生的信息素养、进一步发展学生的统计观念、培养学生数据分析和数学建模等核心素养都起着非常重要的作用.二、目标和目标解析1.目标以发展学生的统计观念为核心,践行“四基”、发展“四能”,在问题解决中着重培养学生数据分析和数学建模等素养,根据《普通高中数学课程标准(2017年版)》(以下简称《标准》)中“一元线性回归模型”的内容及要求,确定本节课的教学目标如下.(1)经历完整的统计活动过程,进一步体会应用统计的思想和方法解决实际问题.(2)会画散点图判断两个变量之间是否线性相关,理解数据分析的思路和方法.(3)掌握用最小二乘法建立一元线性回归模型刻画两个变量之间的线性相关关系的方法.(4)会用计算器和Excel 软件求线性回归方程,并能根据一元线性回归模型进行预测.(5)理解一元线性回归模型参数的含义和统计结果的意义,会进行反思.2.目标解析目标(1)解析:本节课是统计应用案例,通过对实际问题中两个变量之间相关关系的研究,经历对两个变量间呈现一个大致的整体集中趋势的近似刻画的过程,开拓统计应用的新天地,进一步培养学生的统计应用意识.目标(2)解析:通过画散点图,类比函数图象可以看出两个变量之间的大致关系,并判断它们之间是否线性相关,探索发现数据处理的新思路和新方法.目标(3)解析:通过分组讨论和思考交流,了解直线拟合的思想,理解最小二乘法是一种方便可行、直观美妙的方法,从而建立一元线性回归模型.目标(4)解析:理解运用信息技术进行数据处理的必要性,并学会利用计算器和Excel 软件求线性回归方程,理解程序背后的数学思想与方法.能根据一元线性回归模型完成计算预测,从而解决实际问题.目标(5)解析:数学源于生活,又服务于生活.结合实际理解一元线性回归模型的含义和统计结果的意义.通过对统计活动各环节的反思,逐渐理解问卷的设计、样本的选取、分析方法的运用都会对统计结果产生影响,引导学生理解对统计结果保持批判性态度的必要性和重要性.三、教学问题诊断在义务教育阶段,学生初步建立了统计观念,了解了统计活动的全过程,学习了数据收集、整理、描述和分析的基本方法.在高中阶段,学生通过统计的学习进一步发展了统计观念,能较好地把握数据分析的基本思路,对统计的基本思想与应用有了更加深刻的体会.学生不知道应该怎样刻画两个变量之间的相关关··10系.尽管经过初中的学习,学生已经具备了比较丰富的函数知识,知道了函数可以刻画两个变量之间的一种确定性关系,但是对不满足函数关系的两个变量要怎么处理会感到困难.要引导学生理解相关关系的本质是一个变量可能受到其他多个变量的影响,故它的值会呈现一定的随机性或者波动性,这种波动在大量数据中往往会呈现一定的规律性,这就是回归分析要解决的问题.对两个变量之间相关关系的刻画,本质上是利用函数模型进行近似刻画,蕴涵着转化与化归思想.在画出散点图后,引导学生观察、刻画两个变量之间关系的统计特征.在给出线性相关的基础上,到底用哪条直线近似刻画更好,学生感到很茫然.故而采取分组讨论的方式,先让学生自主尝试,彼此交流想法,体会回归的含义,画出直线,然后通过小组间的交流再去归纳共性,建立一定的“理想”标准——所有样本点和直线整体上最接近.怎么刻画所有样本点和直线整体上最接近呢?这是一个很关键的问题,要引导学生理解在横坐标一定的情况下,样本点可以理解为在平均水平上下波动,从而建立一种新的标准来刻画点到直线的远近,即用任意一点()x i ,y i 与这条直线上横坐标为x i 的点之间的距离来刻画,而不是用数学上的距离来刻画.不仅如此,绝对值还面临一个计算上的困难,而统计上在方差里已经用了平方和表示,这里的本质其实是一样的.教学中采用对话教学法,启发学生进行知识迁移.学生对系数计算公式的理解存在较大的困难.根据最小二乘法推导出来的系数计算公式比较复杂,还包括两种不同形式的表达,直接运用公式计算需要分若干步,比较麻烦.教学时引导学生逐步认识公式,分析公式结构的特点,帮助学生更好地了解公式,并逐步渗透研发程序计算的必要性,建立自然合理的教学逻辑,了解程序背后的思想方法.利用计算器和Excel 软件求线性回归方程属于新的技能,需要教师以适当的方式传授.虽然学生具备了一定的计算机操作与计算器使用技能,但涉及利用最小二乘原理求系数的值,这需要学会使用计算器有关的统计功能.为了使计算器操作程序直观化、效果有引领性,教师在课前录制“利用计算器求线性回归方程”的微课,课上播放微课传授新技能.而对于利用Excel 软件求线性回归方程,则根据其操作简单易学的特点,采取教师随堂操作演示的方式传授技能,并录制微视频供学生课后上机操作时使用,以调动学生的学习热情,辅助学生学习.本节课的教学难点是理解直线拟合的必要性与合理性,掌握建立一元线性回归模型的一般原理.为突破难点,设计了求线性回归方程的小组讨论活动和帮助小卖部决策等问题,在探究和交流中领会思想,提升统计应用的能力.四、教学媒体设计本节课思想性、整体性、应用性强,决定采用情境—启发式探究教学模式,创设有利于学生学习的环境,通过小组讨论与实践应用,引导学生理解拟合思想,培养学生的自主探究能力与合作交流能力,发展学生的统计观念,提高学生的数学应用意识.为创设情境,更好地突出重点,突破难点,本节课主要进行了如下设计.1.导入使用真实案例为了创设真实的问题情境,选取了中央电视台社会与法频道《见证》栏目的真实神探破案视频导入课题,围绕神探怎样由足迹推断出犯罪嫌疑人的身高这一核心问题,根据足迹提供的有关信息,导入身高与鞋码这两个变量之间的相关关系的研究.2.设计了画散点图的课堂活页为了让学生亲自体会描点画图描述身高与鞋码之间的相关关系的过程,专门设计了一份课堂活页,内容为平面直角坐标系,横轴表示鞋码,纵轴表示身高,标示了相应的数值,便于学生描点.展示学生作图成果,并在后面的小组讨论中继续使用,在黑板上张贴画回归直线的成果,表述作法,有效揭示了学生的思维过程.3.Excel 表格一表多用,无缝衔接在现场收集数据时,由学生负责将样本数据逐一输入Excel 表格中,运用信息技术将表格数据同步到描述数据环节和学生利用计算器根据现场数据计算线性回归方程、教师操作演示利用Excel 软件求线性回归方程等环节,实现了数据的同步无缝应用,体现了信息··11技术的实用性.4.自主录制微课,传授技能经过反复研究,为了便于学生学习如何利用计算器求线性回归方程,采取了自主录制微课的形式;为了辅助学生课后上机利用Excel软件求线性回归方程,也录制了一个微课,供学生自主学习使用,课堂上不播放.5.课件简洁优美整节课共六个环节,仅使用10张幻灯片,节奏明快,界面简洁优美,既呈现了主要思路和内容,又做到了不同环节之间必要的无缝对接,信息技术融合应用恰当.6.板书简洁有条理板书呈现了统计活动的主要过程和一元线性回归模型的基本原理,通过学生活动和小组活动成果的展示,能够引导学生更好地理解直线拟合的背景和一元线性回归模型的含义,便于学生从整体上把握整节课的学习.五、教学过程设计1.创设情境,提出问题(1)俗话说,三百六十行,行行出状元.各行各业都有许多楷模.他们是公安楷模,是人民的守护神.下面我们来看一段公安神探破案的视频.播放《见证》栏目《神眼追踪》中神探足迹鉴定专家神奇破案的真实案例片断.(2)思考:神探根据足迹推断出了犯罪嫌疑人的身高,足迹能给我们提供什么信息呢?(3)提出问题:它们之间的相关关系具体是怎样的?神探又是怎样推断的呢?(4)导入课题:一元线性回归模型.【设计意图】以真实案件视频片断导入课题,关注社会、设置悬念,从研究身高与鞋码之间的相关关系入手,也为后面反思身高与足迹之间的相关关系埋下伏笔.2.统计分析,探究交流要研究两个变量之间的相关关系,根据统计学知识,我们首先应该做什么呢?收集数据:现场收集8对鞋码与身高的数据,用Excel软件同步导入如表1所示的电子表格中.表1鞋码身高通过观察表中数据,大体上可以发现,随着鞋码的增加,身高也在增加.【设计意图】从在座学生中现场随机收集鞋码与身高的数据,使样本数据源自学生,让学生体验样本的随机性,理解样本的代表性.描述数据:观察表中数据,大体上看,随着鞋码的增加,身高也在增加.你会怎样来直观表示身高与鞋码之间的这种关系呢?类比函数图象,描点画图.不妨设鞋码为x,身高为y,得到8个数对()x1,y1,()x2,y2,…,()x8,y8,将它们对应的点描出来,所得到的图称为散点图.学生在活页上的平面直角坐标系中画出散点图.教师展示学生作图成果,张贴到黑板上,随即分析图形特点.【设计意图】引导学生类比函数去认识身高与鞋码两个变量之间的相关关系,并亲自画散点图直观表示它们之间的相关关系,为数据分析作准备,了解拟合的背景.分析数据:观察散点图,你有什么发现呢?所有点看上去都在一条直线附近波动.线性相关:如果散点图中所有点看上去都在一条直线附近波动,称变量间线性相关.此时,可以用一条直线来近似刻画它们之间的关系,这样近似的过程称为直线拟合.探究:怎样确定这条直线呢?你是怎么想的?在小组内交流,并画出这条直线.教师展示小组讨论成果,汇报各自想法,分析不同想法的共同点.【设计意图】设计确定回归直线的小组讨论活动,自主探究、交流讨论,加深对回归含义的感知,并尝试得出确定这条直线的方法.3.建立模型,理解原理各小组做法虽然不同,但其实想法是一致的,都是希望所有点和这条直线尽可能接近,也就是整体距离最小,如何用数学的方法刻画呢?··12建立模型:假设我们已经得到两个具有线性相关关系的变量的一组数据()x 1,y 1,()x 2,y 2,…,()x n ,y n ,所求回归直线方程为y =bx +a ,那么如何刻画这些点和直线y =bx +a 整体上最接近呢?思考交流:不妨先刻画任意一点P i ()x i ,y i 和直线y =bx +a 的远近,说说你的想法!①用点到直线的距离来刻画.②用点()x i ,y i 与这条直线上横坐标为x i 的点之间的距离来刻画点()x i ,y i 到直线y =bx +a 的远近,即用||y i -()bx i +a ()i =1,2,3,…,n 来刻画点()x i ,y i 到直线y =bx +a 的远近.哪一种想法更合适呢?【设计意图】设置问题串启发学生分析如何刻画一个点到回归直线的远近,从实际意义的角度创造性地定义新的标准来刻画点到直线的远近,进一步理解波动和回归的意义,渗透创新思维的培养,理解数学的应用价值.所有点()x i ,y i 到直线y =bx +a 的“整体距离”表示为Q =||y 1-()bx 1+a +||y 2-()bx 2+a +…+||y n -()bx n +a =∑i =1n||y i-()bx i+a .要求回归方程,就是要确定a ,b 的值,使Q 的值最小.绝对值方便计算吗?【设计意图】通过对绝对值运算的分析,理解图中点与直线位置关系的不确定性,即点的波动性与直线的待定性.类比方差的知识,用∑i =1n[]y i -()bx i +a 2表示所有点到直线的“整体距离”,发挥知识的正迁移作用.理解原理:由于绝对值计算不方便,在实际应用中,我们常使用Q =[]y 1-()bx 1+a 2+[]y 2-()bx 2+a 2+…+[]y n-()bxn+a 2=∑i =1n[]y i -()bx i +a 2进行计算.线性回归方程:经过推导,确定回归方程y =bx +a 中b ,a 的计算公式如下.ìíîïïïïb =∑i =1n ()x i -xˉ()y i -y ˉ∑i =1n()x i -x ˉ2=∑i =1nx i y i -nx ˉy ˉ∑i =1n x i 2-nx ˉ2,a =yˉ-bx ˉ.意义分析:第一个表达式是x i 减x ˉ乘以对应的y i减y ˉ求和,去除以x i 减x ˉ的平方和;第二个表达式是x i 乘以对应的y i 求和减x ˉyˉ积的n 倍,去除以x i 的平方和减x ˉ的平方的n 倍.公式看似复杂,但是结构优美,都是分式形式.先看第一个公式,分子分母结构相同,如果把分子中的y i 变成x i ,y ˉ变成x ˉ,则分子与分母就完全一样了;第二个公式也具有一样的结构.公式的具体推导过程大家可以在课后进行思考.使∑i =1n[]y i -()bx i +a 2最小从而求得线性回归方程的方法叫做最小二乘法.思考:由a =y ˉ-bx ˉ,得y ˉ=bx ˉ+a.你发现了什么?回归直线y =bx +a 经过点()x ˉ,y ˉ,即样本点的中心.【设计意图】根据《标准》的要求和课程安排,着重把握方法背后的数学思想方法,引导学生课后探讨使Q 最小的系数b ,a 公式的推导过程,课堂上对公式进行详实分析,充分认识公式的结构,引导学生欣赏数学美.同时,还分析得到回归直线过样本点的中心,了解回归直线的代表性.4.运行程序,计算预测设置递进式问题串:(1)有了公式,下面是否可以动手计算系数b ,a 呢?(2)是否可以用计算器?(3)用计算器肯定可以轻松很多,但是如果有成千上万个数据呢?随着信息技术的发展,根据最小二乘法的思想和公式研发程序进行数据处理成为必然.【设计意图】从公式的理解到引导学生认识运用公式计算系数b ,a 的困难,感受使用计算器的必要性,再考虑到统计往往面对的是大量的数据处理工作,用计算器替代公式计算也是非常繁杂且易出错的,从而认识到研发程序的必要性,培养学生优化运算的思维.利用计算器求回归方程(播放微课),先开启计算器,然后分如下三个步骤.①选择模式:按MODE 键,进入模式选择,按3,选择Reg 回归,再按1,选择Lin 线性.②输入数据:按SHIFT 键+CLR +1=,清空统计存储器,再逐一输入收集的数据.··13③计算统计变量,按SHIFT键,按数字键2,就切换到了S-VAR功能,按两次方向键,选择1,计算a,同样操作,选择2,计算b.具体参考操作步骤如下图所示.学生两人一组,根据刚才的数据计算a,b的值.学生报告操作结果.【设计意图】为了便于传授利用计算器求值的技能,经过反复研究,确定由教师录制微课;为了突出程序思维,将利用计算器求值的技能分为三个步骤,易懂易学、方便操作.利用Excel软件求回归方程.如果有很多数据,怎么导入呢?需要一个个输入吗?教师操作演示,顺便验证大家刚才的操作结果.具体步骤如下.①在Excel表格中选定表示鞋码与身高关系的散点图,在菜单中选定“图表”中的“添加趋势线”选项,弹出“添加趋势线”对话框.②单击“类型”标签,选定“趋势预测/回归分析类型”中的“线性”选项,单击“确定”按钮,得到回归直线.③双击回归直线,弹出“趋势线格式”对话框.单击“选项”标签,选定“显示公式”,最后单击“确定”按钮,得到回归直线的方程.计算结果为什么是一样的呢?用计算器和用Excel软件求回归方程本质上没有区别,都是根据最小二乘法的思想和公式计算.不仅如此,标准统计软件SAS和SPSS也是根据最小二乘法的思想和公式求线性回归方程.课后,教师让学生参考视频教程在计算机上操作实践.有了回归方程,我们就知道了身高与鞋码的具体相关关系,并且可以根据鞋码预测身高.例如,根据42码的鞋印预测身高大概是多少?即当x=42时,y≈175.5.【设计意图】从计算器到Excel软件,从微课传授技能到当堂操作演示,都是以教与学的需要为出发点和落脚点,引导学生分析计算器和计算机软件求线性回归方程的区别与联系,并介绍了标准的统计软件.加强信息技术与统计内容的融合,启发学生思考如何从机械、烦琐的数据处理中解脱出来,培养程序化思维,发展学生的统计观念和信息素养.配套使用Excel 软件求回归方程的微视频教程,供学生上机操作时参考.分析不同软件求回归方程的本质,渗透程序思想.5.分析反思,实际预测下面我们利用全国统计数据预测一下鞋码为42码的人对应的身高.比较两个预测的样本与结果,你有什么发现呢?反思1:预测结果差异大吗?哪个结果会相对可靠呢?为什么?反思2:事实上,视频中足迹专家的推断与实际非常吻合,他怎么能推断得这么准呢?如果只根据鞋码推断可靠吗?鞋码是一元的,足迹是多元的,专家一般都是研究多元变量的影响进行推断的.怎么进行多元回归分析呢?教师让感兴趣的学生课后思考.【设计意图】统计是根据样本的情况估计总体情况,回归分析是通过函数模型近似刻画相关变量关系的统计方法.设计分析反思活动,引导学生对统计结果的合理性进行必要的批判与质疑,从数学问题的结论再回归到生活实际,呼应本节课引入的真实问题情境,身高与鞋码之间是一元线性相关,而身高与足迹之间却是多元回归分析问题,将相关关系的思考延伸到课外,重视培养学生的统计思维和应用意识.实际预测:线性回归能够帮助我们进行实际的预判决策.学校旁边有个小卖部卖奶茶,根据表2中收集的数据,你能帮小卖部进行决策吗?看看气温是6℃时大概要准备多少杯奶茶.表2气温x/°C奶茶杯数y/杯150413271281511619104238931763654(下转第21页)··14。
《一元线性回归》教学设计方案(第一课时)一、教学目标1. 理解一元线性回归的概念和基本原理;2. 掌握一元线性回归的拟合方法;3. 能够运用一元线性回归解决实际问题。
二、教学重难点1. 教学重点:理解一元线性回归的概念,掌握线性回归的拟合方法;2. 教学难点:如何将线性回归原理应用于实际问题,建立合适的数学模型。
三、教学准备1. 准备教学用具:黑板、白板、投影仪等;2. 准备教学材料:线性回归相关案例、习题及数据;3. 安排教学时间:本课时为单课时,约45分钟。
四、教学过程:(一)引入1. 提出实际问题,激发兴趣通过实际问题引入,使学生感受数学知识的应用价值,增强学习数学的信心和兴趣。
例题:某公司计划推出一种新产品,需要确定产品价格。
市场调查发现,在一定范围内,产品的需求量P与价格x之间存在线性关系。
问题:如何根据需求量与价格之间的关系,来确定产品的价格?2. 展示图表,提出问题根据调查数据,展示需求量与价格之间的关系图表,提出本节课要学习的内容:一元线性回归分析。
(二)讲解1. 一元线性回归的概念一元线性回归是数学中一种常见的问题,它是指两个变量之间存在一种线性关系。
通过这种关系,我们可以利用已知的一个变量的值来预测另一个变量的值。
2. 回归直线方程的求法为了解决一元线性回归问题,我们需要求出回归直线方程。
具体来说,我们需要找到一个直线,使得该直线上的所有点的斜率与这两个变量之间的实际斜率最接近。
具体步骤包括:选择样本、计算样本数据、绘制散点图、选择模型参数等。
3. 利用回归直线进行预测一旦求出回归直线方程,我们就可以利用它来进行预测。
具体来说,给定新产品价格,我们就可以利用回归直线方程来预测需求量P。
(三)实践1. 学生分组,收集数据让学生分组收集数据,并绘制散点图。
通过实践操作,使学生更好地理解一元线性回归分析的基本概念和方法。
2. 小组讨论,解决问题让学生根据收集的数据,尝试建立一元线性回归模型并进行预测。
一元线性回归教案引言一元线性回归是统计学中非常重要的一种回归分析方法。
它能够通过建立一个线性模型,根据自变量的值来预测因变量的值。
本教案将介绍一元线性回归的基本概念、原理和应用场景,并通过示例演示如何进行一元线性回归分析。
目录1.什么是一元线性回归?2.一元线性回归的原理3.数据的处理与准备4.拟合一元线性回归模型5.模型评估与预测6.应用案例分析7.总结1. 什么是一元线性回归?一元线性回归是指只有一个自变量和一个因变量的线性回归模型。
它的数学表达式为:Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是模型的参数,ε是误差项。
一元线性回归的目标是找到最合适的β0和β1,使得模型对观测数据点的拟合程度最优。
2. 一元线性回归的原理一元线性回归的原理基于最小二乘法,即通过最小化观测值与模型预测值之间的差异来确定模型的参数。
最小二乘法可以通过求解正规方程来获得最优的参数估计值。
3. 数据的处理与准备在进行一元线性回归分析之前,需要对数据进行处理和准备。
这包括数据清洗、变量选择和数据可视化等步骤。
本节将介绍常用的数据处理方法,以及如何选择适当的自变量和因变量。
4. 拟合一元线性回归模型拟合一元线性回归模型是通过最小二乘法来确定模型的参数估计值。
本节将介绍如何使用Python中的scikit-learn库来拟合一元线性回归模型,并分析模型的拟合结果。
5. 模型评估与预测在拟合一元线性回归模型之后,需要对模型进行评估和预测。
本节将介绍常用的评估指标,如均方误差(MSE)和决定系数(R-squared),以及如何使用模型进行预测。
6. 应用案例分析本节将通过一个实际的数据集来展示一元线性回归的应用场景。
通过分析数据集中的自变量和因变量之间的关系,我们可以建立一元线性回归模型,并对模型进行评估和预测。
7. 总结本教案从一元线性回归的基本概念和原理开始,通过示例和实践对一元线性回归进行了详细讲解。
8.2 一元线性回归模型及其应用8.2.1 一元线性回归模型教学内容一元线性回归模型.教学目标能结合具体实例,通过分析变量间的关系建立一元线性回归模型,并能说明模型参数的统计意义,提高数据分析能力.教学重点与难点(1)教学重点:一元线性回归模型的概念,随机误差的概念、表示与假设.(2)教学难点:回归模型与函数模型的区别,随机误差产生的原因与影响.教学过程设计环节一创设情景,提出问题问题1生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说,父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者之间的关系,有人调查14名男大学生的身高及其父亲的身高,得到的数据如表8.2-1所示.表8.2-1编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 父亲身高174 170 173 169 182 172 180 172 168 166 182 173 164 180 /cm儿子身高176 176 170 170 185 176 178 174 170 168 178 172 165 182 /cm根据上节所学内容,通过这组样本数据能否推断儿子的身高与父亲身高有关系?是正相关还是负相关?相关程度如何?是函数关系还是线性相关关系?为什么?师生活动学生独立完成.要求学生整理数据,利用前面表示数据的方法,以横轴表示父亲的身高,纵轴表示儿子的身高,建立平面直角坐标系,再将表中的成对样本数据表示为散点图.然后根据散点图作出是否线性相关的判断,若判断线性相关,求出样本相关系数,根据计算结果回答问题.教师可以引导学生使用技术工具开展学习活动,例如选用GeoGebra软件作为教学支持工具解决问题,具体过程如下.(1)打开GeoGebra,在表格区A,B列分别输入父亲身高和儿子身高的数据.(2)在表格区选择A,B两列,并在工具栏第三个图标的下拉菜单中,选择“点列”,出现对话框,在对话框中给成对样本数据所在的点列命名,选择好自变量和因变量,点击“确定”.在绘图区的窗口,点击右键,在出现的菜单中选择“适应窗口”,便画出这组成对样本数据的散点图,如图8.2-1.根据散点图可以发现,散点大致分布在一条从左下角到右上角的直线附近,表明儿子的身高和父亲的身高不是函数关系,而是线性相关关系.(3)在GeoGebra的输入框,输入“相关系数[〈点列名〉 ]”,在“选项”菜单的“精确度”栏中选择合适的精确度,即可求得样本相关系数r≈0.886.表明儿子身高和父亲身高正线性相关,且相关程度较高.设计意图通过一个具体问题的独立解决,让学生巩固前面所学内容和方法,也为本节内容的学习做好认知准备.同时该问题又可以作为探究一元线性回归模型的例子,使教学过程自然、连贯.环节二问题探究,分析比较引导语通过问题1,我们已经了解到,根据成对样本数据的散点图和样本相关系数,可以推断两个变量是否存在线性相关关系,是正相关还是负相关,以及线性相关程度的强弱,如果能像建立函数模型刻画两个变量之间的确定关系那样,通过建立适当的统计模型刻画两个随机变量的相关关系,那么我们就可以利用这个模型研究两个变量之间的随机关系,并通过模型进行预测.问题2 根据表8.2-1的数据,问题1中的儿子身高与父亲身高这两个变量之间的关系能用函数模型刻画吗?师生活动引导学生观察表格中的数据,启发学生根据函数的概念进行分析、作出判断.两个变量要成为函数关系必须满足函数的定义,即应满足“集合A中的任意一个数,在集合B中都存在唯一的数与它对应”.表8.2-1中的数据,存在父亲身高相同而儿子身高不同的情况.例如,第6个和第8个观测父亲的身高均为172cm,而对应的儿子的身高为176cm和174cm;同样在第3,4个观测中,儿子的身高都是170cm,而父亲的身高分别为173cm,169cm.可见儿子的身高不是父亲身高的函数,同样父亲的身高也不是儿子身高的函数,所以不能用函数模型来刻画.设计意图通过具体实例,说明呈线性相关关系的两个变量可能不存在函数关系,同时培养学生严格依据数学概念、原理等进行判断、推理的理性思维能力,改变经验判断的习惯,体会数学的严谨性,师生活动设计中强调了判断两个变量之间不是函数关系应考虑的两个方面,即Y不是X的函数,同时X也不是Y的函数.如果只考虑一个方面,两个变量仍有可能是函数关系.环节三建立模型,明确概念引导语从成对样本数据的散点图和样本相关系数可以发现,散点大致分布在一条直线附近,表明儿子身高和父亲身高有较强的线性关系.我们可以这样理解,由于有其他因素的存在,使得儿子身高和父亲身高有关系但不是函数关系.结合生活经验可知:影响儿子身高的因素除父亲的身高外,还有母亲的身高、生活的环境、饮食习惯、营养水平、体育锻炼等随机的多种因素.因此,我们可以用一次函数来刻画父亲身高对儿子身高的影响,而把影响儿子身高的其他因素作为随机误差.问题3因为存在这些随机的因素,使得儿子的身高呈现出随机性.各种随机因素都是独立的,有些因素又无法量化.考虑到这些随机因素的作用,我们该如何引入适当的变量,借助一次函数关系刻画父亲身高对儿子身高的影响呢?师生活动教师引导学生引入适当变量,如果用x表示父亲身高,Y表示儿子的身高,可用e表示各种其他随机因素影响之和,称e为随机误差.由于儿子身高与父亲身高线性相关,所以Y≈bx+α.由此引导学生分析变量x,Y,e之间的关系,自主写出关系式Y=bx+a+ e.由于随机误差表示大量已知和未知的各种影响之和,它们会相互抵消.可以假设,只要误差是随机的,那么随机误差e的均值为0,方差为与父亲身高无关的定值σ2,即E(e)= 0,D(e)=σ2.追问为什么要假设E(e)=0,而不假设其为某个不为0的常数?师生活动教师引导学生分析问题并适时指出,因为误差是随机的,即取各种正负误差的可能性一样,所以它们均值的理想状态应该为0.如果随机误差的均值为一个不为0的常数α,则可以将α合并到截距项α中,否则模型无法确定,即参数没有唯一解.另外,如果α不为0,则表示存在系统误差,在实际建模中也不希望模型有系统误差,即模型不存在非随机误差.设计意图通过对随机误差的分析,建立用随机变量表示的数学模型,将一些次要的随机因素用一个随机变量e表示,并基于简洁性原则对随机变量e作合理的假设.由此,理解研究随机问题的重要思想,即将一个随机量表示成一个主要的确定性的量与一个次要的随机量之和,只要控制次要的随机量在一定的范围之内,那么随机问题就可以通过研究确定性问题得到理想的结果.同时体会建立模型的基本思路:引入适当的变量,建立模型,有时需要作出合理的假设.问题4 根据以上的分析,你能建立一个数学模型表示儿子身高与父亲身高的关系吗?师生活动教师引入数学符号表示相关量,用x表示父亲的身高,Y表示儿子的身高,因儿子身高是随机变量,用大写字母表示,用e表示各种其他随机因素影响之和.进而引导学生根据以上分析,可以建立如下的数学模型:{Y=bx+a+e,E(e)=0,D(e)=σ2.我们称①式为Y关于x的一元线性回归模型.其中,Y称为因变量或响应变量,x称为自变量或解释变量;a和b为模型的未知参数,a称为截距参数,b称为斜率参数;e是Y与bx+a之间的随机误差.模型中的Y是随机变量,其值虽然不能由变量x的值确定,但却能表示为bx+a 与e的和(叠加),前一部分由x唯一确定,后一部分是随机的.如果e=0,那么Y与x之间的关系就可以用一元线性函数模型来描述.设计意图问题4是本节课的重点和难点,由于随机误差的引入,在函数模型的基础上建立含有随机变量的回归模型,这是定量描述随机现象的重要方法.通过问题4,完成一元线性回归模型的建立,理解回归模型与函数模型的区别.追问你能结合父亲和儿子身高的实例,说明回归模型①的意义吗?师生活动教师引导学生对“儿子身高与父亲身高的关系”的案例进行分析,对于父亲身高x和儿子身高Y的一元线性回归模型①,由于E(Y=bx+α,可以解释为父亲身高为x i的所有男大学生身高组成一个子总体,该子总体的均值为bx i+α,即该子总体的均值与父亲的身高是线性函数关系.而对于父亲身高为x i的某一名男大学生,他的身高y i并不一定为bx i+α,它仅是该子总体的一个观测值,这个观测值与均值有一个误差项e i=y i−(bx i+a).设计意图通过具体实例,加深学生对一元线性回归模型的理解.问题5你能结合具体实例解释产生模型①中随机误差项的原因吗?师生活动组织学生展开讨论,形成共识.在研究儿子身高与父亲身高的关系时,产生随机误差e的原因有:(1)除父亲身高外,其他可能影响儿子身高的因素,比如母亲身高、生活环境、饮食习惯和锻炼时间等;(2)在测量儿子身高时,由于测量工具、测量精度所产生的测量误差;(3)实际问题中,我们不知道儿子身高和父亲身高的相关关系是什么,可以利用一元线性回归模型来近似这种关系,这种近似关系也是产生随机误差e的原因.设计意图通过具体实例,加深学生对随机误差的理解.环节四归纳小结,加深理解问题6 回顾建立一元线性回归模型的过程,你能说出建立回归模型的依据,并谈一谈对回归模型的认识吗?师生活动要求学生思考后回答并相互补充,教师进行总结.设计意图帮助学生进一步厘清一元线性回归模型的含义,掌握用数学语言表达随机事件,了解总体参数与样本数据之间的关系.环节五目标检测,检验效果1.教科书第107页练习第1题.2.儿童的身高随年龄的增加而增加,我国0~12岁儿童的平均身高如表8.2-2所示.表8.2-2年龄t/岁 1 2 3 4 5 6 7 8 9 10 11 12平均身高Y/cm 76.5 86.5 96.8 104.1 111.3 117.7 124.0 130.0 135.4 140.2 145.3 151.9 (1)儿童的平均身高Y与年龄t之间是函数关系还是相关关系?(2)如果是相关关系,如何判断是线性相关还是非线性相关?相关的密切程度如何?(3)如果设Y=f(t)+e,其中f(t)是由年龄唯一确定的部分,e是随机误差,请简要解释产生随机误差的原因.设计意图第1题通过举出两个应用函数模型和回归模型的例子阐释函数模型与回归模型的区别,进一步加深学生对相关关系的理解;第2题补充题进一步结合具体实例考查学生对函数关系与相关关系的区别的认识,以及一元回归模型中随机误差意义的理解。
[情境引入]前面我们学习了统计中分析大量数据的方法,如制作频率分布表和频率直方图,以及总体中平均值、极差、方差和标准差的应用,这些都能帮助我们可以很好地理解总体中的情况,但有时大量的数据之间也有一定的关系,那我们如何来分析数据与数据间的联系呢?
[导入新知],我们首先来看这几个问题 (1)圆的面积S 与该圆的半径r 之间的关系 (2)正方形面积S 与边长x 之间的关系 (3 )人的身高不能确定体重,但平均说来“身高者,体也重”.那么身高和体重具有什么关系? (4)类似的情况是否也有一定的关系?
a 蔬菜的产量y 与所施的氮肥量x
b 某天冷饮销量y 与当天最高气温t
在这些相互的关系中,有些我们能够找到非常精确的式子来表达,而有些我们只能借助于常识判断它们之间有联系,那数学上把(1)(2)两种称为确定性关系,把(3)(4)两种非确定性关系称为相关关系。
像身高与体重的相关关系,我们也能判断出 体重≈身高−105 这个式子是如何得来的呢?在大量的身高与体重数据中,我们经分析可以发现两者有一个大体的标准体重的计算式,这个式子可以帮助我们预估某人的体重值,那为何是减去105这数呢?数学上正是通过回归分析来寻求一公式描述变量间的相关关系。
在回归分析中最简单、最常用的为一元线性分析。
例1 某小卖部为了了解热茶销售量与最低气温之间的关系,随机统计并制作了某6天的热茶销售量与当天最低气温的对照表:
⑴观察表中数据的变化趋势. ⑵在直角坐标系内作出图象.
在图中我们看出散点的分布如一条直线,那如何确定最贴近实际情况的直线呢,假设直线方程为y=bx+a ,实际点与直线上的点的差别用方差表示为
W(a,b)=(26b+a-20)2+(18b+a-24)2+(13b+a-34)2 + (10b+a-38)2+ (4b+a-50)2+(- b+a-64)2 =1288b 2+6a 2+140ab-3820b-460a+10172
若差别小,直线越接近实际,那如何求W (a ,b )最小值呢?运用最小二乘法的基本原理,在含两个未知数的关系中,我们可以把其中一个看成常数,求另一个数的最小值,以此求算总体的最小值情况。
a 为常数 ,b=-(140a-3820)/2572
b 为常数, a=-(140b-460)/12
联立方程解得 a=57.6 b=-1.65
最佳直线的方程即为 y=-1.65x+57.6
这条直线就称为回归直线,用直线表达的两变量间的相关关系称为一元线性关系。
为了简化计算的难度,数学家们直接总结了求a 与b 的公式
由公式我们可以更加方便地求算回归直线方程。
例2
试写出解:
x (平均)=16/3 y(平均)=149/3 x(平均)*y (平均)=2384/9 x i y i(总和)=1770 x i 2(总和)=194 n=6
得 b=7.743 a=8.371 y=7.743x+8.371
【小结】求回归直线方程的步骤:
∑i
i
y
x ⑵计算x i 与y i 的积,求
∑2
i x ⑶计算 ;
⑹写出回归方程 .
⑷将结果代入公式求 a ;
⑴计算平均数 与 ; x y ⑸用 求 b ; x
a y
b -=x
b y a x n x
y
x n y
x b n
i i
n
i i
i
-=--=
∑∑==,
1
2
21。