高等流体力学讲义
- 格式:doc
- 大小:121.50 KB
- 文档页数:10
高等计算流体力学讲义(3)§2 Riemann 问题1.预备知识:Euler 方程解的结构我们讨论Euler 方程解的结构。
在上一节,我们已经得到,在均熵流动条件下,有const R =±,沿au dt dx±= (1) 其中 a u R 12-±=±γ。
且全场 S const =。
(2)在这种情况下,Euler 方程的光滑解有如下几种可能。
1)在求解域中,Riemann 不变量a u R 12-±=±γ均不为常数。
这是最一般的情况,Euler 方程的解比较复杂,通常无解析解。
2)均匀流:Riemann 不变量a u R 12-±=±γ均为常数。
此时,令R R ±±=, 有:0000()/21()4u R R a R R γ+-+-=+-=-,可见,此时流动是均匀的。
3)简单波:有一个Riemann 不变量在某区域内为常数(00R R or R R ++--==)。
以0R R ++=的情况为例。
此时021R u a R γ++=+=-。
(3) 且沿dxu a dt=-,有 21u a const γ-=-。
这个常数具体的数值与特征线的起点有关。
由此我们知道,沿dxu a dt=-,有00()/21()4u R const a R const γ++=+-=-。
这说明,沿dxu a dt=-,u 和a 均为常数,即特征线是直线。
由均熵条件,密度ρ和压力p 沿特征线dx u a dt =-也为常数。
参见上图,由于u a u -<,所以流线dx u dt=(或流体质点)从左侧穿过特征线dxu a dt=-,这种简单波称为左简单波或向后简单波。
简单波可以分为压缩波和稀疏波(膨胀波)两类。
设流线与dxu a dt=-交点处,流线的切线方向为ξ 。
把(3)式沿ξ求方向导数,得:201u a ξγξ∂∂+=∂-∂ 当0uξ∂>∂,有()0,0,0,0a p u c ρξξξξ∂∂∂∂-<<<>∂∂∂∂。
高等计算流体力学讲义(4)§5. Riemann 问题的近似求解器(Ⅰ):HLL 方法一.Godunov 格式和Riemann 问题考虑下列Euler 方程:()0t x U F U += (1)要求在适当的初边值条件下求(1)式的数值解。
前面已经讲过,求解(1)式的显式格式可以写为:11221n ni i ii t U U F F x ++-∆⎡⎤=--⎢⎥⎣⎦∆ (2) 在采用Godunov 格式时:()1122(0)i i F F U ++= (3)其中12(0)i U +是Riemann 问题的精确解12(/)i U x t +在/0x t =时的值。
而12(/)i U x t +是下列初值问题(Riemann 问题)的解:()00(,0)0t x LR U F U U ifx U x U ifx +=⎫⎪<⎧⎬=⎨⎪>⎩⎭(4)在采用零阶重构时:1,i L i R U U U U +== (5) 为了使以后的讨论适用于多维问题,我们考虑多维问题的x-分裂形式,即在(1)中,认为:2u u u p U F v uv E uH ρρρρρρρρ⎛⎫⎛⎫⎪ ⎪+ ⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (6)(这里只考虑二维问题,但容易推广到三维问题)。
由于Riemann 问题须迭代求解计算量很大;而且一般的非线性双曲型守恒律的Riemann 问题可能不存在解析解,所以有必要发展Riemann 问题的近似解法。
近似解法可以分为两大类(1)在Riemann 问题的提法是准确的条件下求近似解;(2)求近似的Riemann 问题的精确解。
二.Riemann 问题的HLL 近似(Harten-Lax-van Leer)Harten 等提出,(4)式的解可以近似写为下列形式:(,)xtLL hll x t L Rx tRRU if D U x t U if D D U ifD ⎧≤⎪=≤≤⎨⎪≤⎩ (7)其中L D 、R D 是Riemann 问题的解中左波和右波运动速度的近似值。
高等流体力学授课提纲第一章概论§1.1 流体力学的研究对象§1.2 流体力学发展简史§1.3 流体力学的研究方法§1.3.1 一般处理途径§1.3.2 应用数学过程§1.3.3 流体力学方法论:一般方法§1.3.4 流体力学方法论:特殊方法●Lagrange描述和Euler描述●无量纲化●线性化●分离变量法●积分变换法●保角映射法●奇点法(孤立奇点法、分布奇点法、Green函数法)●控制体积法●微元法第一章概论§1.1 流体力学的研究对象(1)物质四态:●四态:固态—液态—气态—等离子态;等离子体=电离气体●界限:彼此无明确界限(高温下的沥青;冰川),取决于时间尺度;●流体力学的具体研究对象:液体、气体、等离子体(电磁流体力学、等离子体物理学);●液体与气体的差别:液体—有固定容积、有自由面、不易压缩、有表面张力;气体—无固定容积、无自由面、易压缩、无表面张力。
(2)流体的基本性质:易流动性:静止流体无剪切抗力;压缩性(膨胀性):压差、温差引起的体积改变,判据:马赫数;粘性:运动流体对剪切的抗力,判据:雷诺数;热传导性:温差引起的热量传递,普朗特数。
(3)流体的分类:i)按有无粘性、热传导性分:真实流体(有粘性、有热传导、与固体有粘附性无温差);理想流体(无粘性、无热传导、与固体无粘附性有温差);ii)按压缩性分:不可压缩流体,可压缩流体;iii)按本构关系分:牛顿流体(牛顿粘性定律成立),非牛顿流体(牛顿粘性定律不成立),下分纯粘性流体(拟塑性流体,涨塑性流体);粘塑性流体(非宾汉流体、宾汉流体);时间依存性流体(触变流体、振凝流体);粘弹性流体拟塑性流体(剪切流动化流体):剪切应力随剪切速度增加而减小,如淀粉浆糊、玻璃溶液、高分子流体、纤维树脂;涨塑性流体(剪切粘稠化流体):剪切应力随剪切速度增加而减小,如淀粉中加水、某些水-砂混合物;粘塑性(非宾汉和宾汉流体):存在屈服应力,小于该应力无流动,如粘土泥浆、沥青、油漆、润滑脂等,所有粘塑性流体为非宾汉流体,宾汉流体为近似;触变流体(摇溶流体):粘性或剪切应力随时间减小,如加入高分子物质的油、粘土悬浊液;振凝流体:粘性或剪切应力随时间增大,如矿石浆料、膨润土溶胶、五氧化钒溶液等;粘弹性流体:兼有粘性和弹性性质的流体,能量不像弹性体守恒,也不像纯粘性体全部耗散。
(4)流体力学学科的研究对象流体力学——研究流体的机械运动以及它与其它运动形态相互作用的科学。
其它运动形态:固体运动-与界面的相互作用;热运动-传热、传质;电磁-电磁流体力学。
§1.2 流体力学发展简史流体力学大事年表公元前3世纪阿基米德(287-212BC)发现浮力定律(阿基米德原理);发明阿基米德螺旋提水机;1644 托里拆里(E.Torricelli,1608-1647)制成气压计;导出小孔出流公式;1650 帕斯卡(B.Pascal,1623-1662)提出液体中压力传递的帕斯卡原理;1662 波义尔(R.Boyle,1627-1691)建立气体的波义尔定律;1668马略特(E.Mariotte,1620-1684),出版专著《论水和其它流体的运动》奠定流体静力学和流体运动学的基础;1678 牛顿(I.Newton,1642-1727)研究在流体中运动物体所受的阻力,并建立牛顿粘性定律;1732 皮托(H.Pitot,1695-1771)发明测量流体压力的皮托管;1738丹尼尔·伯努利(D.Bernoulli,1700-1782)出版《流体动力学》,将力学中的活力(能量)守恒原理引入流体力学,建立伯努利定理(伯努利方程);1752 达朗贝尔(J. le R. D’Alembert,1717-1783)提出理想流体运动的达朗贝尔佯谬;1755欧拉(L.Euler,1707-1783)导出流体平衡方程和流体运动方程(欧拉方程);1763 玻尔达(J-C.Borda,1733-1799)进行流体阻力试验,给出阻力公式,开粘性流体力学研究先河;1777 玻素(C.Bossut,1730-1814)等完成第一个船池船模试验;1802 盖·吕萨克(J.L.Gay-Lussac,1778-1850)建立完全气体的状态方程;1809 凯利(G.Cayley,1773-1858)建立航空飞行器概念;1822 纳维(C-L-M-H.Navier,1785-1836)导出粘性流体动力学的动量方程;1822 傅立叶(J-B-J Fourier,1768-1830)建立傅立叶导热定律; 1834 罗素(J,S.Russell)在苏格兰的联合运河上发现孤立波;1839 哈根(G.H.L.Hagen,1797-1884)和泊肃叶(J.L.M.Poiseuille, 1797-1969)研究圆管内的粘性流动给出哈根-泊肃叶公式;1845 斯托克斯(G.G.Stokes,1819-1903)更简洁严谨地导出粘性流体动力学的动量方程(纳维-斯托克斯方程);1845 亥姆霍兹(H. von Helmholtz,1821-1894)建立涡旋的基本概念,奠定涡动力学基础;1851 斯托克斯研究小球在粘性流体中的运动,给出斯托克斯阻力公式;1860 亥姆霍兹建立流体运动的速度分解定理;1878 兰姆(mb,1849-1934)出版流体力学经典著作《流体运动的数学理论》,1895年增订再版时改名《流体动力学》;1878 瑞利(Lord Rayleigh,1842-1919)研究有环量的圆柱绕流问题,发现升力,从理论上解释了马格努斯效应;1883 雷诺(O.Reynolds,1842-1912)完成著名的雷诺转捩实验,提出雷诺数(Sommerfeld于1908年命名);1887 马赫(E.Mach,1838-1916)提出马赫数的概念1891 兰彻斯特(nchester,1868-1946)提出速度环量概念,建立升力理论,并发展了有限翼展理论;1895 科特沃赫(D.J.Korteweg)和德弗里斯(G.de Vries)建立KdV方程;1901 贝纳尔(H.Benard)研究对流传热稳定性,发现贝纳尔腔;1902-儒科夫斯基(N.E.Joukovsky,1847-1921)导出儒科夫斯基公式,奠定机翼理论基础;1902 库塔(M.W.Kutta,1867-1944)提出机翼流动的库塔条件;1902 瑞利建立流体力学的量纲分析和相似理论;1903 莱特兄弟(W.Wright,1867-1912;O.Wright,1871-1948)人类第一次飞行成功;1903 齐奥尔可夫斯基(K.A.Tsiolkovsky,1857-1835)导出火箭运动基本公式和第一宇宙速度;1904 普朗特(L.Prandtl,1875-1953)建立边界层理论;1905 普朗特建成超音速风洞(马赫数为1.5);1910 冯卡门(Th.von Karman,1881-1963)建立卡门涡街理论;1908 瑞利和索末费尔德(A.Sommerfeld,1868-1951)研究平行流的稳定性,导出索末费尔德方程;1921 泰勒(G.I.Taylor,1886-1975)提出湍流统计理论基本概念;1923 泰勒研究同心圆筒间旋转流动稳定性,发现泰勒涡;1940 周培源(1902-1993)创建湍流模式理论;1926 普朗特提出湍流的混合长度理论;1941 钱学森(1911-)和冯卡门导出机翼理论的卡门-钱公式;1963 洛伦兹(E.Lorenz)发现混沌和奇怪吸引子。
§1.3 流体力学的研究方法§1.3.1 一般处理途径(1)实验途径(2)分析途径(3)数值模拟途径§1.3.2 应用数学过程实验、实测结果—>数学、物理建模—>寻找工具、求解—>结果检验—>总结规律。
§1.3.3 流体力学方法论:一般方法●实验观察实验目的:1)观察迄今未知或未加解释的新事实(例如雷诺实验、普朗特的边界层实验、法拉第实验);2)检验新的假说、理论和结果(例如儒科夫斯基升力实验)。
实验手段:实验室实验(缩尺实验)、现场实验(原型实验)、现场观测。
实验步骤:1)制定详尽的实验方案;2)准备相应的设备和仪器;3)科学地记录数据;4)数据处理;5)制作图表;6)理论分析。
实验要领:1)有目的性和限定性;2)有准确性和排他性;3)有简单性和可行性;4)有再现性和鲁棒性;5)注意结果的正常性和反常性。
●发现机遇机遇无处不在。
机遇只垂青于有准备的头脑。
抓住机遇的必要条件:1)扎实的知识基础(如卡门涡街的发现);2)对反常现象的迅速反应能力(如孤立波的发现、内波的发现);3)充分的发散思维能力。
●提出假说假说是研究工作中最重要的智力活动手段,没有大胆的猜测就没有伟大的发现。
假说要领:1)发挥想象能力,大胆假设(例如各向同性湍流理论);2)尊重科学事实,求真务实(例如孤立波理论);3)运用各种技巧,小心求证(例如奇怪吸引子假设);4)随时摒弃谬误,服从真理(例如湍流拟序结构);5)不断更新观念,修正设想(例如相对论流体力学);6)及时总结经验,推陈出新。
●大胆想象想象=创造性思考创造力=知识量×发散型思维想象的来源:1)困难的刺激;2)好奇心的激励;3)锲而不舍的思考;4)讨论的启迪。
●细致推理推理的种类:1)演绎型推理(纯数学推理大多如此):假设—公理—命题—引理—定理—推论;2)归纳型推理(流体力学问题大多如此):观察事实—归纳—定理或定律—求证—验证—总结。
3)类比型推理;4)証谬型推理。
推理要领:1)有充分的事实基础;2)基于正确的假设;3)基于正确的逻辑;4)分清事实和对事实的解释。
●总结规律总结规律是掌握并推进流体力学学科的关键步骤。
总结的要领:1)基于经过证明或验证的事实;2)提炼最基本的函数关系或因果关系或数值结果;3)论述准确、清晰、简练。
§1.3.4 流体力学方法论:特殊方法●Lagrange描述和Euler描述Lagrange描述:基于流体质点运动轨迹的描述;Euler描述:基于场论的描述。
●无量纲化量纲分析:流体力学的基础;流体力学的基本量纲:时间、长度、质量、温度;无量纲化:解决一切已建模的流体力学问题的首要步骤。
无量纲化的主要步骤:1)确定问题中的特征量;2)给出所有物理量(自变量、因变量)的无量纲形式;3)将问题中的方程无量纲化;4)提炼无量纲方程和定解条件中的无量纲组合(无量纲数);5)对问题做简化或直接求解。
实例:Navier-Stokes 方程的无量纲化:0=⋅∇vv k v v v 21∇+∇--=∇⋅+∂∂νρp g t 1)引进特征量:特征时间T ,特征长度L ,特征速度V ,特征压力P ;2)给出无量纲量:t ’=t/T ,L r r =',v ’=v /V ,p ’=p/P ;3)基本方程无量纲化:0''=⋅∇v''Re1''1'''''2v k v v v ∇+∇--=⋅∇+∂∂p E Fr t St 4)提炼无量纲数:Strouhal 数:VT L St /=,表征问题的非定常性;Froude 数: gL V Fr /2=,表征惯性力与重力之比;Euler 数:2/V P E ρ=,表征压力与动能之比;Reynolds 数:ν/Re VL =,表征惯性力与粘性力之比。