计算流体力学(中科院力学所)_第8讲-差分方法4
- 格式:ppt
- 大小:2.38 MB
- 文档页数:29
计算流体力学的发展过程计算流体力学是一种利用计算机解决流体力学问题的方法,可以模拟各种流体动力学现象,如流体的流动、湍流等。
它在现代工业、航空航天、环境保护等领域有着广泛的应用,是现代科技取得的重要成果之一。
本文将从历史和技术两个方面,探讨计算流体力学的发展过程。
一、历史1.早期研究计算流体力学的起源可以追溯到20世纪40年代,当时美国哈佛大学的约翰·冯·诺伊曼等人开始使用电子计算机来解决气体动力学问题。
他们开发出了一种名为“脉动方程”的方法,可以解决流体运动的基本方程。
这标志着计算流体力学的诞生。
2.有限差分方法20世纪50年代至60年代,人们开始使用有限差分方法来解决流体力学问题。
有限差分方法将连续的时间和空间离散化,将偏微分方程转化为代数方程,然后使用计算机求解。
有限差分方法的优点是简单易懂,计算速度快,但它也存在精度较低、稳定性差等问题。
3.有限体积方法20世纪70年代后期至80年代初,有限体积方法逐渐成为主流。
有限体积方法使用小区域的平均值代替整个区域的实际值,从而保证了守恒定律的严格符合。
此外,有限体积方法还能很好地处理边界条件和复杂流动情况,因此得到了广泛应用。
4.计算能力的提高20世纪90年代至今,随着计算机计算能力的提高,计算流体力学的应用范围越来越广泛。
基于计算流体力学的仿真技术已经应用于汽车、航空航天、电子、环保等行业和领域。
人们正在不断发掘计算流体力学在这些领域的潜力。
二、技术1.数值格式计算流体力学的数值格式是计算流体力学算法的核心。
主要分为欧拉方程和纳维-斯托克斯方程两种类型。
欧拉方程适用于高速稀薄气体流动,而纳维-斯托克斯方程适用于低速流动和液体流动。
在实际运用中,人们还可以根据具体需求制定相应的数值格式。
2.求解器计算流体力学的求解器是模拟流体力学问题并求解数学模型的软件程序。
求解器的性能直接影响到计算的精度和速度。
目前求解器的种类已经非常丰富,包括商业求解器和开源求解器,如ANSYS、FLUENT、OpenFOAM等。
计算流体力学有限差分法流体力学有限差分法(Finite Difference Method,FDM)是一种常用的计算流体力学的方法。
它是基于流体力学基本方程对系统求解压力、速度和位置变化的一种近似数值方法,这些方程可以使用有限差分法求解得到准确结果。
一、流体力学有限差分法的概念1、端点条件:端点条件是差分方程组确定变量的边界条件,主要有边界条件和内部条件。
2、场变量定义:流动的物质可以用速度、压力和密度来描述,这种变量称为场变量。
3、有限差分法:有限差分法试图使描述精度在最小情况下得到一个可以接受的结果。
它将待求解区域划分为若干个小块,并且计算每一个小块上的变量。
4、边界条件:边界条件是用来描述物理事件发生的时候的物理量,如压力、流动量等。
二、流体力学有限差分法的基本步骤1、数学模型:开发有限差分方程,用来描述流体力学问题,这种模型可以由流体力学的基本方程得到。
2、网格划分:将区域网格划分成更小的网格,为了更准确的解决流体力学问题。
3、空间离散:将每一个网格按照有限差分公式空间离散,获得离散的压力方程式。
4、时间离散:在解决大规模动态流体力学问题时,通过一个更小的时间步骤进行求解。
5、求解:用适当的方法和算法求解有限差分方程式,获得求解结果。
三、流体力学有限差分法的优势1、高精度:使用此法,可以获得较高数值精度,从而准确描述流体力学过程。
2、计算效率:该方法可以快速找出有效的解决方案,并且计算效率更高。
3、计算能力:此方法可以处理复杂的物理问题,而且没有太多的硬件限制。
4、收敛性:当求解复杂的物理问题时,有限差分法不太容易出现"收敛"的情况。
5、可靠性:此方法可以快速、准确的求解出可靠的结果,相对于其他求解方法,其精度更高。
四、总结流体力学有限差分法是一种常用的计算流体力学的方法。
它易于实施,并且可以获得较高数值精度,从而准确描述流体力学过程。
处理复杂的物理问题时,它可以提供较快、较准确的结果,更能可靠性和可靠性更好。
计算流体力学及其并行算法一、引言计算流体力学(Computational Fluid Dynamics, CFD)是研究流体运动和相互作用的一门学科,广泛应用于工程、天文、地球科学等领域。
随着计算机技术的发展,CFD的数值模拟方法也得到了极大的发展,其中并行算法在加速CFD计算过程中起到了重要的作用。
二、计算流体力学基础1. 流体力学基本方程计算流体力学的基础是流体力学的基本方程,包括质量守恒方程、动量守恒方程和能量守恒方程。
这些方程描述了流体的运动、力学性质和能量转换。
2. 数值离散化方法为了将流体力学方程转化为计算模型,需要对连续域进行离散化。
常用的数值离散化方法包括有限差分法、有限体积法和有限元法等。
这些方法将连续的流体域离散为网格,通过在网格上的节点上进行数值计算,得到流体的各个物理量。
三、并行算法在计算流体力学中的应用1. 并行计算的需求计算流体力学涉及大规模的计算,需要处理大量的数据和复杂的计算操作。
传统的串行计算方式往往难以满足计算需求,因此并行算法成为加速CFD计算的重要手段。
2. 并行算法分类并行算法根据不同的并行计算方式,可以分为共享内存并行和分布式内存并行两大类。
共享内存并行算法使用多个处理器共享同一块内存,通过线程间的数据共享和同步来实现并行计算;分布式内存并行算法则将计算任务分配到不同的处理器上,通过消息传递来实现并行计算。
3. 并行算法的优势并行算法在加速CFD计算中具有显著的优势。
首先,通过并行计算,可以将计算任务分配到多个处理器上,实现计算资源的充分利用。
其次,并行算法可以处理大规模的计算问题,提高计算效率和精度。
此外,并行算法还可以实现实时计算和交互式计算,提供更好的用户体验。
四、并行算法的挑战和发展方向1. 数据通信和负载均衡在并行计算过程中,处理器之间需要进行数据通信,这涉及到数据传输和同步操作。
数据通信的效率和负载均衡是并行算法面临的挑战之一,需要合理设计算法和优化通信过程。
第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1 计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。
计算流体力学(Computational Fluid Dynamics)课程代码:02410028学分:2学时:32 (其中:课堂教学学时:32实验学时:0 上机学时:0 课程实践学时:0 )先修课程:微积分、线性代数、物理、流体力学等适用专业:能源与动力工程等专业教材:计算流体力学及应用;中国人民总装备部军事训练教材编辑工作委员会;国防工业出版社;2003年一、课程性质与课程目标(一)课程性质(需说明课程对人才培养方面的贡献)本课程是能源与动力工程(流体机械及工程)专业的一门主要的专业基础课。
本课程主要介绍流体力学问题的计算机数值计算方法,包括计算流体力学的数学基础、控制方程、离散化方法、有限差分法、单元与插值函数、流体力学典型问题的数值分析等。
使学生掌握计算流体力学的基础理论、方法和技能,为今后从事本专业的科学研究工作和工程技术工作打下基础。
(二)课程目标(根据课程特点和对毕业要求的贡献,确定课程目标。
应包括知识目标和能力目标。
)总目标在学习完本课程后,学生应该应掌握以下技能:(1)熟悉流动现象的微分方程和近似求解的数值方法,并且能设计数值解决方案,使用和开发流动模拟软件对工程和科学的领域中的重要流动现象进行模拟;(二)能够通过建立正确合理的数学模型,选择有效的计算方法进行流动模拟;(三)利用现有的最佳模型进行数值模拟,对模拟结果进行合理分析评价,为后续专业课的学习和将来从事科学研究和专业技术工作打下良好基础。
阶段目标.理解对于可压,不可压,粘性及无粘流体流动的基本流体力学控制方程的数学描述及数学特性。
1.对数值分析中稳定性,逼近和收敛性和代数方程组的数值解的概念和基本原则有深刻的理解。
2. 了解对于可压及不可压流体流动的数值模拟求解方法及在工程实践基础研究中的应用。
3.理解数值模拟的原理和技术,并且明白模拟的局限性。
4.通过商用CFD软件包(ANSYS或COMSOL),解决实际工程问题。
二、课程内容与教学要求(按章撰写)第一章计算流体力学的基本原理(2学时)(一)课程内容1.什么是计算流体力学.计算流体力学的工作步骤2.计算流体力学解决的问题.计算流体力学的应用领域(二)教学要求. 了解计算流体力学的相关基础知识。
流体力学中的计算流体力学方法在流体力学领域,计算流体力学(Computational Fluid Dynamics,简称CFD)是一种重要的数值模拟方法。
它结合了数学、物理和计算机科学,用于分析和预测气体和液体在流动过程中的行为。
本文将介绍流体力学中常用的计算流体力学方法,包括数值离散化、网格生成和求解算法。
1. 数值离散化数值离散化是计算流体力学的基础,其目的是将连续域中的流动问题转化为离散化的数学模型。
最常用的数值离散化方法包括有限差分法(Finite Difference Method,简称FDM)、有限体积法(Finite Volume Method,简称FVM)和有限元法(Finite Element Method,简称FEM)。
在有限差分法中,流动域被划分为离散的网格单元,运用差分近似替代微分操作,对控制方程进行离散化求解。
有限体积法则将流动域划分为有限体积,对控制方程进行积分求解。
而有限元法则将流动域划分为有限元,通过建立形函数和权函数的关系对控制方程进行近似求解。
2. 网格生成网格生成是计算流体力学中至关重要的一步,它决定了数值模拟的精度和计算效率。
网格生成的目标是将流动域离散成适合数值计算的网格单元。
常见的网格类型包括结构化网格和非结构化网格。
在结构化网格中,每个网格单元的几何形状和大小都相同,可以使用简单的坐标表示。
结构化网格具有计算精度高、数值稳定性好的优点,适用于简单流动情况。
非结构化网格则具有处理复杂几何形状的能力,适用于复杂流动情况。
3. 求解算法求解算法用于计算流体力学中的控制方程,其中包括连续方程和动量方程。
常用的求解算法包括显式方法和隐式方法,以及基于时间步进的迭代求解方法。
在显式方法中,时间步长通过稳定性条件限制,将未知量的时间导数用已知量的空间导数逼近。
隐式方法则以更大的时间步长进行迭代,通过求解非线性代数方程组来得到近似解。
基于时间步进的迭代求解方法则将隐式方法与迭代求解方法相结合,提高了求解的效率和稳定性。
计算流体力学常用数值方法简介李志印 熊小辉 吴家鸣(华南理工大学交通学院)关键词 计算流体力学 数值计算一 前 言任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。
利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。
计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。
一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。
随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。
经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。
现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。
此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。
随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。
目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。
计算流体力学中常用的控制方程离散化方法概述计算流体力学是现代流体力学的一种数值计算方法,最早出现是在20世纪50年代。
它主要应用于流体的流动、传热、化学反应、物质转移等方面的数值计算,成为了工程和科学界不可或缺的工具。
计算流体力学中的控制方程离散化方法则是其中重要的一部分,本文将就此进行概述。
一、控制方程离散化在计算流体力学中,控制方程是解决问题的基础,主要包括连续性方程、动量方程和能量方程等。
这些方程通过离散化方法进行处理,变成可以计算机进行处理的数学模型。
离散化的基本思想是将时间和空间分成有限个点来处理,利用简单的数值运算方法计算每个时间步长中的各个物理量。
常用的离散化方法包括有限差分方法、有限体积方法、有限元方法等。
二、有限差分方法有限差分方法是计算流体力学中常用的一种离散化方法,它是一种基于差分的数值方法,利用有限差分近似代替微分方程,求解微分方程数值解的方法。
它的主要思想是将一个连续的空间域区间划分为一些点,对连续波动函数的任意一阶导数代替为该点处差分的近似,从而把原问题转化为一个差分方程组,通过解这个方程组来求解微分方程的近似解。
三、有限体积方法有限体积方法是一种对控制方程离散化方法,它是一种基于控制方程积分形式的方法。
该方法基于微积分的思想,通过对空间区域划分成有限的体积单元来进行数值计算。
在有限体积方法中,我们通常选择一个体积单元V,然后从该体积单元周围的表面积进行积分,得到控制方程的离散形式。
四、有限元方法有限元方法是计算流体力学中另一种常用的离散化方法,它能够适应各种复杂流动情况。
该方法可以将连续问题变为离散问题,进而离散化求解成一些小片断组成的离散问题,并且可以在不同的片段上使用不同阶次的多项式进行近似,从而得到更为准确的结果。
在有限元方法中,我们通常需要先对区域进行剖分,然后利用插值法来构造近似解。
五、总结综合来说,计算流体力学中常用的控制方程离散化方法有有限差分方法、有限体积方法和有限元方法三种。