几何类探索题——变中寻不变
- 格式:doc
- 大小:80.50 KB
- 文档页数:3
一、教学背景本节课教学内容是人教版数学六年级上册《分数除法》单元中的例7,也是教材新加入的内容。
人教社教师教学用书中指出,本例采用的素材是“工程问题”,但并不是要求学生解决形形色色的“工程问题”,而是要借此让学生经历自主探究、解决问题的过程,掌握用假设、验证等方法解决问题的基本策略,让学生体会模型思想。
《义务教育数学课程标准(2011年版)》(《以下简称《标准》)中关于数学思考第二学段的目标中提到,在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理地思考,能比较清楚地表达自己的思考过程与结果。
会独立思考,体会一些数学的基本思想。
把解决问题例7安排在分数解决问题这个部分,不是单纯地教学工程问题的数量关系,而是用这个素材让学生经历数学思考的过程,学习数学思考的方法———假设法,培养学生归纳概括、抽象推理的能力。
然而在本节课的教学中,我们常常会发现,无论是假设具体数据还是抽象的单位“1”为路长,这种外在的形式学生容易模仿,真正的难点是对课中的核心问题“为什么假设的总路长不同,最后算出来的总天数却不变”的理解。
《标准》中指出:几何直观主要是指利用图形描述和分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要的作用。
因此,本节课的教学中,教师利用数形结合的思想,以线段图为载体、松紧带作为学具,向学生直观展示“两队每天修的长度占总长度的几分之几是不变的”这一抽象的结论。
二、教学设计1.让学生理解并掌握把工作总量看作单位“1”的分数解决问题的基本特点、解题思路和解题方法。
2.经历用假设法解决问题的探索过程,理解和掌握假设策略,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3.激发学生的学习兴趣,感受抽象和模型思想。
能利用假设法解决把工作总量当作单位“1”的实际问题。
理解假设不同数据得出相同结论的数学本质。
专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为30?若存在,确定点E 的位置;若不存在,请说明理由.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为15,若存在,求出PQ OB 的值;若不存在,说明理由.3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,2PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值. 6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.14. 【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.15.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由; (2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值.专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.2.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)33,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒, 过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED , EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB , 即DP 为点D 到平面ABFE 的距离,且3DP x =, 设DE =x ,则AE =BF =4﹣x , 由(1)知GM ∥DF ,G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦()24333(4)x x x x -+=-⋅=,当且仅当4﹣x =x 时等号成立,此时x =DE =2. 故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2. 【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由. 【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【解析】(1)证明:连接,,=,因为ABCD是平行四边形,则为中点,连接,又为中点,面,面平面.(2)解(Ⅰ)当点在线段中点时,有平面取中点,连接,又,又,,平面,又是正三角形,平面(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以 解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为23.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 30E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点. 【解析】(1)证明:因为E 、F 分别是SA 、SB 的中点, 所以EF AB ∥,在矩形ABCD 中,AB CD ∥, 所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点, 所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意. 在等边三角形SAD 中,P 为AD 的中点, 于是SP AD ⊥,又平面SAD ⊥平面ABCD , 平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高, 设AD m =,则SP =,ABCD S m =矩形,所以1133S ABCD ABDD V S SP m -=⋅==矩形 所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()()01AE AS λλλλ==-=-≤≤,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB =,设平面PEB 的一个法向量为()1,,n x y z =,有()1110n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩, 令3x λ=,则()13,,1n λλ=-,易知平面SAD 的一个法向量()20,1,0n =,所以12122123cos ,721n n n n n n λλλ-⋅==-+30=, 因为01λ≤≤, 所以13λ=, 所以存在点E ,位于AS 的靠近A 点的三等分点.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【答案】(1)见解析;(2)1CE =.【解析】(1)取1AB 中点G ,连结EG FG 、,则FG ∥1BB 且112FG BB =. 因为当E 为1CC中点时,CE ∥1BB 且112CE BB =, 所以FG ∥CE 且FG = CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1CF AEB ⊄平面,1EG AEB ⊂平面, 所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()01CE λλ=≤≤.以F 为原点,向量1FB FC AA 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系. 则()3,0,0A -,()13,0,2B ,()0,1,E λ,平面ABC 的法向量()0,0,1m =,平面1AEB 的法向量()333,3n λ=--,,()23cos 23991m n m n m nλ⋅===++-,,解得1λ=,所以存在满足条件的点E ,此时1CE =.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 【答案】(1)见解析(2)36【解析】 (Ⅰ)取PD 的中点M ,连接AM ,M Q ,Q PC点是的中点,∴M Q∥CD,1.2MQ CD=又AB∥CD,1,2AB CD QM=则∥AB,QM=AB,则四边形ABQM是平行四边形.BQ∴∥AM.又AM⊂平面PAD,BQ⊄平面PAD,BQ∴∥平面PAD.(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为,,x y z轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).令()()()000000,,,,,1,0,2,1.Q x y z PQ x y z PC=-=-则()()000,,,10,2,1,PQ PC x y zλλ=∴-=-()0,2,1.Qλλ∴-又易证BC⊥平面PBD,()1,1,0.n PBD∴=-是平面的一个法向量设平面QBD的法向量为(),,,m x y z=(),0,0,2210,.0,1x yx ym DBy z z ym DQλλλλ=-⎧+=⎧⎧⋅=⎪⎨⎨⎨+-==⋅=⎩⎩⎪-⎩则有即解得令21,1,1,.1y mλλ⎛⎫==-⎪-⎝⎭则60Q BD P 二面角为--,21cos,,22221m n m n m nλλ⋅∴===⎛⎫⋅+ ⎪-⎝⎭解得3 6.λ=±Q 在棱PC 上,01,3 6.λλ<<∴=-2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB 的值;若不存在,说明理由.【答案】(1)证明见解析(215【解析】(1)证明:连接BE ,在等腰梯形中ABCD ,2AD AB BC ===,4CD =,E 为中点, ∴四边形ABED 为菱形,∴BD AE ⊥,∴OB AE ⊥,OD AE ⊥,即OB AE ⊥,OP AE ⊥,且OBOP O =,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB .又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE . (2)由(1)可知四边形ABED 为菱形,∴2AD DE ==, 在等腰梯形ABCD 中2AE BC ==,∴PAE △正三角形, ∴3OP =3OB =∵6PB =,∴222OP OB PB +=,∴OP OB ⊥.由(1)可知OP AE ⊥,OB AE ⊥,以O 为原点,OE ,OB ,OP 分别为x 轴,y 轴,为z 轴,建立空间直角坐标系O xyz -, 由题意得,各点坐标为()0,0,3P ,()1,0,0A -,()0,3,0B,()2,3,0C ,()1,0,0E ,∴(3,3PB =-,(3,3PC =-,()2,0,0AE =,设()01PQ PB λλ=<<,()1,333AQ AP PQ AP PB λλλ=+=+=, 设平面AEQ 的一个法向量为(),,n x y z =,则00n AE n AQ ⎧⋅=⎨⋅=⎩,即()203330x x y λλ=⎧⎪⎨++=⎪⎩,取0x =,1y =,得1z λλ=-,∴0,1,1n λλ⎛⎫= ⎪-⎝⎭,设直线PC 与平面AEQ 所成角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦, 则15sin cos ,5PC nPC n PC nθ⋅===,即2331511011λλλλ+-=⎛⎫+ ⎪-⎝⎭化简得:24410λλ-+=,解得12λ=, ∴存在点Q 为PB 的中点时,使直线PC 与平面AEQ 所成角的正弦值为155. 3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由; (Ⅱ)当二面角D FC B --的余弦值为2时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒ 【解析】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由m FCm CB⎧⋅=⎨⋅=⎩得2030y azx y-=⎧⎪⎨-=⎪⎩,令1x=,则3y=,23z=,所以取231,3,m⎛⎫= ⎪⎪⎝⎭,显然可取平面DFC的法向量()1,0,0n=,由题意:22cos,41213m na==++,所以3a=.由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以PBD∠为直线PB与平面ABCD所成的角,易知在Rt PBD∆中,tan3PDPBD aBD∠===,从而60PBD∠=︒,所以直线PB与平面ABCD所成的角为60︒.4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD-中,底面四边形ABCD为正方形,已知PA⊥平面ABCD,2AB=,2PA=.(1)证明:BD PC⊥;(2)求PC与平面PBD所成角的正弦值;(3)在棱PC上是否存在一点E,使得平面BDE⊥平面BDP?若存在,求PEPC的值并证明,若不存在,说明理由.【答案】(1)证明见解析;(210;(3)存在,23PEPC=,理由见解析【解析】(1)如图,连接AC交BD于点O,由于PA⊥平面ABCD,BD⊂平面ABCD所以PA BD⊥,即BD PA⊥由于BD PA ⊥,BD AC ⊥,PA AC A =,所以BD ⊥平面PAC又因为PC ⊂平面PAC ,因此BD PC ⊥ (2)由于PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥又AB AD ⊥,所以PA ,AB ,AD 两两垂直, 因比,如图建立空间直角坐标系A xyz -(2,0,0)B ,(2,2,0)C ,(0,2,0)D,P因此(2,2,PC =,(2,0,PB =,(0,2,PD =设平面PBD 的法向量为(,,)m x y z =,则00m PB m PD ⎧⋅=⎨⋅=⎩即2020x y ⎧=⎪⎨=⎪⎩ 取1x =,1y =,z =,则(1,1,2)m =设直线PC 与平面PBD 所成角为θ,10sin |cos ,|=||10||||m PC m PC m PC θ⋅=<>=⋅(3)存在,设[0,1]PEPCλ=∈,则(2,2))E λλλ- 则(22,2))BE λλλ=--,(2,2,0)BD =-设平面BDE 的法向量为(,,)n a b c =,则0n BE n BD ⎧⋅=⎨⋅=⎩,即2(1)2(1)0220a b a bλλλ⎧-+-=⎪⎨-+=⎪⎩,即1a λ=-,1b λ=-,2)c λ=-则(1,12))n λλλ=---,若平面BDE ⊥平面BDP ,则0m n ⋅=即1(1)1(1)2)0λλλ⋅-+⋅-+-=,则2[0,1]3λ=∈ 因此在棱PC 上存在点E ,使得平面BDE ⊥平面BDP ,23PE PC =5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.【解析】(1)∵在底面中,,且∴,∴又∵,,平面,平面∴平面又∵平面∴∵,∴又∵,,平面,平面∴平面(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值. 【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以. 又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为. (ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =, 2AD =,又22AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥. 因为四边形BDMN 为矩形,所以BD DM ⊥. 由BD AD ⊥, BD DM ⊥, DM AD D ⋂=, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点, DA 为x 轴, DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B , ()1,0,1M , 设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ. 设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-. 平面ADM 的一个法向量为()20,1,0n =. 二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB 共线同向的向量, OD , OP 方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥ ∴AP BC ⊥(2)假设M 点存在,设AM AP λ=, (),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{22 3x y z λλ=+==,∴()0,22,3M λλ-, ∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z =,平面APC 的法向量为()2222,,n x y z = 由110{n BM n BC ⋅=⋅=得()111122330{40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭, 由220{n AC n AP ⋅=⋅=得2222230{230x y y z -+=+=,令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅=,得326403λλ--⋅=, 解得613λ=,∴613AM =故线段AP 上是否存在一点M ,满足题意, AM 的长为613. 12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值; (2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置. 【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,,设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.。
几何解题研究的方法与思考——以一道中考试题为例胡坚波收稿日期:2020-09-23作者简介:胡坚波(1981—),男,中学一级教师,主要从事初中数学课堂教学研究.摘要:解题教学是必不可少的一种课堂教学形式,教师解题研究的能力直接影响到学生对问题理解的深度.教师只有掌握了解题研究的一般方法,才能在课堂中引导学生抓住问题的本质,从而优化解法,并进一步带领学生发现问题、提出问题、解决问题,进而得到一般性的结论,最终提高学生的解题能力、培养学生的数学学科核心素养.文章以2020年中考浙江杭州卷第14题的研究为例,谈谈几何解题研究的一般方法.关键词:中考试题;解题研究;一般方法中考试题的命制往往有其意义,一道看似不起眼的试题,其中很可能蕴含着丰富的内容.如果继续探究下去,或许就能发现试题背后隐藏的深意,从而体现解题的育人价值.本文以2020年中考浙江杭州卷第14题为例,谈谈应该怎样进行几何解题的研究.题目(2020年浙江·杭州卷)如图1,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC.若sin ∠BAC =13,则tan ∠BOC 的值为.COAB图1作为填空题的第4道题,试题本身不难,主要考查了三角函数的相关知识.不妨设BC =1,则AC =3.解得AB =22,OB =2.则tan ∠BOC作为填空题,此题的求解到这里就结束了,但是作为解题研究,现在才刚刚开始.一、获得研究对象研究图形要抓住图形的本质,为了更容易抓住本质,几何研究要做减法,即去掉非关键因素.此题中,可以隐去圆,那么题目条件等价于“如图2,∠ABM =90°,点C 在射线BM 上,O 是AB 的中点”.观察图形的结构,不难发现,若点C 的位置确定了,则整个图形的形状就随之确定,即∠BOC ,∠BAC ,∠ACO ,∠BCO 的度数也随之确定.原试题就是在确定的条件下进行的定量研究,而研究图形变化过程中的规律性也是几何研究的常见问题.在图2中,当点C 的位置变化时,∠BOC ,∠BAC ,∠ACO ,∠BCO 的大小也随之改变.当点C 从点B 向射线BM 的方向移动时,容易发现∠BOC 和∠BAC 的度数变大,∠OCB 的度数变小,但无法很快确定∠ACO 的变化情况.接下来,我们进一步探究∠ACO 的变化情况.CO ABM 图2··56二、借助技术获得初步猜想几何问题的研究一般要经历画图、测量、计算、猜想、证明的过程.几何画板软件为我们画图、测量、计算提供了很好的辅助.利用几何画板软件对复杂的问题进行初步研究、获得猜想,是常见的研究起点.利用几何画板软件,发现当点C 从点B 向射线BM 的方向移动时,∠ACO 的度数先变大后变小,且∠ACO 取到的最大值约为19.47°(如图3).进一步计算,发现此时sin ∠ACO ≈0.33.∠OCA =19.47°∠CAO =35.58°sin∠OCA =0.33M ABCO图3猜想:如图3,当∠ABM =90°,点O 是AB 的中点时,射线BM 上存在点C ,使得∠ACO 取到最大值,此时sin ∠ACO =13.三、从“数”的角度验证猜想通过利用几何画板软件进行探究,发现点C 的位置决定了∠ACO 的大小,而点C 的位置可以用BC 的长度来刻画,所以继续探究的思路是用BC 的长度表示sin ∠ACO.为了研究方便,不妨设AB =2,BC =x ,根据勾股定理,得OC 2=1+x 2,AC 2=4+x 2.因为S △ACO =12AC ·OC ·sin ∠ACO =12AO ·BC ,所以sin ∠ACO =x x 4+5x 2+4=14因为x 2+4x 2≥4,所以当x 2=4x 2,即x =2时,x 2+4x 2的最小值为4.所以得到sin ∠ACO ≤13,即当BC =2时,sin ∠ACO 取最大值13,猜想得证.四、从“形”的角度验证猜想前面我们从“数”的角度验证了猜想,接下来我们从“形”的角度来思考.抓住变化过程中不变的关系是研究几何问题的常用方法.进一步观察图形,我们发现当点C 的位置发生改变时,∠ACO 所对的边AO 的长度始终没有发生变化.即角度在变,角度所对的边不变.这让我们联想到了圆中同弦所对的角.构造过A ,C ,O 三点的⊙D.如图4,若⊙D 与射线BM 相交,设另一个交点为点E.在线段CE 上任意取一点F (除点C ,E 外),连接AF ,OF ,根据圆内角大于同弧所对的圆周角,可得∠AFO >∠ACO.故可知此时∠ACO 的度数并没有取得最大值.图4图5如图5,若⊙D 与射线BM 相切于点C ,在射线BM 上任意取一点G (除点C 外),连接AG ,OG ,根据圆外角小于同弧所对的圆周角,可得∠AGO <∠ACO.故此时∠ACO 取到最大值,于是得到第一个有价值的结论.结论1:∠ACO 取到最大值的充要条件是过A ,C ,O 三点的⊙D 与射线BM 相切.接下来,求此时∠ACO 的正弦值及BC 的长.可以沿用前面的解题思路,分别求出线段AO ,OC ,AC ,BC 的长度,再利用△ACO 的面积求解.解法1:如图6,连接DC ,AD ,作DH ⊥AO.H O ABCDM图6不妨设AO =BO =1,则AH =OH =12,BH =32.因为⊙D 与射线BM 相切于点C ,所以DC ⊥BC.因为∠B =90°.··57所以四边形BCDH为矩形.所以AD=DC=BH=32.在Rt△ADH中,由勾股定理,得DH=2.所以BC=DH=2.由勾股定理,得OC=3,AC=6.由S△ACO=12AC·OC·sin∠ACO=12AO·BC,代入解得sin∠ACO=13.显然,求解过程还是有些复杂,不妨进一步思考,此图形还有什么特殊性可以应用?从圆的视角看,⊙D与射线BM相切,∠ACO为圆周角,解法豁然开朗.解法2:利用圆周角定理,可以转化到圆心角进行求解,可得∠ADH=∠ACO.所以sin∠ACO=sin∠ADH=AHAD=13.利用圆幂定理,可得BC2=BO·BA.解得BC=2.解法2抓住了问题的本质,解法也更优化、更简洁.“数”和“形”两种思考方法都能验证猜想,可见这也是我们解决几何问题的一般思路.对比两种思路,从“数”的角度思考,往往需要设未知变量,再利用勾股定理、相似、面积关系、三角函数等,列出未知变量与所求量之间的关系,然后用代数的方法求解;从“形”的角度思考,往往需要根据图形的结构,抓住图形中不变的关系,构建出几何模型,再根据图形性质求解.用“数”的方法容易想到,但计算较复杂;用“形”的方法比较直观,计算也相对简单,但是要弄清楚几何模型结构有一定的难度,需要的知识综合度高,也需要一定的逻辑推理.数形结合的思想方法在教学中有其育人价值,在解题教学中我们应让学生经历基本的活动经验,这样才能培养学生必需的基本数学思想.五、追本溯源其实,本问题在数学史中已经存在,称为“米勒问题”.德国数学家米勒于1471年提出“塑像问题”:有一个高a米的塑像立在一个高b米的底座上,一个人朝它走去(人的高度忽略不计),问此人应站在离塑像底座多远的地方,才能使塑像看上去最大(即视角最大)?根据题意画出图形,如图7,AO为雕像,BO为底座,点C表示人,求∠ACO最大时,BC的长.ABO图7这与我们研究的问题非常相似,只是点O的位置不再是中点,这为我们进一步研究问题提供了思路,即可以改变图形的条件,使之更具一般性,进而获得一般性的结论,这是我们进一步研究几何问题的方向.六、改变条件进一步探究1.改变点O的位置受“米勒问题”的启发,我们可以改变点O的位置,使之一般化,为了研究的连贯性,不妨设AB=2,AO=n(0<n<2),这样点O在线段AB上就具有一般性了,本质上与“米勒问题”是等价的.因为结论1与点O在线段AB上的位置无关,所以结论1仍成立.如图8,当⊙D与射线BM相切于点C时,∠ACO取得最大值.此时,易得AH=n2,DC=BH=2-n2.所以AD=DC= 2-n2,sin∠ACO=sin∠ADH=AH AD=n4-n.根据圆幂定理,得BC=BO·BA=4-2n.显然当n=1,即点O是AB的中点时,sin∠ACO的最大值为13,此时BC=2.但是这只是其中的一种特殊情况,于是得到第二个有价值的结论.HOA BCDM图8··58结论2:如图8,设∠ABM =90°,AB =2,点O 是线段AB 上一点,AO =n (0<n <2),则在射线BM 上存在点C ,使得∠ACO 取到最大值,且此时sin∠ACO =n 4-n,BC =4-2n.2.改变∠ABM 的大小此题条件里动点C 所在的射线BM 与AB 垂直,显然条件中的位置比较特殊.若从这个角度改变条件,当射线BM 与AB 不垂直,即∠ABM ≠90°时,相当于“米勒问题”中的雕像及底座与地面不垂直时,那么结论2是否仍成立?因为∠ABM ≠90°,所以四边形DCBH 不再是矩形,即DC ≠BH.求半径的解法相应会有所改变,猜想sin ∠ACO 的值与∠ABM 的度数有关.因为结论1与∠ABM 的大小无关,所以结论1仍然成立.∠ACO 取到最大值时,过A ,C ,O 三点的⊙D 与射线BM 相切,故圆幂定理仍然适用,所以BC =BO ·BA =4-2n.所以可得第三个有意义的结论.结论3:设∠ABM =α(0°<α<180°),AB =2,点O 是线段AB 上一点,AO =n (0<n <2),则射线BM 上存在点C ,使得∠ACO 取到最大值,且此时BC =4-2n ,sin ∠ACO 的值与∠ABM 的度数无关.接下来,求sin ∠ACO.因为∠ABM 有锐角和钝角两种情况,所以要分两种情形分类进行研究.情形1:如图9,当0°<α<90°时,⊙D 与射线BM相切于点C.根据前面的猜想sin ∠ACO 会与α有关,为了将α用上,所以考虑作垂线构造直角三角形.作DH ⊥AO 于点H ,BE ⊥AB 交DC 的延长线于点E ,作DF ⊥BE 于点F.M O AB CD EF GH图9易证∠CBE =∠EDF =90°-α,DF =BH =2-n 2.所以DE =DF cos ()90°-α=4-n 2sin α,CE =BC ·tan ()90°-α=4-2n ·tan ()90°-α,AD =DC =DE -CE =4-n 2sin α-4-2n ·tan ()90°-αsin∠ACO =sin∠ADH =AH AD =n sin α4-n -24-2n cos α.情形2:如图10,当90°<α<180°时,⊙D 与射线BM 相切于点C.同样作DH ⊥AO 于点H ,作BE ⊥AB 交DC 于点E ,作DF ⊥BE 交BE 的延长线于点F.H A B CDOEF M图10易证∠CBE =∠EDF =α-90°,DF =BH =2-n 2.所以DE =DF cos ()α-90°=4-n 2sin α,CE =BC ·tan ()α-90°=4-2n ·tan ()α-90°,AD =DC =DE +CE =4-n 2sin α+4-2n ·tan()α-90°sin∠ACO =sin∠ADH =AH AD 发现两种情形最后结果的表达式是一致的,而把α=90°代入,得sin∠ACO =n 4-n.与之前的计算结果一致,可见角度在变,结果的表达式不变,得到了变化过程中不变关系的本质,于是得到了问题的一般性结论.结论4:设∠ABM =α(0°<α<180°),AB =2,点O 是线段AB 上一点,AO =n (0<n <2),则射线BM 上存在点C ,使得∠ACO 取到最大值,且此时BC =4-2n ,sin∠ACO =3.当射线BM 改为直线BM 时,相当于“米勒问题”中人可以站到雕像的背面进行观察.如图11,当点C 在直线BM 上移动时,由前面的研究可知,当点C 在射线BM 1和BM 2上时,分别有一个点C 1和点C 2,使得∠AC 1O 和∠AC 2O 在各自的射线上取到最大值,那么∠AC 1O 和∠AC 2O 哪个更大一些呢?显然,当BM ⊥AB 时,BC 1=··59BC 2,由对称性可知∠AC 1O =∠AC 2O.当BM 与AB 不垂直时,不妨设∠ABC 1=α(0°<α<90°),则∠ABC 2=180°-α.根据结论4,可以得到sin ∠AC 1O =sin ∠AC 2O =因为0<cos α<1,所以sin ∠AC 1O >sin ∠AC 2O.所以∠AC 1O >∠AC 2O.得到结论5.M 2OAB MC 1C 2M 1图11结论5:如图11,当点C 在直线BM 上时,设AB =2,点O 是线段AB 上一点,AO =n (0<n <2),如果直线BM 与线段AB 所成的较小的夹角为∠ABM 1(0°<∠ABM 1≤90°),则点C 一定在射线BM 1上,使得∠ACO 取到最大值,且此时BC =4-2n ,sin∠ACO =七、解后思考回顾整个研究过程,通过图形的变化将一个确定的图形变为不确定的图形,从而获得研究对象.而对于变化中规律的研究,入手比较难,这时信息技术为化解难点提供了帮助.借助几何画板软件,不仅能方便地展示图形变化的过程,而且可以通过教师有意识地控制帮助学生观察影响变化的要素及其关系,从而获得初步的猜想.接着,从“数”和“形”两个角度验证了该猜想,进一步体会到几何问题在“数”和“形”上的统一,体会到数形结合思想在解题中的重要作用.在引出“米勒问题”后,通过进一步改变条件——点的位置变化、角度的大小变化、射线变为直线等,发现了在条件变化过程中不变的结论.通过这样的解题教学研究可以让学生进一步体会到研究几何问题的一般方法——从简单到复杂,从特殊到一般.整个研究过程,具备学习素材的真实性,问题的开放性,学习过程的探索性,学习手段的操作性,探索过程的动态化、可视化,学习体验的形象化、可表达,学习结果的创造性.这些都有利于在今后的学习中,提高学生发现问题和解决问题的能力,进而实现几何解题教学的育人价值.参考文献:[1]王红权.“高考真题分析”习题课的教学实践与思考[J ].中小学数学(高中版),2015(4):20-23.[2]章建跃.研究三角形的数学思维方式[J ].数学通报,2019,58(4):1-10.··60。
动点问题解题技巧以运动的观点探究几何图形部分规律的问题,称之为动态几何问题。
动态几何问题充分体现了数学中的“变”与“不变”的和谐统一,其特点是图形中的某些元素(点、线段、角等)或某部分几何图形按一定的规律运动变化,从而又引起了其它一些元素的数量、位置关系、图形重叠部分的面积或某部分图形等发生变化,但是图形的一些元素数量和关系在运动变化的过程中却互相依存,具有一定的规律可寻。
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目,注重对几何图形运动变化能力的考查。
解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等。
从数学思想的层面上讲需要具备以下思想:分类讨论思想、数形结合思想、转化思想、函数思想、方程思想。
常见的动点问题一、数轴上的动点问题数轴上的动点问题离不开数轴上两点之间的距离。
为了便于对这类问题的分析,先明确以下3个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
㊀㊀解题技巧与方法㊀㊀160数学学习与研究㊀2021 4初中几何动点问题解题策略初中几何动点问题解题策略Һ徐晓丹㊀(北京师范大学长春附属学校,吉林㊀长春㊀130000)㊀㊀ʌ摘要ɔ几何动点问题是初中数学学习的难点,这一类问题通常需要学生画出运动过程中某一时刻或某段时间上的图形,比较抽象,是学生难以把握的问题之一.这类问题的解决策略是将动态问题转化为静态问题,寻找问题中的不变量,把抽象问题具体化,教师需引导学生探索变化后的图形特征.解决几何动点问题的关键在于确定动点运动过程中的图形,用运动的观点看问题,定格到静止状态解决问题,动静结合.ʌ关键词ɔ几何动点;数学思想方法;界点;转化 几何动点问题 是指题设图形中存在一个或多个动点,通过点带动图形的运动,从而探究图形的有关性质和图形之间的数量关系㊁位置关系等.这类问题把观察㊁操作㊁探究㊁计算融合在一起,蕴含着函数㊁方程㊁分类㊁转化㊁数形结合等数学思想方法.中考中对这类问题的考查,可以很好地锻炼学生的探究能力,增强学生的创新意识.一㊁几何动点问题常见的考查方式及解决方法1.求动点运动过程中随时间变化的线段长.解决这类问题常利用勾股定理㊁面积桥㊁三角函数或相似.2.当动点落在某条边上或两点重合时,求动点运动时间.此时可以利用新构成的特殊几何图形,如:直角三角形㊁等腰三角形㊁平行四边形等,找到特殊几何图形各边之间的联系,从而求解.3.求多边形面积或重叠部分面积或周长的函数关系式.解决的关键在于找到界点正确分类,直接利用图形面积公式或图形间作差㊁作和表示函数关系式.4.求动点在特殊位置上的运动时间,如某个动点落在三角形的角平分线上,三角形一边的垂直平分线上,三角形的一条中线上,等等.或者是线段把某多边形面积分成特定比时的运动时间.这类问题的解决通常要利用三角函数或构造相似.学生解决这类问题时觉得很困难,这就要用到转化的思想方法,把特殊位置时的线段关系找到,转化成线段的比来列方程求解.5.求点的运动轨迹长度或线段运动过程中扫过的图形面积.解决的方法是找到运动开始和终止时的图形,再结合中间的运动趋势来判断轨迹或扫过图形的形状,最后计算.常见的轨迹有以下几种:(1)动点到定直线距离保持不变,轨迹是一条直线;(2)动点到定点的距离保持不变,轨迹是圆弧;(3)动点到定点铅直距离与水平距离的比保持不变,轨迹是一条直线.下面以2020年长春市中考数学试题第23题为例来说明如何解决几何动点轨迹问题,此题分值为10分.例㊀(2020年长春市中考数学试题第23题)如图1,在әABC中,øABC=90ʎ,AB=4,BC=3.点P从点A出发,沿折线AB-BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动.点P到达点C时,点P,D同时停止运动.当点P不与点A,C重合时,作点P关于直线AC的对称点Q,连接PQ,交AC于点E,连接DP,DQ.设点P运动的时间为t秒.(1)当点P与点B重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当әPDQ为锐角三角形时,求t的取值范围.(4)如图2,取PD的中点M,连接QM,当直线QM与әABC的一条直角边平行时,直接写出t的值.图1㊀㊀㊀㊀图2试题整体分析㊀这道几何动点问题的图形背景是边长为3,4,5的直角三角形,属于双动点问题,点P的运动路径是折线段AB-BC,点D的运动路径是AC上的部分线段.由 两点同时出发,当点P到达点C时,点P,D同时停止运动 可知运动终止时间为75秒.由 当点P不与点A,C重合时 可知运动时间不能取0和75.试题前面两问比较基础,但第(2)问由于点P改变路径产生了分类讨论的需要.试题最后两问引入了图形变换 轴对称,增加了思维含量.第(3)问要将 锐角三角形 转化成 直角三角形 寻找界点.第(4)问 当直线QM与әABC的一条直角边平行时 ,由平行可构造相似,利用相似三角形的对应边成比例转化成线段的比求解.下面是本题的正确解答过程:解㊀(1)当点P与点B重合时,AP=AB,5t=4,解得t=45.(分析:两点重合问题,可以转化成两条线段相等的问题解决.)(2)当0<tɤ45时,CE=5-4t;当45<t<75时,CE=35PC=-3t+215.(如图3). All Rights Reserved.㊀㊀㊀解题技巧与方法161㊀数学学习与研究㊀20214图3(分析:用含变量t的式子表示线段长,需要用到分类的数学思想.当动点的运动路径发生变化或者点与点㊁点与线之间的相对位置发生变化时,都需要分类讨论.表示线段长时通常用三角函数.)(3)当әPDQ是等腰直角三角形时,PE=DE,当P在线段AB上时,3t=5-6t,ʑt=59.(如图4)图4㊀㊀㊀㊀㊀图5当P在线段BC上时,285-4t=5t-215,ʑt=4945.(如图5)ȵәPDQ是锐角三角形,ʑt的取值范围为0<t<59或4945<t<75.(分析:考查锐角三角形㊁钝角三角形的问题都可以转化为直角三角形的问题,这是因为直角是锐角和钝角的临界状态.又根据轴对称可知әPDQ是等腰三角形,所以能判断出әPDQ是等腰直角三角形,再根据直角三角形斜边上的中线等于斜边的一半,转化成两条线段相等的问题.)(3)t的值为518或65.思路㊀当QM与AB平行时(如图6),AD=4AE,ʑ5-2t=4ˑ4t,ʑt=518;图6㊀㊀㊀㊀图7当QM与BC平行时(如图7),CD=4CE,ʑ2t=4ˑ35(7-5t),ʑt=65.(分析:由平行的条件容易得到全等和相似的结论,从而得到线段的比例关系,列方程时通常要选择运动路径上的线段关系,这里选择的都是线段AC上的线段的比.)二㊁解决几何动点问题时,学生存在的问题1.不重视画图.2.找不到界点,不能正确分类.3.忽视对界点是否包含的判断.4.求解析式过程中计算不准确.5.不知道转化或转化不彻底.6.易列出恒等式.三㊁针对学生存在的问题,教师在平时教学中可采用以下策略(一)教会学生画图.明确背景图形和运动图形,在操作时建议:①背景图形用中性笔画,运动图形用铅笔画,便于修正;②不同时刻的图形有干扰时,一种情况画一个图形;③分清主动点和从动点,并判断它们运动的趋势,必要时要知道从动点轨迹;④按照图形的位置关系和数量关系准确画图,落在某些特殊位置时,可逆序画图.(二)准确找到界点分类.①两点之间的相对位置有变化时,两点重合为界点.②动点运动路径有转折时,路径的交点为界点.③点穿过图形边界时,落在边界上的点为界点.④线段穿过图形边界时,线段重叠时为界点.(三)重视对界点是否包含的判断,每次遇到界点,都要单独拿出来判断并确认.①重新审题,看题干中是否有条件限制,如点P不与A,C重合或S>0等条件.②界点处图形是否变化.③明确关键词含义,如内部(不包含边界).(五)转化的应用.①所有面积的比都可以转化成线段的比.②特殊位置上的点产生相等线段.③构造相似得成比例线段,一般优先选择运动路径上的线段.(六)避免列恒等式.列方程时需要把握一个原则:同一个等量关系不能既用来表示线段长,又用来列方程.四㊁结束语总之,教师在引导学生解决动点问题时,要引导学生主动观察㊁分析㊁概括㊁推理,准确画图,从中找出隐含的不变量和变量关系,把握运动中的某些界点位置和特殊位置,进而发现问题的本质,并将其转化为熟悉的数学问题,使问题有效解决.ʌ参考文献ɔ[1]蒋亨强,初中数学动点路径长的问题解决策略[J].福建基础教育研究,2017(05):50-51.[2]吴晓峰,对初中数学教学中动点问题的思考,数学学习与研究,2017(08):141.. All Rights Reserved.。
小升初专题找规律——图形规律类由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻。
这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题。
探索发现有关图形所具有的规律性或不变性的问题,它往往给出了一组变化了的图形或条件,要求通过阅读、观察、分析、猜想来探索规律通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律例1.如图,由若干火柴棒摆成的正方形,第①图用了4根火柴,第②图用了7根火柴棒,第③图用了10根火柴棒,依次类推,第⑩图用根火柴棒,摆第n个图时,要用根火柴棒。
①②③例2.按如下规律摆放三角形:则第④堆三角形的个数为;第(n)堆三角形的个数为。
例3.如下图所示,小丽用棋子摆成三角形的图案,观察下面图案并填空:第1个第2个第3个第4个按照这样的方式摆下去,摆第5个三角形图案需要__________枚棋子;摆第n个三角形图案需要__________枚棋子(用含有n的式子表示);摆第100个三角形图案需要__________枚棋子.例4.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第11个图形需要黑色棋子的个数是 .例5.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.例6.图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为9根火柴棍时,摆出的正方形所用的火柴棍的根数为 .例7.如图,房间地面的图案是用大小相同的黑、白正方形组合而成.图中,第1个黑色形由3个正方形组成,第2个黑色形由7个正方形组成,…,那么组成第6个黑色形的正方形有( )A .22个B .23个C .24个D .25个例8.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右90图1图2图3 …例9.根据下图中箭头指向的规律,从2015到2016再到2017, 箭头的方向是( )例10.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是_______相关练习1.如图①,图②,图③,图④,,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________2.如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.3.观察下列图形的构成规律,根据此规律,第8个图形中有 个圆.4.如图,用同样并规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当白色瓷砖为为正整数)n n (2块时,黑色瓷砖有 块(结果写成一个多项式形式).第1个 ……第2个 第3个 第4个 0 284 24 62246 844m6(1) (2) (3) ……5.某校的一间礼堂,第1排的座位数为12,从第2排开始,每一排都比前一排增加x个座位.(1)请你在下表的空格里填写一个适当的式子:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…12x+12x312+…(2)由题可知,第5排座位数是_______________,第15排座位数是________________;(3)已知第15排座位数是第5排座位数的2倍,求第25排有多少个座位?6.下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n个小房子用了块石子.7.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕.如果对折n次,可以得到条折痕.8.柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23⨯听罐头,第二层有34⨯听罐头,第三层有45⨯听罐头,……根据这堆罐头排列的规律,第n(n为正整数)层有听罐头(用含n的式子表示).9.下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。
化动为静—解圆锥曲线中的定值问题化动为静—解圆锥曲线中的定值问题摘要:探索性问题中的定值问题,主要考查学生解决非传统完备问题的能力,以函数为蓝本,将数学知识有机融合,并赋予新的情景创设而成的。
在圆锥曲线中,某些几何量在特定的关系结构中,不受相关变元的制约而恒定不变,则称该几何量具有定值特征,这类问题称之为定值问题。
那么如何动中觅静、动静互化以动制动,这就要求学生学会观察分析,“创造性”地综合运用所学知识解决问题。
这类问题其过程可以用下图表示为:观察→猜测→抽象→概括→证明。
关键词:定值定点圆锥曲线特例求解策略动中觅静以动制动纵观近几年全国各地高考数学题的命制,都非常注重对学生能力的考查。
定值问题作为探索性问题之一,很好地具备了内容涉及面广、重点题型丰富,而结论封闭、客观等命题要求,方便考查考生的分析、比较、猜测、归纳等综合能力,因而受到命题人的喜爱。
本文仅就圆锥曲线中的定值问题,作一点解法上的探讨。
探求之一:特值探路, 方向明确在解数学题时,我们应该根据题目的特点,选取灵活的方法求解,而选择题和填空题是一类只注重结果而不需写出解题过程的特殊问题﹒而大题解答中可以根据特殊性与普遍性( 个性与共性) 的辨证关系, 以特例探路, 从特例中求出几何量的定值。
从而化繁为简,有了方向继而进行计算和推证。
例1:(山东理22)已知动直线与椭圆C: 交于P、Q两不同点,且△OPQ的面积=,其中O为坐标原点.(Ⅰ)证明和均为定值;(Ⅱ)设线段PQ的中点为M,求的最大值;(Ⅲ)椭圆C上是否存在点D,E,G,使得?若存在,判断△DEG的形状;若不存在,请说明理由.(I)解:(1)当直线的斜率不存在时,P,Q两点关于x轴对称,所以因为在椭圆上,因此①又因为所以②由①、②得此时(2)当直线的斜率存在时,设直线的方程为由题意知m,将其代入,得,其中即…………(*)又所以因为点O到直线的距离为又整理得且符合(*)式,此时综上所述,结论成立。
“三定”问题高考解析几何的常客作者:杨文金来源:《中学课程辅导·高考版》2019年第12期解析几何中的“三定”是定值、定点、定线问题,“三定”问题仍是高考考试的重点与难点,该类问题知识综合性强,方法灵活,对同学们的运算能力和推理能力要求较高,因而成为了高中数学学习的重点和难点.主要以解答题形式考查,往往处在倒数第二题位置,起到拉开距离,选拔优生的目的.一般以椭圆或抛物线为背景,考查定值、定点、定线问题,试题难度较大.定点、定值、定线问题都是探求“变中有不变的量”.因此要用全面的、联系的、发展的观点看待并处理此类问题.从整体上把握问题给出的综合信息,并注意挖掘问题中各个量之间的相互关系,恰当适时地运用函数与方程、转化与化归、数形结合、分类讨论、特殊到一般、相关点法、设而不求、换元、消元等基本思想方法.在解答这类问题过程中,既有探索性的历程,又有严密的逻辑推理及复杂的运算,成为考查同学们逻辑思维能力、知识迁移能力和运算求证能力的一道亮丽的风景线,真正体现了考试大纲中“重知识,更重能力”的指导思想.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;其次注意分类讨论思想、函數与方程思想、化归与转化思想等的应用.一、解析几何中的定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义、方程、几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.如果试题是客观题形式出现,特珠化方法往往比较奏效.例1 (2018年高考北京理)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,QM=λQO,QN=μQO,求证:1λ+1μ为定值.分析:(1)先确定p,再设直线方程,与抛物线联立,根据判别式大于零解得直线l的斜率的取值范围,最后根据PA,PB与y轴相交,舍去k=-3;(2)先设A(x1,y1),B(x2,y2),与抛物线联立,根据韦达定理可得x1+x2=-2k-4k2,x1x2=1k2.再由QM=λQO,QN=μQO得λ=1-yM,μ=1-yN,利用直线PA,PB的方程分别得点M,N的纵坐标,代入化简1λ+1μ可得结论.解:(1)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由y2=4xy=kx+1得k2x2+(2k-4)x+1=0.依题意Δ=(2k-4)2-4×k2×1>0,解得k<0或0<k<1.又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2).由(1)知x1+x2=-2k-4k2,x1x2=1k2.直线PA的方程为y-2=y1-2x1-1(x-1).令x=0,yM=-y1+2x1-1+2=-kx1+1x1-1+2.同理得点N的纵坐标为yN=-kx2+1x2-1+2.由QM=λQO,QN=μQO,得λ=1-yM,μ=1-yN.所以1λ+1μ=11-yM+11-yN=x1-1(k-1)x1+x2-1(k-1)x2=1k-1·2x1x2-(x1+x2)x1x2=1k-1·2k2+2k-4k21k2=2,故1λ+1μ为定值.点睛:定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.二、解析几何中的定点问题定点问题是动直线(或曲线)恒过某一定点的问题,一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关键在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.定点问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点问题的证明.难度较大.定点问题是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点.化解这类问题难点的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.解析几何中的“定点”问题一般是在一些动态事物(如动点、动直线、动弦、动角、动轨迹等)中,寻求某一个不变量——定点,这种问题涉及面广、综合性强.例2 如图,设点P是椭圆E:x24+y2=1上的任意一点(异于左,右顶点A,B).设直线PA,PB分别交直线l:x=103于点M,N.求证:以MN为直径的圆过x轴上的定点,请求出该定点.思路:本题变化的几何元素有:动点P,M,N,动直线AP,BP及动圆.定点源自于动圆,动圆由M,N确定,引入参数表示出M,N的坐标,从而表示出动圆.解析:(解法1)设kAP=k1,kBP=k2,P(x0,y0),则AM:y=k1(x+2),M(103,163k1),同理:N(103,43k2),以MN为直径圆的方程为(x-103)2+[y-(83k1+23k2)]2=(8k1-2k23)2化简为(x-103)2+y2-(163k1+43k2)y+649k1k2=0,∵k1k2=y0x0+2·y0x0-2=y20x20-4=1-14x20x20-4=-14,所以(x-103)2+y2-(163k1-13k1)y-169=0,圓过x轴上定点,令y=0,则x=2,x=143,即以MN为直径圆过定点为(2,0)和(143,0).点睛:解法1从“变化的元素为动直线入手”,设直线AP,BP斜率分别为k1,k2,用参数k1,k2表示动圆方程;引导同学们思考“含有两个参变量的圆的方程恒成立问题”,关键是寻找两个参变量之间的内在关系,此法中k1k2=-14,然后进行消元或者化简,将问题转化为一个含有参数方程恒成立问题进行求解.(解法2)设P(x0,y0),x0≠±2,则AM:y=y0x0+2(x+2),yM=163·y0x0+2,同理:yN=43·y0x0-2,以MN为直径圆的方程为(x-103)2+(y-163·y0x0+2)(y-43·y0x0-2)=0,化简为(x-103)2+y2-(163·y0x0+2+43·y0x0-2)y+649y20x20-4=0,又P(x0,y0)在椭圆上x204+y20=1,故圆的方程(x-103)2+y2-(163·y0x0+2+43·y0x0-2)y-169=0,圆过x轴上定点,令y=0,则x=2,x=143,即以MN为直径圆过定点为(2,0)和(143,0).点睛:解法2从“变化的元素为动点P(x0,y0)”入手,用参数x0,y0表示动圆方程;引导同学们思考“含有两个参变量的圆的方程恒成立问题”,关键是寻找两个参变量之间的内在关系,此法中x204+y20=1,然后进行消元或者化简,将问题转化为一个含有参数方程恒成立问题进行求解.(解法3)设M(103,y1),N(103,y2),由kAPkBP=-14,即y1103+2·y2103-2=-14,y1y2=-169,以MN为直径圆的方程为(x-103)2+(y-y1)(y-y2)=0,即(x-103)2+y2-(y1+y2)y-169=0.令y=0,则x=2,x=143,即以MN为直径圆过定点为(2,0)和(143,0).点睛:解法3从“变化的元素为动点M(103,y1),N(103,y2)”入手,用参数y1,y2表示动圆的方程,引导同学们思考“含有两个参变量的圆的方程恒成立问题”,关键是寻找两个参变量之间的内在关系,此法中y1y2=-169,然后进行消元或者化简,将问题转化为一个含有参数方程恒成立问题进行求解.(解法4)当P(0,1)时,M(103,83),N(103,-23),圆方程为(x-103)2+(y-1)2=259,令y=0,则x=2,x=143,即以MN为直径圆过定点为T1(2,0)和T2(143,0).再证明一般情况下成立即可.由解法一知,M(103,163k1),N(103,43k2),T1M·T1N=(43,163k1)·(43,43k2)=169+649k1k2=169+649(-14)=0.故以MN为直径圆是过定点T1(2,0),同理此圆过定点T2(143,0).点睛:先通过特殊化找到定点,再证明一般下情况成立,此法也是特殊到一般的解法,即先找后证.(解法5)以MN为直径圆过x轴上定点,设定点为T(t,0).由解法三设M(103,y1),N(103,y2),得y1y2=-169,由题意得TM·TN=0,(t-103)2+y1y2=0,化简(t-103)2-169=0,解得t=2或t=143,即以MN为直径圆过定点为(2,0)和(143,0).点睛:本解法紧扣“定点在x轴上”,直接设出定点T(t,0),解法自然,过程简明快捷.引申:若去掉“过x轴上”,本题又如何思考?点睛:本题运用前面四种解法即可,虽然解法五不可以直接应用,但从对称性可知,动圆所过定点必在x轴上.定点问题,实际上就是恒成立问题,选设合理的参变量刻画动量是解决定点问题的前提条件.引导同学们思考“含有两个参变量的圆的方程恒成立问题”,关键是寻找两个参变量之间的内在关系,然后进行消元或者化简,将问题转化为一个含有参数方程恒成立问题进行求解.定点问题的解题处理方法有两种:一是设参数,用参数表示动曲线的方程,转化为含参方程恒成立问题;二是通过特殊位置先找后证.过程中所涉及的数学思想方法是化归思想,即转化思想,它能引导我们进行合理解题,快捷地寻找解题突破口,形成解题思路.三、解析几何中的定线问题定线问题是证明动点在定直线上,其实质是求动点的轨迹方程,所以所用的方法即为求轨迹方程的方法,如定义法、消参法、交轨法等.例3 在平面直角坐标系xOy中,过点C(2,0)的直线与抛物线y2=4x相交于A,B两点,A(x1,y1),B(x2,y2).(1)求证:y1y2为定值;(2)是否存在平行于y轴的定直线被以AC为直径的圆截得的弦长为定值?如果存在,求该直线方程和弦长;如果不存在,说明理由.分析:(1)设出过点C(2,0)的直线方程,与抛物线方程联立消去未知数x,由根与系数关系可得y1y2=-8为定值;(2)先设存在直线l:x=a满足条件,求出以AC为直径的圆的圆心坐标和半径,利用勾股定理求出弦长表达式2r2-d2=-4(1-a)x1+8a-4a2,由表达式可知,当a=1时,弦长为定值.解:(1)(解法1)当直线AB垂直于x轴时,y1=22,y2=-22,因此y1y2=-8(定值);当直线AB不垂直于x轴时,设直线AB的方程为y=k(x-2),由y=k(x-2)y2=4x得ky2-4y-8k=0,∴y1y2=-8,因此有y1y2=-8为定值.(解法2)设直线AB的方程为my=x-2,由my=x-2y2=4x得y2-4my-8=0,∴y1y2=-8,因此有y1y2=-8为定值.(2)设存在直线l:x=a满足条件,则AC的中点E(x1+22,y12),AC=(x1-2)2+y21,因此以AC为直径的圆的半径r=12AC=12(x1-2)2+y21=12x21+4,又E点到直线x=a的距离d=|x1+22-a|,所以所截弦长为2r2-d2=214(x21+4)-(x1+22-a)2=x21+4-(x1+2-2a)2=-4(1-a)x1+8a-4a2,当1-a=0即a=1時,弦长为定值2,这时直线方程为x=1.点睛:本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、直线与圆的位置关系,属难题;解决圆锥曲线定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.。
“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略注意到A∈[÷,2],可得所求为[2,÷].JJ点评:求参数的取值范围,一直是数学中的经典问题.解题的关键是如何构造出关于参数的表达式或不等式,转化为求函数的值域或解不等式问题.本例是直接利用题设的A的范围,求出值域,属简单题.而一些较复杂的题,往往要用以下一些条件和方法:圆锥曲线的范围,几何图形的性质,变量的取值范围(如sinO,cosO●徐素琴舒林军''的范围),判别式法,基本不等式法,分离参数法等.以上五类问题是解析几何中的重点题型,一定要掌握求解的通法,在解题实践中不断对各种解法加以比较,总结,提高自己择优解题的能力,使解析几何解答题成为你的得分点,从而在高考中获得数学卷的高分0-动中求定"的八大策略探索解析几何中求解定点,定值,定向,定线等问题的策略在解析几何中常常出现求定点,定值,定向,定线等问题,它已经成为当前各省高考试题中的热点.本文对此类问题加以探究,得出一些行之有效的方法策略,供以参考.策略一:提取参数对于某些含参数的曲线方程,如果可以把参数与x,y分离,则提出参数后,再根据恒等式的性质,即可以解得x,y的值,得到定点的坐标.例?1已知动直线(2+k)x一(1+k)一2(3+2k)=0,求证:点P(一2,2)到该动直线的距离d≤4.证明:把直线方程化为.i}(一),一4)+(2x—Y一6)=0,知J.一),一4=o,L2x一),一6=0.解得=2,Y=一2,即动直线过定点(2,一2).连,则点P(一2,2)到该动直线的距离d≤lPI=~/(一2—2)+(2+2)=4.'策略二:观察巧代?2O?充分利用已知式的结构特征,经过观察分析,只要找出满足条件的,y的值,就是定点的坐标.例2(1)已知实数17/.,n满足三+=l,则动直线羔+上:l必过定点的坐标为——;(2)已知实数p,g满足p+2q—l=0,则动直线+3y+q=0恒过定点M的坐标为略解:(1)只要令=2,,,=l,即得定点(2,1);(2)已知式化为号一下1+q=0,只要令=寺一IM(1,一吉).策略三:设参分离根据题意,设立参数,建立方程,分离参数,即可以求得定点.例3已知抛物线C:y=8x,焦点为F,定点P(2,4),动点A,B是抛物线C上的两个点, 且满足后?keB=8,试问AB所在的直线是否过定点,若是,求出该定点的坐标;否则说明理由.解:设A(8t;,8t1),B(8t,8t2)(t1≠t2),则】.1PA,kpB'fl+一2f2+一2因为J}?后雎=8,所以8t1t2=一1—4(tl+t2).①因为Ij}仙,所以A曰的方程:),一8tt:(一8£;)?再利用①化简即得(一1)一(t1+t2)(),+4)=0.可见直线AB过定点(1,一4).策略四:巧"特"结论有两种情形:一种利用特殊值探求结论,再验证其充分性;另一种是也先用特殊值探求结论,后作一般性探求...2.2.例4已知椭圆等+=1,过左焦点作不垂直于轴的弦交椭圆于A,两点,AB的垂直平分线交轴于点,则IFI:IABl的值为()(A1(B1(c了2(D)}解:本题为选择题,即知此比值为定值,故可用特殊值法.设AB与轴重合时,就是原点,则AB长为6,MF的长为2,故IMFl:IABI =1,答案为(B).如果不用特殊法解,本题就是一个较难的解答题,同学们不妨一试.若用极坐标方程解较方便一些.可见在解选择题时,用特殊值法来判断和寻找答案尤为重要.2例5已知椭圆方程+=1,过点s(o,一÷)的动直线f交该椭圆于A,B两点,试问:在坐标平面内是否存在一个定点,使得以AB为直径的圆恒过定点,若存在求出T的坐标;若不存在,请说明理由.解:假设满足条件的定点存在.当直线Z与轴平行时,以AB为直径的圆方程为2+-y')=;当直线Z与),轴重合时,以AB为直径的圆方程为+),=1.以上两圆方程联立解得』=o,即r(0,1)ty=1,是满足条件的必要条件.下面证明其充分性: 若存在v(o,1),对过点S不与坐标轴平行的直线设为y=kx一÷(Il}≠0),把它代人椭圆方程得到(1+2)2一一=o.设A(,y.),B(,y),则有『+=吾_,116【la;:一'因为H=(l,y1—1),TB=(2,y2一1),7?TB=X12+(),1—1)(,,2—1)=(1):一争(+一16(1+)4,12k16——18k9一一一3—}8k9+一9++=0.所以上船,即以AB为直径的圆恒过定点其定点的坐标为(O,1).例6已知椭圆+:1(n>b>o)上任意一点,B,B:是椭圆短轴的两个端点,作直线MB1,MB2分别交轴于P,()两点,求证: lOP1.IDQI为定值,并求出定值.分析:当动点在长轴的端点时,则P,Q重合于长轴的端点,因此IOPI?loQI=a.?2l?再作一般证明即可得IOP1.IOQI为定值为0.策略五:设参消参为了求得定值,往往需要设立一个或两个参数,如直线的斜率,动点的坐标等,然后根据条件,寻找所求的定值,最后经过消参得到所求的定值.例6已知A(1,1)是椭圆x+=1(口>b>0)上的一点,F,F2是椭圆的两个焦点, 且满足lAFI+IAF,I=4.(1)求椭圆的方程;(2)设点B,C是椭圆上的两个动点,且直线AB,AC的倾斜角互补,试判断直线BC的斜率是否为定值?并说明理由.解:(1)易知口=2.再把点A坐标代人椭圆方程得b.=÷,所以椭圆方程为等2+等(2)由条件可以得到直线AB,AC的斜率存在且不为0,故设直线AB的方程为Y=(一1)+1,代人椭圆方程得(1+3k)+6(1一k)kx+3一6k一1=0.因为XA=1,XAXB=所以.①又设直线AC的方程为Y=一k(一1)+1,同理得到.②因此得到,口一YcJ}(B+Xc)一2k%c■'把①②代人得k.=下1,所以直线BC的斜率为定值.策略六:巧用定义结合圆锥曲线的定义,在运动变化中寻求?22?符合定义的不变量.'2,2例7已知P是双曲线一号=1(口>0,b>0)右支上不同于顶点的任意一点,,是双曲线的左右两个焦点,试问:三角形PFF2 的内心,是否在一定直线上,若存在,求出直线方程;若不存在,请说明理由.解:设三角形PFF2的内切圆与轴的切点为,则由双曲线的定义及切线长定理可知: IPF1I—IPF2l=IMF1I-IMF2I=2a,所以也在双曲线上,即M为双曲线右顶点.又IM上轴,所以三角形PF的内心,在一定直线=口上.例8以抛物线(Y+1)=g(一2)上任意一点P为圆心,作与Y轴相切的圆,则这些动圆必经过定点的坐标为一解:不难求得Y轴是抛物线的准线.由抛物线的定义可知,这些圆必经过抛物线的焦点可以求得F(4,一1),所以这些动圆必经过定点的坐标为(4,一1).策略七:结合平面几何有些求定值问题往往可以与平面几何的一些性质相结合,可以达到事半功倍的效果,如上面的例7就是运用了切线长定理.例9已知圆(一3)+(Y+4)=4,过原点0的动直线2:y=kx交圆于P,Q两点,则IoPIlOQl的值为一解:设OB切圆于点,则JOPIIOQI=IDBl=10I一r2:25—4=21.,22例10已知是双曲线一各=1(口>0,b>0)过焦点F1的任意一条弦,以AB为直径的圆被与相应的准线截得圆,求证:MN的度数为定值.解:设AB的中点为P,P,A,B到相应的准线距离分别为d,d,d,则.:,',d1+d2IF1AI+IF1BIlABId—一——■~=(r为以AB为直径的圆的半径),所以c.sPⅣ::,二,e即删的度数为定值,其定值为2arccos.策略八:极坐标法关于长度计算的某些问题,用极坐标法会来得很方便.先要根据条件建立恰当的极坐标系,然后给动点设出极坐标,极角之间的关系往往是解决问题的关键.例11椭圆x+=1(口>b>o)上有aD两个动点A,B满足OA上OB(0为坐标原点), 求证:+广为定值?解:设以原点为极点,轴为极轴,建立极坐标系.则有lpcosO,代人椭圆方程得到椭ty:psin0.圆的极坐标方程●赵小龙r+r?设椭圆上动点A(p,),因为上OB,则动点B(p:,0+),因此1COS0sin—丁十—一,PlnD1c.s(+詈).sin2(+詈)2一口2.bP2口sin20cos0r+.两式相加得P+=+,l111ap2D即击+=1+古为定值.以上的八大策略,提供同学们在解决此类问题的方法.对求定点,定值等问题往往先用特殊值法探求出结论,这样解题的方向就明确了, 然后在运算过程中心中有数,达到事半功倍的效果.1l.洙高毒中的五粪热燕题型思维能力是数学能力的核心,新课标的高考是通过数学基本能力与数学综合能力来考查数学思维的.针对高考对能力的考查,笔者认为临近高考时要努力达到下述目标:如果一个问题有多种数学思维方法,那么通过自身的思维应尽力发现其中大多数通法,并能靠自己丰富的解题实践择其优者实施.为此,只有平时对如下五类热点题型有思维模式的积淀,才能在应试中形成灵活的解题思维一,立体几何中的条件探索题此类题型是高考命题改革的先进成果,已被各省市的高考命题所大量采用,对考查新课标规定的数学基本能力中的空间想象能力,推理论证能力均大有裨益.抓住结论采到逆向探索,灵活转移,直观想象等思维方式,常可发现或猜出条件,进而给出充分性的证明.这是此类题型的一般思维模式.例1如图1,四棱锥P—ABCD中,M是棱船的中点;在底面四边形ABCD中,AB//CD, AB=4DC.在棱PC上找一点Ⅳ,使DⅣ∥平面?23?。
立体几何中的探索性问题立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.这类试题的一般设问方式是“是否存在?存在给出证明,不存在说明理由”.解决这类试题,一般根据探索性问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设.8如图,在四棱锥P–ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=√3,点F是PB的中点,点E在边BC上移动.(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由.(2)求证:无论点E在BC边的何处,都有PE⊥AF.(3)当BE为何值时,PA与平面PDE所成角的大小为45。
?拓展提升(1)开放性问题是近几年高考的一种常见题型.一般来说,这种题型依据题目特点,充分利用条件不难求解.(2)对于探索性问题,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.9如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的√2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,求二面角P-AC-D的大小.(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.如图所示,在正方体ABCD—A l B l C1D l中,M,N分别是AB,BC中点.(1)求证:平面B 1MN⊥平面BB1D1D;(2)在棱DD1上是否存在点P,使BD1∥平面PMN,若有,确定点P的位置;若没有,说明理由.如图所示,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,0为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的大小:(3)线段AD上是否存在点Q,使得它到平面PCD3若存在,求出AQ:DQ的值;若不存在,请说明理由.立体几何中探索性问题的向量解法高考中立体几何试题不断出现了一些具有探索性、开放性的试题。
2020年中考数学热点专练八动态几何问题(江苏版)(解析版)专题导读动态几何问题,是近年来的热点问题.它几乎成了每个城市中考试卷中的亮点,拿到一套试卷,总是习惯先看看有没有关于动态几何的问题.动态几何问题也就是关于图形运动的一类问题,它主要是牵扯到图形的三种变换:平移、旋转、轴对称及动点问题.当然考查图形的运动问题有小题,也有大题,小题主要分布在选择和填空的最后一两个题,也就是小压轴题,解答题中也会有关于图形的运动问题,主要有两类,一类是关于平移、旋转、轴对称的作图,这个比较简单,我们这里就不说了;另一类就是我们介绍的重点一一研究图形在运动过程中产生的一些图形性质上的变化和不变的情况.这几乎成了压轴题基本上共同的特点.中考要求中考要求课程标准和中考说明都要求学生要具备一定的用运动观点分析问题的能力.学会在运动变化中寻求不变的图形性质.学会运用函数的观点研究关于图形运动中性质的变化情况.专题集训考向1图形的运动与最值1.(2019江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作。
与直线相切,点P是QC±一个动点,连接AP交于点T,则业的最大值是AT2.(2019江苏省无锡市)如图,在AABC中,AB=AC=5,BC=4逐,D为边AB上一动点(3点除外),以CD为一边作正方形CDEF,连接8E,则ABDE面积的最大值为.3.(2019江苏省宿迁市)如图,ZMAN^60°,若△ABC的顶点3在射线AM上,且A3=2,点。
在射线AN上运动,当AABC是锐角三角形时,BC的取值范围是.4.(2019江苏省宿迁市)如图,正方形ABCQ的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.5.(2019江苏省扬州市)如图,己知等边△ABC的边长为8,点F是边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B'.(1)如图1,当PB=4时,若点可恰好在AC边上,则菌,的长度为;(2)如图2,当PB=5时,若直线1〃AC,则33,的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,AACB'的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求可面积的最大值.6.(2019江苏省苏州市)已知矩形ABCD AB=5cm,点F为对角线AC上的一点,且AP =26cm.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为I(s),A4PM的面积为S(enF),S与f的函数关系如图②所示:(1)直接写出动点M的运动速度为cm/s,BC的长度为cm-,(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点£>出发,在矩形边上沿着D t C t B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M、N经过时间x(s)在线段BC上相遇(不包含点C),动点N相遇后立即停止运动,记此时AARW与AZJRV的面积为5](<?麻),$2(伽2).①求动点N运动速度v(cm/s)的取值范围;②试探究S] .S?是否存在最大值.若存在,求出S|・S2的最大值并确定运动速度时间x的值;若不存在,请说明理由.(B®)7.(2019江苏省扬州市)如图,四边形A3CD是矩形,A3=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,ZG=90°.点M在线段AB上,且AM=a,点P沿折线AQ-DG运动,点Q沿折线BC-CG运动(与点G不重合),在运动过程中始终保持线段PQ//AQ.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点F在线段AD上时,若四边形AMQF的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段ZJG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.考向2动点与函数的结合问题1.(2019江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L:y^x+bx+c过点C(0,-3),与抛物线£2:-lx2-旦t+2的一个交点为A,且点A的横坐标为2,点22P、Q分别是抛物线3、3上的动点.(1)求抛物线3对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点F的坐标;(3)设点R为抛物线3上另一个动点,且CA平分ZPCR.若OQ//PR,求出点。
几何中的动点问题动点问题一直是考试中常见的压轴题,它能考查学生的多种能力,有较强的选拔功能。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解。
动点题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系(如等量关系、变量关系)、图形位置关系(如图形的特殊状态、图形间的特殊关系)等进行研究考察.首先抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量x、y的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。
第三,确定自变量的取值范围,画出相应的图象。
一、典型例题1、如图,AB是半圆O点Q在半圆O(1)当∠QPA=60(2)当QP⊥AB时,∠(3)由(1)、(2定是_________三角形。
中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),Q是BC2、在Rt ABC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
3、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为524个平方单位?4、已知:如图,在平面直角坐标系中,ABC △是直角三角形,90ACB ∠=,点A C ,的坐标分别为(3 0)A -,,(1 0)C ,,∠BAC 的正切值是34。
(1)求过点A B ,的直线的函数解析式;(2)在x 轴上找一点D ,连接DB ,使得ADB △与ABC △相似(不包括全等),并求点D 的坐标; (3)在(2)的条件下,如果P Q ,分别是AB 和AD 上的动点,连接PQ ,设AP DQ m ==,问是否存在这样的m ,使得APQ △与ADB △相似,如存在,请求出m 的值;如不存在,请说明理由.5、已知,如图,在直角梯形COAB 中,CB ∥OA ,以O 为原点建立平面直角坐标系,A 、B 、C 的坐标分别为A (10,0)、B (4,8)、C (0,8),D 为OA 的中点,动点P 自A 点出发沿A →B →C →O 的路线移动,速度为每秒1个单位,移动时间记为t 秒,(1)动点P 在从A 到B 的移动过程中,设△APD 的面积为S ,试写出S 与t 的函数关系式,指出自变量的取值范围,并求出S 的最大值;(2)动点P 从出发,几秒钟后线段PD 将梯形COAB 的面积分成1:3两部分?求出此时P 点的坐标。
几何类探索题——变中寻不变
1,如(图一),△ABD与△CDE中均为等腰直角三角形,B,D,C三点在一直线上,(1)试问BE与AC有何关系?并证明你的结论。
(2)当△CDE绕点D沿顺时针方向旋转如下图(图二)——(图九)时,BE与AC 的关系分别怎样?
图二
图三
C
图四
E
图五
C
图六
D
E
图七
D
E
图八
D
C
B E
图九
D C
B
图一
2,(2002,黑龙江)已知,等边△ABC 和点P ,设点P 到△ABC 的三边AB ,AC ,BC 的距离为h 1
,h 2
,h 3
△ABC 的高为h ,“若点P 在一边BC 上,(如图一)此时 h 3
=0,可得结论:h 1
+h 2
+h 3
=h ”。
请直接应用上述信息
解决下列问题;当点P 在△ABC 内,(如图二),点P 在△ABC 外,(如图三),这两种情况时,上述结论是否成立?若成立,请给予证明;若不成立h 1
,h 2
,h 3
与 h 之间又有怎
样的关系?请写出你的猜想,不需证明。
图二
C
M C
P
M
C
P 图一
3,如(图一),A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,求证:BD平分EF,
想一想上题中,若将△DEC的边EC沿AC方向移动到(图二)的位置时,其他条件不变,上述结论是否成立?请说明理由。
D
图一图二。