2016分类解析汇编(第1辑)第18章平行四边形
- 格式:doc
- 大小:923.50 KB
- 文档页数:16
【人教版】数学八下:第18章《平行四边形》全章名师说课稿一. 教材分析《人教版》数学八下第18章《平行四边形》是学生在学习了三角形、四边形的基础上,进一步研究平行四边形的性质和判定。
本章内容主要包括平行四边形的定义、性质、判定以及平行四边形的应用。
通过本章的学习,使学生能理解和掌握平行四边形的性质和判定方法,提高解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了三角形、四边形的基本知识,具备了一定的逻辑思维能力和空间想象能力。
但学生在学习过程中,可能对平行四边形的性质和判定方法容易混淆,需要通过实例和练习来加深理解和掌握。
三. 说教学目标1.理解平行四边形的定义,掌握平行四边形的性质和判定方法。
2.能够运用平行四边形的性质和判定方法解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 说教学重难点1.平行四边形的性质和判定方法的掌握。
2.平行四边形在实际问题中的应用。
五. 说教学方法与手段1.采用讲授法,讲解平行四边形的定义、性质、判定方法。
2.利用多媒体演示,直观展示平行四边形的性质和判定过程。
3.运用例题和练习,让学生在实际问题中应用平行四边形的性质和判定方法。
4.小组讨论,培养学生合作学习的能力。
六. 说教学过程1.引入新课:通过复习三角形、四边形的基本知识,引导学生学习平行四边形。
2.讲解平行四边形的定义、性质、判定方法:通过多媒体演示和板书,详细讲解平行四边形的定义、性质、判定方法。
3.例题讲解:选取典型例题,讲解平行四边形的性质和判定方法在实际问题中的应用。
4.练习巩固:学生自主完成练习题,巩固对平行四边形的性质和判定方法的理解。
5.小组讨论:学生进行小组讨论,分享解题心得和方法。
6.课堂小结:总结本节课所学内容,强调平行四边形的性质和判定方法。
7.作业布置:布置相关练习题,让学生课后巩固所学知识。
七. 说板书设计板书设计如下:1.对边平行且相等2.对角相等3.对边相等4.对角线互相平分5.两组对边分别平行的四边形是平行四边形6.两组对角分别相等的四边形是平行四边形7.对边平行且相等的四边形是平行四边形八. 说教学评价通过课堂讲解、练习完成情况、小组讨论参与度等方面,评价学生对平行四边形的性质和判定方法的掌握程度。
.学习-----好资料第十八章 平行四边形18.1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形 平行四边形用□“ ”表示,读作“平行四边形”.平行四边形 ABCD 记作“□ABCD”.18.1.1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点.例、已知:□ABCD 求证:AD=BC ,AB=DC ;∠A=∠C ,∠B=∠D.证明:连接 AC ,AD / /CD, AD / / BC∴∠1 = ∠2, ∠3 = ∠4又 AC 是△ABC 和△CDA 的公共边,∴ △ABC ≌△CDA ,∴ AD = CB, AB = CD, ∠B = ∠D平行四边形性质 1:平行四边形的两组对边分别相等.平行四边形性质 2:平行四边形的两组对角分别相等.例、已知:如图:□ABCD 的对角线 AC 、BD 相交于点 O.求证:OA=OC ,OB=OD .证明:四边形 ABCD 是平行四边形∴ AD=BC ,AD ∥BC.∴∠1=∠2,∠3=∠4.∴△AOD ≌△COB (ASA ).∴ OA=OC ,OB=OD .平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线之间的距离特征 1:平行线之间的距离处处相等.平行线之间的距离特征 2:夹在两条平行线之间的平行线段相等.平行四边形性质 3:平行四边形的两条对角线互相平分.例、如图,□ ABCD 中,BD ⊥AB ,AB=12cm ,AC=26cm ,求 AD 、BD 长..解:∵四边形 ABCD 是平行四边形,∴AO=CO= 1AC ,OB=OD .2∵BD ⊥AB ,∴在 △Rt A BO 中,AB=12cm ,AO=13cm .∴BO= AO 2 - AB 2 = 5 .∴BD=2B0=10cm .∴在 Rt △ABD 中,AB=12cm ,BD=10cm .∴AD= AB 2 + BD 2 = 2 61 (cm).例、如图,在□ A BCD 中,已知对角线 AC 和 BD 相交于点 △O , AOB 的周长为 25,AB=12,求对角线 AC 与 BD 的和.解:∵△AOB 的周长为 25,∴OA+BO+AB=25,又 AB=12,∴AO+OB=25-12=13,∵平行四边形的对角线互相平分,∴AC+BD=2OA+2OB=2(0A+OB)=2×13=2618.1.2 平行四边形的判定平行四边形判定 1:两组对边分别平行的四边形是平行四边形.平行四边形判定 2:两组对边分别相等的四边形是平行四边形.平行四边形判定 3:两组对角分别相等的四边形是平行四边形.平行四边形判定 4:两条对角线互相平分的四边形是平行四边形.平行四边形判定 5:一组对边平行且相等的四边形是平行四边形.中位线:连接三角形两边中点的线段叫做三角形的中位线三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半 例、 如图,在□ABCD 中,已知点 E 和点 F 分别在 AD 和 BC 上,且 AE=CF ,连结CE 和 AF ,试说明四边形 AFCE 是平行四边形.证明:∵四边形 ABCD 是平行四边形,∴AD//BC ,∵点 E 在 AD 上,点 F 在 BC 上,∴AE//CF ,E F .又∵AE=CF ,∴四边形 AFCE 是平行四边形.例、如图,E 、F 是四边形 ABCD 的对角线 AC 上的两点,AF=CE ,DF=BE ,DF ∥BE .求证:(△1)AFD ≌△CEB .(2)四边形 ABCD 是平行四边形.解:(1)∵DF ∥BE ,∴∠AFD =∠CEB . 又∵AF=CE , DF=BE ,∴△AFD ≌△CEB .(2)由(1)△AFD ≌△CEB 知 AD=BC ,∠DAF =∠BCE , ∴AD ∥BC ,∴四边形 ABCD 是平行四边形.例、如图,平行四边形 ABCD 中, 、 为边 AD 、BC 上的点,且 AE=CF ,连结 AF 、EC 、BE 、DF 交于 M 、N ,试说明:MFNE 是平行四边形.AED解:∵四边形 ABCD 是平行四边形,∴AD ∥BC , AD ∥BC又∵AE=CF ,∴ED=FB ,四边形 AFCE 是平行四边形∴AF ∥EC .同理:BE ∥FD .∴四边形 MFNE 是平行四边形.BMNFC18.2 特殊的平行四边形18.2.1 矩形矩形定义 1:有一个角是直角的平行四边形叫做矩形矩形定义 2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线 矩形性质 1:矩形的四个角都是直角.矩形性质 2:矩形的对角线相等且互相平分.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半矩形判定 1:有一个角是直角的平行四边形是矩形.矩形判定 2:有三个角是直角的四边形是矩形.矩形判定 3:对角线相等的平行四边形是矩形.例、如图,已知 AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE ,..求证:四边形 BCED 是矩形.证明:在△ABD 和△ACE 中,AB = AC ,AD = AE ,∠BAD = ∠CAE∴△ABD ≌△ACE ,∴BD=CE ,又 DE=BC ,∴四边形 BCED 为平行四边形.在△ACD 和△ABE 中,∵AC=AB ,AB=AE ,∠CAD = ∠CAB +∠ BAD = ∠CAB +∠ CAE = ∠BAE ,∴△ADC ≌△AEB∴CD=BE∴四边形 BCED 为矩形18.2.2 菱形菱形定义 1:有一组邻边相等的平行四边形叫做菱形.菱形定义 2:四条边都相等的四边形叫做菱形.菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线 菱形性质 1:菱形的四条边都相等.菱形性质 2:菱形的对角线互相垂直平分.菱形性质 3:菱形的每一条对角线平分一组对角.菱形的面积:菱形的面积等于对角线乘积的一半.推广:对角线互相垂直的四边形面积等于对角线乘积的一半.菱形判定 1:有一组邻边相等的平行四边形是菱形.菱形判定 2:四条边都相等的四边形是菱形.菱形判定 3:对角线互相垂直的平行四边形是菱形.菱形判定 4:每条对角线平分一组对角的四边形是菱形.18.2.3 正方形正方形定义 1:有一组邻边相等的矩形叫做正方形.正方形定义 2:有一个角是直角的菱形叫做正方形.正方形定义 3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线和对角线所在的直线.正方形性质 1:正方形的四个角都是直角.正方形性质 2:正方形的四条边都相等.正方形性质 3:正方形的两条对角线互相垂直平分且相等.正方形判定 1:有一组邻边相等的矩形是正方形.正方形判定 2:有一个角是直角的菱形是正方形.正方形判定 3:有一组邻边相等并且有一个角是直角的平行四边形是正方形 正方形判定 4:对角线垂直平分且相等的四边形是正方形. 例、如图,四边形 ABCD 是菱形,对角线 AC =8 cm ,BD =6 cm , DH ⊥AB 于 H ,求:DH 的长.∵四边形 ABCD 是菱形,∴ A C ⊥ BD ,OA = OC =∴AB=5cm ,1 2AC = 4cm ,OB = OD = 3cm ,∴ S 菱形ABCD = AC ⋅ BD = AB ⋅ DH ,∴ DH = AC ⋅ BD= 4.8cm .2 A B例、已知:如图,菱形ABCD 的周长为 16 cm ,∠ABC =60°,对角线 AC 和 BD相交于点 O ,求 AC 和 BD 的长.解:∵菱形 ABCD 的周长为 16cm , ∠ABC = 600∴AB=BC=4cm △, ABC 是等边三角形,∴AC=4cm ,∵AC ,BD 互相垂直平分,∴OA=2∴OB = 42 - 22 = 2 3cm∴ BD = 4 3cm例、如图,在正方形 ABCD 中,P 为对角线 BD 上一点,PE ⊥BC ,垂足为 E , PF ⊥CD ,垂足为 F ,学习-----好资料求证:EF=AP证明:连接PC,∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,∠PDA=∠PDC,在△P AD和△PCD中,AD=CD,∠PDA=∠PDC,PD=PD,∴△P AD≌△PCD,∴P A=PC,∴EF=AP,例、在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.试说明:DE=DF解:∵AB=AC,∠B=∠C∵DE⊥AB,DF⊥AC∴∠DEB≌DFC=90°∵D是BC的中点∴BD=DC∴△BDE≌△CDF∴DE=DF.例、如图,ABCD中,AE平分∠BAD交BC于E,EF∥AB交AD于F,试问:四边形ABEF是什么图形吗?请说明理由.解:四边形ABEF是菱形.理由:∵四边形ABCD是平行四边形,A F DB E C学习-----好资料∴AD∥BC,∵EF∥AB,∴四边形ABEF是平行四边形,∵AE平分∠BAD,∴∠BAE=∠FAE,∵AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴ABEF是菱形.。
四边形3级梯形四边形2级矩形、菱形、正方形四边形1级平行四边形满分晋级阶梯造句漫画释义3平行四边形知识互联网题型切片(两个)对应题目平行四边形的定义及性质例1;例2;演练1;例3;题型目标平行四边形的判定例4至例7;演练2;演练4;演练5;例8;演练3编写思路本讲内容主要分为两个模块,模块一主要讲解平行四边形的基本概念及性质,主要分为两类题型:一类是基本性质,主要为利用平行四边形的边、角关系练习的基础题目(例1及例3);另外一类主要是针对平行四边形的中心对称性结合面积的一些题目,出题形式灵活,对学生要求略高(例2);模块二介绍平行四边形的判定后,题目中往往性质和判定相结合使用,几道解答题较为综合,均为常考的中等难度代表题型,综合考查学生对平行四边形各知识点的掌握程度;其中教师备选给出了一些常见条件,教师可引导学生进行组合进而判定平行四边形,进一步深入理解平行四边形的判定定理;本讲的最后一部分主要针对学生画图解决问题的能力,进一步强化训练学生对构图的敏感性及创新应用能力,为近年中考考查趋势.题型切片模块一平行四边形的定义及性质知识导航对边分别平行的四边形叫做平行四边形(如图):一般按一定的方向依A BC DO直线都把平行四边形分成面积和周长相等的两部分.Ⅱ. S S ABFE DEFC =四边形四边形 C CABFE DEFC=四边形四边形②四边形的知识是三角形知识的延伸,所以在解决平行四边形相关问题时,要结合三角形和全等三角形的知识综合运用.S S S SAOB BOC DOC DOA===△△△△AOB COD △≌△AOD COB △≌△ABC CDA △≌△BCD DAB△≌△夯实基础【例1】⑴在平行四边形ABCD 中,CE ⊥AB ,垂足为E ,如果,则=______;115∠=︒A ∠BCE ⑵在平行四边形ABCD 中,若周长为54cm ,cm ,则cm ;5AB BC -=____AB =⑶在平行四边形ABCD 中,平分,则对角线与的位置关系为AC DAB ∠AC BD _________;⑷平行四边形ABCD 的周长为,对角线、相交于点,的周长比60cm AC BD O AOB △的周长多,则的长度为. BOC △8cm AB cm 【解析】⑴ 25° ; ⑵ 16; ⑶ 互相垂直;⑷如图,的周长为,AOB △AB AO BO ++的周长为,BOC △BC BO CO ++由平行四边形的对角线互相平分可得:cm()()8AB AO BO BC BO CO AB BC ++-++=-=∴cm . 6082194AB +⨯==能力提升【例2】⑴如下左图,在平行四边形ABCD 中,、为对角线,,边上的高为,AC BD 6BC =BC 4则阴影部分的面积为( ).A .B .C .D .361224⑵ 如下右图,平行四边形ABCD 的对角线相交于点,过点且与AC BD 、O EF O 分别相交于点,则图中的全等三角形共有______对.AB CD 、E F 、⑶在平行四边形ABCD 中,若为上一点,且,E AD 6ABE DCES S +=△△则.__________ABCD S =平行四边形ODCBAD CB AOF EA DCBED CBAF⑷平行四边形ABCD中,是平行四边形内任意一点,、、和P ABP△BCP△CDP△的面积分别为、、和,则一定成立的是ADP△1S2S3S4S()A.B.1234S S S S+>+1234S S S S+=+C.D.1234S S S S+<+1324S S S S+=+【解析】⑴ C;⑵ 6;⑶12;⑷设间距离为,间距离为,AB CD、1h AD BC、2h1312421122S S AB h S S AD h+=⋅⋅+=⋅⋅、又12ABCDS AB h AD h=⋅=⋅平行四边形∴∴选D.132412ABCDS S S S S+=+=平行四边形【例3】⑴如图,在平行四边形ABCD中,、是对角线上的E F BD两个点且,试猜想与有何位置关系及数量关系并DF BE=AE CF加以证明.⑵如图,已知:在平行四边形中,的角平分ABCD BCD∠线交边于,的角平分线交于,CE AD E ABC∠BG CE F交于.求证:.AD G AE DG=【解析】⑴猜想:AE//CF且AE=CF证明:∵在平行四边形中,,,ABCD DC AB∥DC AB=∴CDF ABE∠=∠在和中CDF△ABE△CD ABCDF ABEDF BE=⎧⎪∠=∠⎨⎪=⎩∴()SASCDF ABE△≌△∴,∴,∴AE CF=AEB CFD∠=∠AE CF∥∴AE//CF且AE=CF⑵∵四边形是平行四边形ABCD∴,AD BC∥AB CD=∴,GBC BGA∠=∠BCE CED∠=∠又∵平分,平分BG ABC∠CE BCD∠∴,ABG GBC∠=∠BCE ECD∠=∠∴,.ABG AGB∠=∠ECD CED∠=∠∴,AB AG=CE DE=∴AG DE=∴,即AG EG DE EG-=-AE DG=S4S3S2S1PD CBAFGE DCBA模块二 平行四边形的判定知识导航对角线互相平分的四边形是平行四边形夯实基础【例4】⑴ 已知AD=BC ,要使四边形ABCD 是平行四边形,需要添加的条件(只需填一个你认为正确的即可)⑵、、、在同一平面内,从①;②;③;④A B C D AB CD ∥AB CD =BC AD =,这四个条件中任选两个,能使四边形是平行四边形的选法有( )BC AD ∥ABCD A .3种B .4种C .5种D .6种⑶已知三角形,若存在点使得以、、、为顶点的四边形是平行四边形,ABC D A B C D 则这样的点有 个.若已知的周长为3,则以所有点围成的多边形周长为 D ABC △D .【解析】⑴或AD BC ∥AB CD=图2⑵选法有:①②或①④或②③或③④∴选B⑶ 3,6【教师备选】已知四边形的对角线、相交于点,给出下列条件,任选其中2个哪些ABCD AC BD O能推出四边形为平行四边形.ABCD①,②,③,④,AB CD∥AB CD=BC AD∥BC AD=⑤,⑥,⑦,⑧.A C∠=∠B D∠=∠OA OC=OB OD=【探究2】不成立的,举出反例.①④、②③反例:等腰梯形.②⑤、②⑥、④⑤、④⑥反例:参见易错门诊.②⑦、②⑧、④⑦、④⑧反例:如图1.⑤⑦、⑥⑧反例:筝形如图2.【探究3】成立的,说明理由.①②、③④理由:一组对边平行且相等;①③理由:两组对边分别平行;①⑤、①⑥、③⑤、③⑥、⑤⑥理由:可推出两组对边分别平行;④⑤④⑥④⑦④⑧××××⑦⑧√图1图3C''C'O DCAODCFBAE①⑦、①⑧、③⑦、③⑧理由:可推一组对边平行且相等;②④理由:两组对边分别相等;⑦⑧理由:对角线互相平分.⑤⑧、⑥⑦理由:如图3,,.BAD BCD ∠=∠OB OD =延长到点,使得,连接、.AO C AO CO =BC DC 利用对角线互相平分可得四边形为平行四边形,ABCD 若点或点与点不重合,必有C 'C ''C BC D BCD '∠≠∠(或),故BC D BCD ''∠≠∠BC D BAD '∠≠∠(或)BC D BAD ''∠≠∠能力提升【例5】如图,在平行四边形ABCD 中,∠DAB =60°,点E 、F 分别在CD 、AB 的延长线上,且AE=AD ,CF=CB .⑴ 求证:四边形AFCE 是平行四边形. ⑵ 若去掉已知条件的“∠DAB =60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【解析】⑴证明:∵四边形ABCD 是平行四边形∴DC ∥AB ,∠DCB =∠DAB =60°∴∠ADE =∠CBF =60°∵AE=AD ,CF=CB∴△AED 、△CFB 是正三角形在平行四边形ABCD 中,AD=BC ,DC ∥AB 且DC=AB ∴ED=BF∴ED +DC =BF +AB 即 EC=AF 又∵DC ∥AB 即EC ∥AF∴四边形AFCE 是平行四边形. ⑵上述结论还成立证明:∵四边形ABCD 是平行四边形∴∠DCB =∠DAB ,AD=BC ,DC ∥AB 且DC =AB ∴∠ADE =∠CBF ∵AE=AD ,CF=CB∴∠AED =∠ADE ,∠CFB =∠CBF ∴∠AED =∠CFB 又∵AD=BC ∴△ADE ≌△CBF ∴ED=FB∵DC=AB∴ED+DC=FB+AB即EC=FA∵DC∥AB即EC∥AF∴四边形AFC E是平行四边形【例6】如图,已知是平行四边形的对角线,和△ACQ都是等边三角形,求证:AC ABCD ACP△四边形是平行四边形.BPDQ【解析】方法一:(利用全等得两组对边相等)∵是平行四边形的对角线AC ABCD∴DAC BCA∠=∠∵60ACP CAQ∠=∠=︒∴DAQ BCP∠=∠又∵,AD CB=AQ CP=∴ADQ CBP∆∆≌∴DQ BP=类似可证ABQ CDP∆∆≌∴BQ DP=∴四边形是平行四边形.BPDQ方法二:(利用对角线互相平分证明结论)连结交于,连结、.BD AC O PO QO利用和是全等等边三角形可得ACP∆ACQ∆、、三点共线,且P O Q PO QO=又∵BO DO=∴四边形是平行四边形.BPDQ【例7】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:四边形ADFE是平行四边形.【解析】证明:法一:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴∠AEF=30°∴AE=2AF,且AB=2AF,∴AF=CB,而∠ACB=∠AFE=90°,在Rt△AFE和Rt△BCA中,,AF BC=AE BA=∴△AFE≌△BCA(HL),∴AC=EF;而△ACD是等边三角形,∴∠DAC=60°,∴EF=AC=AD,且AD⊥AB,而EF⊥AB,∴EF∥AD,∴四边形ADFE是平行四边形OQPDCBAQPDCBA【拓展】本题条件充足,可以引导学生进行一题多解,开阔做题视野的同时练习各种平行四边形判定定理。
第十八章平行四边形(教材分析)1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉。
教材全解2016人教版八年级数学下册第18章检测题及答案解析第十八章平行四边形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015·广州中考)下列命题中,真命题的个数是( )①对角线互相平分的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个2.(2015·浙江宁波中考)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DEC.AE=CFD.∠1=∠2第2题图3.有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是菱形;③两条对角线互相垂直的四边形是正方形;④两条对角线相等且互相垂直的四边形是正方形.A.4B.3C.2D.14.(2015·湖北孝感中考)下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.45.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形6.如图,在菱形中,,∠,则对角线等于()A.20B.15C.10D.57.如图所示,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16B.17C.18D.198.矩形、菱形、正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直9.如图,将一个长为,宽为的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.B.C.D.10.如图是一张矩形纸片,,若将纸片沿折叠,使落在上,点的对应点为点,若,则()A.B.C.D.二、填空题(每小题3分,共24分)11.如图,在四边形ABCD 中,已知AB CD =,再添加一个条件(写出一个即可),则四边形ABCD 是平行四边形.(图形中不再添加辅助线)12.在四边形ABCD 中,已知90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是 . 13.如图,在菱形ABCD 中,对角线AC BD ,相交于点O,若再补充一个条件能使菱形成为正方形,则这个条件是 .(只填一个条件即可)14.在四边形ABCD 中,AB =DC ,AD =BC .请再添加一个条件,使四边形ABCD 是矩形.你CDAB第15题图添加的条件是.(写出一种即可)15.如图,矩形的对角线,,则图中五个小矩形的周长之和为_______.16.如图所示,在□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为 .17.若□的周长是30,相交于点,△的周长比△的周长大,则= .18.如图所示,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为 .三、解答题(共46分)19.(5分)如图,在四边形中,∥,,,求四边形的周长.20.(5分)已知:如图,在平行四边形中,对角线相交于点,过点分别交于点求证:.21.(5分)已知:如图,在中,E ,F 是对角线BD 上的两点,且BF DE =. 求证:AE CF =.22.(7分)如图,在△和△中,与交于点.A B CD OEF 第20题图(1)求证:△≌△;(2)过点作∥,过点作∥,与交于点,试判断线段与的数量关系,并证明你的结论.23.(8分)(2015·河北中考)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.(1)在方框中填空,以补全已知和求证;第23题图(2)按嘉淇的想法写出证明;证明:(3)用文字叙述所证命题的逆命题为____________________________________.24.(8分)如图,点是正方形内一点,△是等边三角形,连接,延长交边于点.(1)求证:△≌△;(2)求∠的度数.已知:如图,在四边形ABCD中,BC=AD,AB=_________.第25题图25.(8分)(2015·兰州中考)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相垂直平分.第十八章平行四边形检测题参考答案1.B 解析:因为对角线互相平分的四边形是平行四边形,所以①正确;因为两组对角分别相等的四边形是平行四边形,所以②正确;因为一组对边平行且相等的四边形是平行四边形,所以③错误.故正确的是①②.2.C 解析:选项A,当BE=DF时,∵四边形ABCD是平行四边形,∴AB=CD,∠ABE=∠CDF.在△ABE 和△CDF 中,,,,AB CD ABE CDF BE DF ì=ïïï??íïï=ïïî∴△ABE ≌△CDF (SAS ).选项B,当BF =DE 时,BF -EF =DE -EF ,即BE =DF .∵ 四边形ABCD 是平行四边形, ∴ AB =CD ,∠ABE =∠CDF . 在△ABE 和△CDF 中,,,,AB CD ABE CDF BE DF ì=ïïï??íïï=ïïî∴△ABE ≌△CDF (SAS ).选项C ,当AE =CF 时,∵ 四边形ABCD 是平行四边形,∴ AB =CD ,∠ABE =∠CDF . 添加条件AE =CF 后,不能判定△ABE ≌△CDF 全等.选项D ,当∠1=∠2时,∵ 四边形ABCD 是平行四边形,∴ AB =CD ,∠ABE =∠CDF . 在△ABE 和△CDF 中,12,,,AB CD ABE CDF ì??ïïï=íïï??ïïî∴△ABE ≌△CDF (ASA ).综上可知,添加选项A,B,D均能使△ABE≌△CDF,添加选项C不能使△ABE≌△CDF.3.D解析:只有①正确,②③④错误.4.C 解析:平行四边形的对边相等,所以①正确;对角线相等的平行四边形是矩形,所以②错误;正方形既是轴对称图形,又是中心对称图形,所以③正确;一条对角线平分一组对角的平行四边形是菱形,所以④正确.故选C.5.C解析:由四边形的两条对角线相等知,顺次连接该四边形各边中点所得的四边形的四条边相等,即所得四边形是菱形.6.D解析:在菱形中,由∠= ,得∠.又∵,∴△是等边三角形,∴.7.B 解析:本题考查了正方形的性质、等腰直角三角形的判定与性质.如图所示,∵ AC 是正方形ABCD 的一条对角线,∴ ∠ACB =∠ACD =45°, △ABC 是等腰直角三角形, ∴ AC =22AB BC += 62.又四边形EBFG 和四边形PHQM 均为正方形, 可得△CFG 和△CPM 均为等腰直角三角形, 则BF =FG =CF =12BC =3, CM =PM =QM =HQ =AQ =13AC =22, ∴ 正方形EBFG 的面积为9,正方形PHQM 的面积为8, ∴ S 1+S 2=17. 8.C9.A 解析:由题意知4 , 5,)cm 1054212(菱形=⨯⨯=S .10.A 解析:由折叠知,四边形为正方形,∴. 11.∥或∠∠或∠∠(答案不唯一)12.13.90BAD ∠=o(或AD AB ⊥或AC BD =等)14.∠A =90°或∠B =90°或∠C =90°或∠D =90°或AC =BD (答案不唯一,写出一种即可) 15.28 解析:由勾股定理得.又,,所以将五个小矩形的上、下边分别平移到矩形ABCD 的上、下边上,左、右边分别平移到矩形ABCD 的左、右边上,则五个小矩形的周长之和等于矩形ABCD 的周长,即五个小矩形的周长之和为16.2 解析:∵ 四边形ABCD 是平行四边形,∴ BE =DE =12BD =1.由折叠知B ′E =BE =1,∠B ′EB =90°. 在Rt △B ′ED 中,DB ′=2211+=2. 点拨:平行四边形的两条对角线互相平分. 17.9 解析:△和 △有两边是相等的,又△的周长比△的周长大3, 其实就是比大3,又知AB +BC =15,可求得.18.25° 解析:因为□ABCD 与□DCFE 的周长相等,且DC 为公共边,所以AD =DE ,所以∠DAE =∠DEA .因为AB ∥DC ,DC ∥EF ,所以AB ∥EF ,所以∠BAE +∠FEA =180°, 即∠BAD +∠DAE +∠FED +∠DEA =180°. 因为DE ∥CF ,∠F =110°,所以∠FED+∠F=180°,则∠FED=70°.因为∠BAD=60°,所以60°+70°+2∠DAE=180°,所以∠DAE=25°.19.解:∵∥,∴ .又∵,∴∠ , ∴∥ ,∴四边形是平行四边形 , ∴∴四边形的周长.20.证明:∵四边形是平行四边形,∴∥,,∴∴△≌△,故.21.证明:∵四边形ABCD是平行四边形,∴AD BC AD BC=,∥.∴ADE FBC∠∠.=在ADE,∠∠,,===△中,AD BC ADE FBC DE BF △和CBF∴ADE CBF=.△≌△,∴AE CF22.(1)证明:在△和△中,,,∴△≌△.(2)解.证明如下: ∵∥,∥,∴ 四边形是平行四边形. 由(1)知,∠=∠,∴,∴ 四边形是菱形.∴. 23.分析:(1)根据命题“两组对边分别相等的四边形是平行四边形”可知CD AB =,四边形ABCD 是平行四边形.(2)连接BD ,根据已知条件,利用SSS 判定ABD CDB △△≌,可得BDC DBA ∠=∠,所以CD AB //.同理,由CBD ADB ∠=∠,得CB AD //,从而问题得证. (3)命题的条件是两组对边分别相等的四边形,结论是平行四边形,故其逆命题是把原命题的结论作为条件,原命题的条件作为结论. 解:(1)CD 平行 (2)证明:连接BD . 在△ABD 和△CDB 中,∵ AB =CD ,AD =CB ,BD =DB , ∴ △ABD ≌△CDB .∴ ∠1=∠2,∠3=∠4. ∴ AB ∥CD ,AD ∥CB .∴ 四边形ABCD 是平行四边形. (3)平行四边形的对边相等.24.(1)证明:∵ 四边形是正方形,∴ ∠∠,. ∵ △是等边三角形,∴ ∠∠,.∵ ∠∠,∠∠,∴ ∠∠. ∵ ,∠∠,∴ △≌△.第23题答图(2)解:∵△≌△,∴,∴∠∠.∵∠∠,∠∠,∴∠∠.∵,∴∠∠.∵∠,∴∠,∴∠.25.解:(1)如图,过点B作BM∥AC交DC的延长线于点M.∵AB∥CD,∴四边形ABMC为平行四边形,∴AC=BM=BD,∠BDC=∠M=∠ACD.在△ACD和△BDC 中,第25题答图∴△ACD≌△BDC,∴AD=BC.(2)连接EH,HF,FG,GE.∵E,F,G,H分别是AB,CD,AC,BD的中点,∴HE∥AD,且HE =AD,FG∥AD,且FG =AD,∴四边形HFGE为平行四边形.由(1)知,AD=BC,∴HE=EG,∴四边形HFGE为菱形,∴EF与GH互相垂直平分.。
人教版八年级数学(下册)平行四边形专题汇总一、平行四边形与等腰三角形专题例题1已知:如图,平行四边形ABCD中,E为AD的中点,BE的延长线交CD的延长线于点F.(1)求证:CD=DF;(2)若AD=2CD,请写出图中所有的直角三角形和等腰三角形.训练一1.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①② B.只有①②③ C.只有③④ D.①②③④2.如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.3.如图,已知AD和BC交于点O,且△OAB和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F.求证:△ACE为等边三角形.4.如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG交CE于F,交AD于G.求证:AE=DG.二、平行四边形与面积专题例题2 已知平行四边形ABCD ,AD=a ,AB=b ,∠ABC=α.点F 为线段BC 上一点(端点B ,C 除外),连接AF ,AC ,连接DF ,并延长DF 交AB 的延长线于点E ,连接CE . (1)当F 为BC 的中点时,求证:△EFC 与△ABF 的面积相等;(2)当F 为BC 上任意一点时,△EFC 与△ABF 的面积还相等吗?说明理由.训练二1. 如图,过▱ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的▱AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A. S 1>S 2 B .S 1<S 2 C .S 1=S 2 D .2S 1=S 22.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m 2,10m 2,36m 2,则第四块田的面积为3.如图,AE ∥BD ,BE ∥DF ,AB ∥CD ,下面给出四个结论:(1)AB=CD ;(2)BE=DF ;(3)S ABDC =S BDFE ;(4)S △ABE =S △DCF .其中正确的有( )A.1个B.2个C.3个D.4个4.在面积为15的平行四边形ABCD 中,过点A作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB=5,BC=6,则CE+CF 的值为( ) A .231111+B .231111-C .231111+或231111-D .231111+或231+5.平行四边形ABCD 的周长为20cm ,AE ⊥BC 于点E ,AF ⊥CD 于点F ,AE=2cm ,AF=3cm ,求ABCD 的面积.6.如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE=PF ,且AP+AE=CP+CF . (1)求证:PA=PC .(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD 的面积.7.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B.13:5 C.13:6 D.13:5三、平行四边形与角度专题例题3 如图,在平行四边形ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点G,点G在E、C两点之间,连接AE、AF.(1)求证:△ABE≌△FDA;(2)当AE⊥AF 时,求∠EBG的度数.训练三1.如图,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,则∠AEF=度.2.如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.3.如图,E、F是▱ABCD对角线AC上的两点,且BE∥DF.求证:(1)△ABE≌△CDF;(2)∠1=∠2.四、平行四边形与线段专题例题4 如图,ABCD为平行四边形,AD=2,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:EF=DF;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求DE的长.训练四1. 如图,□ABCD的对角线相交于点O,过点O任引直线交AD于E,交BC于F,则OE OF(填“>”“=”“<”),并说明理由.2.如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是3.已知:如图,在▱ABCD中,∠ADC、∠DAB的平分线DF、AE分别与线段BC相交于点F、E,DF与AE相交于点G.(1)求证:AE⊥DF;(2)若AD=10,AB=6,AE=4,求DF的长.4. 如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.5.如图,E、F分别是▱ABCD的边AD、BC上的点,且AE=CF,AF和BE相交于点G,DF和CE相交于点H,求证:EF 和GH互相平分.6.已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.7. 如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的F点,若△FDE的周长为8 cm,△FCB的周长为20 cm,则FC的长为cm.8. 如图,已知:在△ABC 中,∠BAC=90°,延长BA 到点D ,使AD=21AB ,点G 、E 、F 分别为边AB 、BC 、AC 的中点.求证:DF=BE .五、三角形中位线专题例题5 如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ的长为( )A .23 B .25C .3D .4 训练五1. 如图,AB ∥CD ,E ,F 分别为AC ,BD 的中点,若AB=5,CD=3,则EF 的长是( ) A .4 B .3 C .2 D .12.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD=BC ,∠PEF=30°,则∠PFE 的度数是( )A .15°B .20°C .25°D .30°3.如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A .7B .9C .10D .11六、平行四边形综合探究专题例题6 如图所示,在□ABCD 中,AB >BC ,∠A 与∠D 的平分线交于点E ,∠B 与∠C 的平分线交于F 点,连接EF . (1)延长DE 交AB 于M 点,则图中与线段EM 一定相等的线段有哪几条?说明理由;(不再另外添加字母和辅助线) (2)EF 、BC 与AB 之间有怎样的数量关系?为什么?(3)如果将条件“AB>BC”改为“AB<BC”,其它条件不变,EF 、BC 与AB 的关系又如何?请画出图形并证明你的结论.训练六1.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE 为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是2.如图所示,△ABC为等边三角形,P是△ABC内任一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=3.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为4.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个5.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.6. 在▱ABCD中,对角线AC、BD相交于点O,直线EF过点O,分别交AD、BC于E、F,如图①(1)求证:AE=CF;(2)将图①中▱ABCD沿直线EF折叠,使得点A落在A1处,点B落在B1处,如图②设FB1交CD于点G,A1B1分别交CD、DE于点P、Q,求证:EQ=FG.7.如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.。
第42讲平行四边形知识能力解读知能解读(一)平行四边形的概念两组对边分别平行的四边形叫做平行四边形。
注意(1)只有一组对边平行的四边形不一定是平行四边形。
(2)平行四边形的概念具有性质和判定的双重作用。
(1)两条平行线之间的任何两条平行线段都相等.(2)两条平行线中,一条直线上任意一点到另一条直线的距离,叫作这两条平行线之间的距离.知能解读(五)三角形的中位线(1)定义:连接三角形两边中点的线段叫作三角形的中位线.(2)定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.注意与三角形的中位线有关的三个结论:(1)三条中位线组成一个三角形,其周末长为原三角形周长的一半,面积为原三角形面积的四分之一;(2)三条中位线将原三角形分割成四个全等的三角形;(3)三角形的一条中位线与第三条边上的中线互相平分.方法技巧归纳方法技巧(一)平行四边形的判定方法平行四边表的判定方法较多,在使用对关键是根据已知条件灵活选择适当的方法.如果题目中边的条件较多,就考虑使用边的判定方法进行判断;如果已知条件主要是关于对角线的,可利用对角线互相平分进行判断;而如果已知条件是针对角的,应想到利用两组对角分别相等的四边形是平行四边形进行判断.方法技巧(二)利用平行四边形边的性质进行计算一般先根据平行四边形的对边相等找到周长与两邻边长的关系,再结合已知线段求解。
点拨(1)平行四边形的两邻边之和等于平行四边形周长的一半.(2)平行四边形被两条对角线分成四个小三角形,相邻两个小三角形的周长之差等于邻边之差.点拨在平行四边形中,只要知道一个角的度数或两个角之间的和、差、倍、分关系,就可以利用平行四边形邻角互补、对角相等这一性质来求出其他所有角的度数.方法技巧(三)平行四边形性质和判定的综合应用综合应用平行四边形的性质和判定时,一定要正确区分哪个地方用判定,哪个地方用性质,不要混淆,在使用判定时,要根据题目条件选择简便的判定方法.注意结合已知条件选择正确的判定方法是解题的关键.当已知条件是对角线时,可首先考虑用“两条对角线互相平分的四边形是平行四边形”判定上.点拨在选择平行四边形的判定方法时,根据条件选择合适的方法,在已知对边平行的前提下,证这组对边相等或另一组对边平行.方法技巧(四)三角形中位线的使用技巧在题目中当出现三角形两边中点时,往往利用三角形的中位线等于第三边的一半来求线段之间数量关系.点拨本题涉及三角形中位线定理,平行四边形的判定、性质及勾股定理.利用三角形中位线定理找出DE与BC的关系是解题关键.易混易错辨析易混易错知识1.对识别条件不理解,不能准确地利用平行四边形的判定方法.在解题过程中,有时误用条件而导致判断出错,凭主观想象判断一个四边形是平行四边形.2.受思维定式影响,把题目中没有的条件用在证明过程中.对顶角是较熟的知识,但是若题目中没有给出不能凭直觉直接当已知条件使用.易混易错(一)对识别条件使用不当而致误易混易错(二)在证明过程中受思维定式影响忽视条件而致误中考试题研究中考例题规律本讲主要考查借助于平行四边形的性质定理解决线段相等、角相等和求值问题及平行四边形的判定和三角形中位线定理,题型有填空题、选择题和解答题中考试题(一)利用平行四边形求解中考试题(二)利用平行四边形推理证明点拨(1)平行四边形的判定方法有多种,根据条件灵活选择;(2)对于折叠问题,注意折叠前后相等的线段、相等的角的应用。
2016年全国各地中考数学试题分类解析汇编(第一辑)第18章平行四边形一.选择题(共20小题)1.(2016•益阳)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形2.(2016•内江)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形3.(2015•广东)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1第3题第4题第5题第6题第7题第8题4.(2016•陕西)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对5.(2016•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.756.(2016•呼和浩特)如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为()A.B.C.D.7.(2016•郴州)如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.78.(2016•贵州)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.69.(2016•攀枝花)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分10.(2016•广安)下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形。
其中正确的个数有()A.1个B.2个C.3个D.4个11.(2016•苏州)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( )A .(3,1)B .(3,)C .(3,)D .(3,2)第11题 第12题 第13题 第14题 第15题12.(2016•雅安)如图,在矩形ABCD 中,AD=6,AE ⊥BD ,垂足为E ,ED=3BE ,点P 、Q 分别在BD ,AD 上,则AP+PQ 的最小值为( )A .2B .C .2D .313.(2016•绥化)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形OCED 的周长为( )A .4B .8C .10D .1214.(2016•威海)如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A .B .C .D .15.(2016•舟山)如图,矩形ABCD 中,AD=2,AB=3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )A .B .C .1D .16.(2016•宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2第16题 第17题 第18题 第19题17.(2016•资阳)如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=,EF=2,∠H=120°,则DN 的长为( )A .B .C .﹣D .2﹣18.(2016•台湾)如图,以矩形ABCD 的A 为圆心,AD 长为半径画弧,交AB 于F 点;再以C 为圆心,CD 长为半径画弧,交AB 于E 点.若AD=5,CD=,则EF 的长度为A .2B .3C .D . 19.(2016•兰州)如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC ,AD=2,DE=2,则四边形OCED 的面积( )A .2B .4C .4D .820.(2016•贵州)下列语句正确的是( )A .对角线互相垂直的四边形是菱形B .有两边及一角对应相等的两个三角形全等C .矩形的对角线相等D .平行四边形是轴对称图形2016年全国各地中考数学试题分类解析汇编(第一辑)第18章平行四边形参考答案与试题解析一.选择题(共20小题)1.(2016•益阳)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【分析】根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选D.【点评】本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键.2.(2016•内江)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形【分析】A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.【解答】解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C.【点评】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.3.(2015•广东)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH 的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.4.(2016•陕西)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.5.(2016•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75【分析】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.【点评】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.6.(2016•呼和浩特)如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为()A.B.C.D.【分析】先利用勾股定理求出DF,再根据△BEF∽△CFD,得=求出EF即可解决问题.【解答】解:∵四边形ABCD是正方形,面积为24,∴BC=CD=2,∠B=∠C=90°,∵四边形EFGH是正方形,∴∠EFG=90°,∵∠EFB+∠DFC=90°,∠BEF+∠EFB=90°,∴∠BEF=∠DFC,∵∠EBF=∠C=90°,∴△BEF∽△CFD,∴=,∵BF=,CF=,DF==,∴=,∴EF=,∴正方形EFGH的周长为.故选C.【点评】本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,属于中考常考题型.7.(2016•郴州)如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.7【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF=∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.【点评】本题考查了正方形的判定与性质、全等三角形的判定与性质;熟练掌握正方形的判定与性质,证明三角形全等是解决问题的关键.8.(2016•贵州)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【分析】根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称性质:对应线段相等,对应角相等.找到相应的直角三角形,利用勾股定理求解是解决本题的关键.9.(2016•攀枝花)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.10.(2016•广安)下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.【解答】解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.正确的只有③,故选A.【点评】本题考查三角形高,菱形、矩形、平行四边形的判定等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.11.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE 的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.12.(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2B.C.2D.3【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD 时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,∴AE=3,DE=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3,故选D.【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.13.(2016•绥化)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.14.(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE 沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.15.(2016•舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB∥CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【解答】解:过F作FH⊥AE于H,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3﹣DE,∴AE=,∵∠FHA=∠D=∠DAF=90°,∴∠AFH+∠HAF=∠DAE+∠FAH=90°,∴∠DAE=∠AFH,∴△ADE∽△AFH,∴,∴AE=AF,∴=3﹣DE,∴DE=,故选D.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,平行四边形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.16.(2016•宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC 的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△AO D=S△AO P+S△DOP=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形AB C D=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△AC D=S矩形AB C D=24,∴S△AOD=S△AC D=12,∵S△AOD=S△AOP+S△D OP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.17.(2016•资阳)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣D.2﹣【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=,∴DN=﹣;故选:C.【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.18.(2016•台湾)如图,以矩形ABCD的A为圆心,AD长为半径画弧,交AB于F点;再以C为圆心,CD长为半径画弧,交AB于E点.若AD=5,CD=,则EF的长度为何?()A.2 B.3 C.D.【分析】连接CE,可得出CE=CD,由矩形的性质得到BC=AD,在直角三角形BCE中,利用勾股定理求出BE的长,由AB﹣AF求出BF的长,由BE﹣BF求出EF的长即可.【解答】解:连接CE,则CE=CD=,BC=AD=5,∵△BCE为直角三角形,∴BE==,又∵BF=AB﹣AF=﹣5=,∴EF=BE﹣BF=﹣=2.故选A【点评】此题考查了矩形的性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.19.(2016•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积()A.2B.4 C.4D.8【分析】连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCEF的面积即可.【解答】解:连接OE,与DC交于点F,∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,∵OD∥CE,OC∥DE,∴四边形ODEC为平行四边形,∵OD=OC,∴四边形ODEC为菱形,∴DF=CF,OF=EF,DC⊥OE,∵DE∥OA,且DE=OA,∴四边形ADEO为平行四边形,∵AD=2,DE=2,∴OE=2,即OF=EF=,在Rt△DEF中,根据勾股定理得:DF==1,即DC=2,则S菱形ODEC=OE•DC=×2×2=2.故选A【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.20.(2016•贵州)下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即可得出结论.【解答】解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.【点评】本题考查了矩形的性质、全等三角形的判定方法、菱形的判定方法、平行四边形的性质;熟练掌握矩形的性质、全等三角形的判定方法、菱形的判定是解决问题的关键.。