十年高考真题分类汇编(2010-2019) 数学 专题11直线与圆 Word版无答案原卷版
- 格式:docx
- 大小:47.33 KB
- 文档页数:5
2010-2019高考数学文科真题分类训练专题九 解析几何 第二十四讲 直线与圆答案部分 2019年1.解析 由题意和题图可知,当P 为优弧»AB 的中点时,阴影部分的面积取最大值,如图所示,设圆心为O ,2AOB β∠=,()1222BOP AOP ββ∠=∠=π-=π-. 此时阴影部分面积211222222AOP BOP AOB S S S S β=++=⨯⨯+⨯⨯⨯△△扇形()sin 44sin βββπ-=+.故选B.2.解析 24y x =的焦点为()1,0,准线为1x =-,故符合条件的圆为()2214x y -+=.3.(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.3.解析:解法一:如图,由圆心与切点的连线与切线垂直,得1122m +=-,解得2m =-. 所以圆心为(0,-2),则半径22(20)(12)5r =--+-+=. 解法二:由22034(1)41m r m ⨯-+==+++,得2m =-,所以55r == 4.解析 (1)因为M e 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a . 因为M e 与直线x +2=0相切,所以M e 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥uuu r uuu r ,故可得2224(2)a a +=+,解得=0a 或=4a .故M e 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M e 的半径为=|+2|,||=2r x AO .由于MO AO ⊥uuu r uuu r ,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x .因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .2010-2018年1.A 【解析】圆心(2,0)到直线的距离222d ==所以点P 到直线的距离1d ∈.根据直线的方程可知A ,B 两点的坐标分别为(2,0)A -,(0,2)B -,所以||AB =所以ABP ∆的面积111||2S AB d ==.因为1d ∈,所以[2,6]S ∈,即ABP ∆面积的取值范围是[2,6].故选A .2.C 【解析】圆心坐标为(1,0)-,由点到直线的距离公式可知d ==,故选C.3.B 【解析】由2220x y ay +-=(0a >)得()222x y a a +-=(0a >),所以圆M 的圆心为()0,a ,半径为1r a =,因为圆M 截直线0x y +=所得线段的长度是,所=2a =,圆N 的圆心为()1,1,半径为21r =,所以MN ==123r r +=,121r r -=,因为1212r r r r -<MN <+,所以圆M 与圆N 相交,故选B .4.A 【解析】由题意知圆心为(1,4),1=,解得43a =-,故选A .5.D 【解析】由题意可得圆的半径为r =()()22112x y -+-=.6.D 【解析】圆的标准方程为22(1)(1)1x y -+-=,圆心(1,1)到直线34x y b +=的距离|7|15b -=,所以2b =或12b =. 7.B 【解析】由题意可得,2AB BC AC ===,∴ΔABC 为等边三角形,故ΔABC 的外接圆圆心时ΔABC 的中心,又等边ΔABC ,故中心为,故ΔABC3=. 8.A 【解析】当点M 的坐标为(1,1)时,圆上存在点(1,0)N ,使得45OMN ∠=o,所以01x =符合题意,排除B 、D ;当点M 的坐标为时,OM =M 作圆O 的一条切线MN ',连接ON ',则在Rt OMN '∆中,sin 32OMN '∠=<, 则45OMN '∠<o,故此时在圆O 上不存在点N ,使得°45OMN ∠=,即0x =C ,故选A .9.D 【解析】直线l 过点(0,3),斜率为1,所以直线l 的方程为30x y -+=. 10.B 【解析】因为圆C 的圆心为(3,4),半径为1,||5OC =,所以以原点为圆心、以m为半径与圆C 有公共点的最大圆的半径为6,所以m 的最大值为6,故选B .11.C 【解析】由题意得12(0,0),(3,4)C C ,121,r r ==1212||15C C r r =+==,所以9m =.12.D 【解析】设直线l 的倾斜角为θ,由题意可知min max 0,263ππθθ==⨯=.13.B 【解析】圆的标准方程为22(1)(1)2x y a ++-=-,则圆心(1,1)C -,半径r 满足22r a =-,则圆心C 到直线20x y ++=的距离d ==2422r a =+=-,故4a =-14.B 【解析】易知直线0x my +=过定点(0,0)A ,直线30mx y m --+=过定点(1,3)B ,且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故||||||cos ||sin PA PB AB PAB AB PAB +=∠+∠)4PAB π=∠+∈.故选B .15.A 【解析】由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线240x y +-=相切,所以由平面几何知识,知圆的直径的最小值为点0到直线240x y +-=的距离,此时2r =,得r =,圆C 的面积的最小值为245S r ππ==. 16.A 【解析】根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是–2,只有选项A 中直线的斜率为–2. 17.A 【解析】 圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,∴|PM |+|PN |≥|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值. 又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-444=, 故选A .18.C 【解析】圆心(1,2),圆心到直线的距离=1d =,半径r =,所以最后弦长为4=.19.B 【解析】(1)当y ax b =+过()1,0A -与BC 的中点D 时,符合要求,此13b =, (2)当y ax b =+位于②位置时1,0b A a ⎛⎫-⎪⎝⎭,11,11b a b D a a -+⎛⎫⎪++⎝⎭, 令1112A BD S ∆=得212b a b =-,∵0a >,∴12b < (3) 当y ax b =+位于③位置时21,11b b a A a a --⎛⎫⎪--⎝⎭,21,11b a b D a a -+⎛⎫⎪++⎝⎭,令2212A CD S ∆=,即()111112112b b b a a --⎛⎫--= ⎪+-⎝⎭,化简得22241a b b -=-+,∵0a >, ∴22410b b -+<,解得1122b -<<+综上:112b -<<,选B20.B 【解析】点M(a , b )在圆.112222>+⇒=+b a y x 外111)00(.22<+==+ba d by ax O 距离到直线,圆=圆的半径,故直线与圆相交.所以选B .21.C 【解析】设直线斜率为k ,则直线方程为2(2)y k x -=-,即220kx y k -+-=,圆心(1,0)==12k =-。
2006—2010年高考数学试题选择题分类汇编——直线与圆2010年高考新题(2010江西理数)8.直线3y kx =+与圆()()22324x y -+-=相交于M ,N两点,若MN ≥k 的取值范围是 A. 304⎡⎤-⎢⎥⎣⎦, B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,, C. 33⎡-⎢⎣⎦, D.203⎡⎤-⎢⎥⎣⎦,【答案】A【解析】考查直线与圆的位置关系、点到直线距离公式,重点考察数形结合的运用.解法1:圆心的坐标为(3.,2),且圆与y 轴相切.当|MN |=,由点到直线距离公式,解得3[,0]4-; 解法2:数形结合,如图由垂径定理得夹在两直线之间即可, 不取+∞,排除B ,考虑区间不对称,排除C ,利用斜率估值,选A(2010安徽文数)(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是 (A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 4.A【解析】设直线方程为20x y c -+=,又经过(1,0),故1c =-,所求方程为210x y --=. 【方法技巧】因为所求直线与与直线x-2y-2=0平行,所以设平行直线系方程为20x y c -+=,代入此直线所过的点的坐标,得参数值,进而得直线方程.也可以用验证法,判断四个选项中方程哪一个过点(1,0)且与直线x-2y-2=0平行.(2010重庆文数)(8)若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为(A)(2 (B)[2 (C)(,2(22,)-∞++∞ (D)(2解析:2cos ,sin x y θθ=+⎧⎨=⎩化为普通方程22(2)1x y -+=,表示圆,因为直线与圆有两个不同的交点,1,<解得222b <<2:利用数形结合进行分析得22AC b b =-==同理分析,可知22b <+(2010重庆理数)(8) 直线x D的圆,1x y θθ⎧=⎪⎨=+⎪⎩())0,2θπ⎡∈⎣交与A 、B 两点,则直线AD 与BD 的倾斜角之和为 A.76π B. 54π C. 43π D. 53π 解析:数形结合301-=∠α βπ-+=∠ 302由圆的性质可知21∠=∠βπα-+=-∴ 3030 故=+βα43π(2010广东文数)(2010全国卷1理数)(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为(A) 42-+ (B)3-4-+3-+714262363.doc- - 3 - -1. (2010安徽理数)9、动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。
专题11平面解析几何解答题历年考题细目表题型年份考点试题位置解答题2019 椭圆2019年北京文科19解答题2018 椭圆2018年北京文科20解答题2017 椭圆2017年北京文科19解答题2016 椭圆2016年北京文科19解答题2015 椭圆2015年北京文科20解答题2014 椭圆2014年北京文科19解答题2013 椭圆2013年北京文科19解答题2012 椭圆2012年北京文科19解答题2011 椭圆2011年北京文科19解答题2010 椭圆2010年北京文科19历年高考真题汇编1.【2019年北京文科19】已知椭圆C:1的右焦点为(1,0),且经过点A(0,1).(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P、Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|•|ON|=2,求证:直线l经过定点.【解答】解:(Ⅰ)椭圆C:1的右焦点为(1,0),且经过点A(0,1).可得b=c=1,a,则椭圆方程为y2=1;(Ⅱ)证明:y=kx+t与椭圆方程x2+2y2=2联立,可得(1+2k2)x2+4ktx+2t2﹣2=0,设P(x1,y1),Q(x2,y2),△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,x1+x2,x1x2,AP的方程为y x+1,令y=0,可得y,即M(,0);AQ的方程为y x+1,令y=0,可得y.即N(,0).(1﹣y1)(1﹣y2)=1+y1y2﹣(y1+y2)=1+(kx1+t)(kx2+t)﹣(kx1+kx2+2t)=(1+t2﹣2t)+k2•(kt﹣k)•(),|OM|•|ON|=2,即为|•|=2,即有|t2﹣1|=(t﹣1)2,由t≠±1,解得t=0,满足△>0,即有直线l方程为y=kx,恒过原点(0,0).2.【2018年北京文科20】已知椭圆M:1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若k=1,求|AB|的最大值;(Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D 和点Q(,)共线,求k.【解答】解:(Ⅰ)由题意可知:2c=2,则c,椭圆的离心率e,则a,b2=a2﹣c2=1,∴椭圆的标准方程:;(Ⅱ)设直线AB的方程为:y=x+m,A(x1,y1),B(x2,y2),联立,整理得:4x2+6mx+3m2﹣3=0,△=(6m)2﹣4×4×3(m2﹣1)>0,整理得:m2<4,x1+x2,x1x2,∴|AB|,∴当m=0时,|AB|取最大值,最大值为;(Ⅲ)设直线PA的斜率k PA,直线PA的方程为:y(x+2),联立,消去y整理得:(x12+4x1+4+3y12)x2+12y12x+(12y12﹣3x12﹣12x1﹣12)=0,由代入上式得,整理得:(4x1+7)x2+(12﹣4x12)x﹣(7x12+12x1)=0,x1•x C,x C,则y C(2),则C(,),同理可得:D(,),由Q(,),则(,),(,),由与共线,则,整理得:y2﹣x2=y1﹣x1,则直线AB的斜率k1,∴k的值为1.3.【2017年北京文科19】已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x轴上,设椭圆方程:(a>b>0),则a=2,e,则c,b2=a2﹣c2=1,∴椭圆C的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,则直线AM的斜率k AM,直线DE的斜率k DE,直线DE的方程:y(x﹣x0),直线BN的斜率k BN,直线BN的方程y(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则|EH|,则,∴:△BDE与△BDN的面积之比为4:5.4.【2016年北京文科19】已知椭圆C:1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【解答】(1)解:∵椭圆C:1过点A(2,0),B(0,1)两点,∴a=2,b=1,则,∴椭圆C的方程为,离心率为e;(2)证明:如图,设P(x0,y0),则,PA所在直线方程为y,取x=0,得;,PB所在直线方程为,取y=0,得.∴|AN|,|BM|=1.∴.∴四边形ABNM的面积为定值2.5.【2015年北京文科20】已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【解答】解:(1)∵椭圆C:x2+3y2=3,∴椭圆C的标准方程为:y2=1,∴a,b=1,c,∴椭圆C的离心率e;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y1),B(1,﹣y1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y1)(x﹣2),令x=3,得M(3,2﹣y1),∴直线BM的斜率k BM1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知k BM=1,又∵直线DE的斜率k DE1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x1,y1),B(x2,y2),则直线AE的方程为y﹣1(x﹣2),令x=3,则点M(3,),∴直线BM的斜率k BM,联立,得(1+3k2)x2﹣6k2x+3k2﹣3=0,由韦达定理,得x1+x2,x1x2,∵k BM﹣1=0,∴k BM=1=k DE,即BM∥DE;综上所述,直线BM与直线DE平行.6.【2014年北京文科19】已知椭圆C:x2+2y2=4.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.【解答】解:(Ⅰ)椭圆C:x2+2y2=4化为标准方程为,∴a=2,b,c,∴椭圆C的离心率e;(Ⅱ)设A(t,2),B(x0,y0),x0≠0,则∵OA⊥OB,∴0,∴tx0+2y0=0,∴t,∵,∴|AB|2=(x0﹣t)2+(y0﹣2)2=(x0)2+(y0﹣2)2=x02+y024=x0244(0<x02≤4),因为4(0<x02≤4),当且仅当,即x02=4时等号成立,所以|AB|2≥8.∴线段AB长度的最小值为2.7.【2013年北京文科19】直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.【解答】解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B(0,1),O(0,0),∴线段OB的垂直平分线为y,将y代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2(r2﹣1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.8.【2012年北京文科19】已知椭圆C:1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.【解答】解:(Ⅰ)∵椭圆一个顶点为A(2,0),离心率为,∴∴b∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(x1,y1),N(x2,y2),则x1+x2,∴|MN|∵A(2,0)到直线y=k(x﹣1)的距离为∴△AMN的面积S∵△AMN的面积为,∴∴k=±1.9.【2011年北京文科19】已知椭圆G:1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.【解答】解:(Ⅰ)由已知得,c,,解得a,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0,y0=x0+m,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d,所以△PAB的面积s|AB|d.10.【2010年北京文科19】已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y =t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P.(Ⅰ)求椭圆C的方程;(Ⅱ)若圆P与x轴相切,求圆心P的坐标;(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.【解答】解:(Ⅰ)因为,且,所以所以椭圆C的方程为(Ⅱ)由题意知p(0,t)(﹣1<t<1)由得所以圆P的半径为,则有t2=3(1﹣t2),解得所以点P的坐标是(0,)(Ⅲ)由(Ⅱ)知,圆P的方程x2+(y﹣t)2=3(1﹣t2).因为点Q(x,y)在圆P上.所以设t=cosθ,θ∈(0,π),则当,即,且x=0,y取最大值2.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以解答题题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知椭圆22122:1(0)x y C a b a b +=>>的离心率为3,椭圆22222:1(0)33x y C a b a b +=>>经过点⎝⎭. (1)求椭圆1C 的标准方程;(2)设点M 是椭圆1C 上的任意一点,射线MO 与椭圆2C 交于点N ,过点M 的直线l 与椭圆1C 有且只有一个公共点,直线l 与椭圆2C 交于,A B 两个相异点,证明:NAB △面积为定值.【答案】(1)22113y x +=; (2)见解析. 【解析】(1)解:因为1C, 所以22619b a=-,解得223a b =.①将点⎝⎭代入2222133x y a b +=,整理得2211144a b +=.② 联立①②,得21a =,213b =,故椭圆1C 的标准方程为22113y x +=. (2)证明:①当直线l 的斜率不存在时,点M 为()1,0或()1,0-,由对称性不妨取()1,0M ,由(1)知椭圆2C 的方程为2213x y +=,所以有()N .将1x =代入椭圆2C的方程得y =,所以11122NAB S MN AB ∆=⋅==. ②当直线l 的斜率存在时,设其方程为y kx m =+, 将y kx m =+代入椭圆1C 的方程 得()222136310kxkmx m +++-=,由题意得()()()2226413310km k m∆=-+-=,整理得22313m k =+.将y kx m =+代入椭圆2C 的方程, 得()222136330kxkmx m +++-=.设()11,A x y ,()22,B x y ,则122613km x x k +=-+,21223313m x x k-=+, 所以AB ===. 设()00,M x y ,()33,N x y ,ON MO λ=u u u vu u u u v,则可得30x x λ=-,30y y λ=-.因为220022333113x y x y ⎧+=⎪⎨+=⎪⎩,所以2200222003113x y x y λ⎧+=⎪⎛⎫⎨+= ⎪⎪⎝⎭⎩,解得3λ=(3λ=-舍去), 所以3ON MO =u u u vu u u u v,从而()31NM OM =+.又因为点O 到直线l 的距离为21m d k=+,所以点N 到直线l 的距离为()(231311m d k+⋅+=+,所以()()221126131312231NABmk S d AB m k∆+=+⋅=+⋅⋅+ 62=+,综上,NAB ∆的面积为定值62+. 2.如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b+=(a >b >0)经过点(0,3-),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1)求椭圆C 的标准方程;(2)当MF =2FN 时,求直线l 的方程;(3)若直线l 上存在点P 满足PM·PN=PF 2,且点P 在椭圆外,证明:点P 在定直线上.【答案】(1)22143x y +=;(25250x y ±=;(3)见解析. 【解析】(1)设椭圆的截距为2c ,由题意,b 3,由点F 到左顶点的距离和到右准线的距离相等,得a+c =2a c c-,又a 2=b 2+c 2,联立解得a =2,c =1.∴椭圆C 的标准方程为22143x y +=;(2)当直线l 与x 轴重合时,M (﹣2,0),N (2,0),此时MF =3NF ,不合题意; 当直线l 与x 轴不重合时,设直线l 的方程为x =my+1,M (x 1,y 1),N (x 2,y 2),联立22my 1x y 143x =+⎧⎪⎨+=⎪⎩,得(3m 2+4)y 2+6my ﹣9=0.△=36m 2+36(m 2+4)>0.122634m y y m +=-+ ①,1229y y 3m 4=-+②,由MF =2FN ,得y 1=﹣2y 2③, 联立①③得,1222126,3434m my y m m =-=++, 代入②得,()22227293434m m m-=-++,解得m =20y ±=;(3)当直线l 的斜率为0时,则M (2,0),N (﹣2,0),设P (x 0,y 0), 则PM•PN=|(x 0﹣2)(x 0+2)|,∵点P 在椭圆外,∴x 0﹣2,x 0+2同号, 又()()()()2220000PF x 1,x 2x 2x 1=-∴-+=-,解得052x =. 当直线l 的斜率不为0时,由(2)知,1212226m 9y y ,y y 3m 43m 4+=-=-++,10200PM y ,PN y ,PF =-=-=.∵点P 在椭圆外,∴y 1﹣y 0,y 2﹣y 0同号,∴PM•PN=(1+m 2)(y 1﹣y 0)(y 2﹣y 0)=()()221201201my yy y y y ⎡⎤+-++⎣⎦()()2222002269113434m m y m y m m ⎛⎫=++-=+ ⎪++⎝⎭,整理得032y m =,代入直线方程得052x =.∴点P 在定直线52x =上. 3.已知抛物线C :24y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点. (1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点(2,0)E -,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点. 【答案】(1)1y x =-或1y x =-+;(2)(2,0). 【解析】解:(1)法一:焦点(1,0)F ,当直线l 斜率不存在时,方程为1x =,与抛物线的交点坐标分别为(1,2),(1,2)-, 此时4AB =,不符合题意,故直线的斜率存在.设直线l 方程为(1)=-y k x 与24y x =联立得()2222220k x k x k -+-=,当0k =时,方程只有一根,不符合题意,故0k ≠.()212222k x x k++=,抛物线的准线方程为1x =-,由抛物线的定义得()()12||||||11AB AF BF x x =+=+++()222228k k+=+=,解得1k =±,所以l 方程为1y x =-或1y x =-+.法二:焦点(1,0)F ,显然直线l 不垂直于x 轴,设直线l 方程为1x my =+,与24y x =联立得2440y my --=,设11(,)A x y ,22(,)B x y ,124y y m +=,124y y =.||AB ==()241m ==+,由8AB =,解得1m =±, 所以l 方程为1y x =-或1y x =-+. (2)设11(,)A x y ,22(,)B x y ,设直线l 方程为(0)x my b m =+≠与24y x =联立得:2440y my b --=,可得124y y m +=,124y y b =-. 由AEO BEO ∠=∠得EA EB k k =,即121222y yx x =-++. 整理得121122220y x y x y y +++=,即121122()2()20y my b y my b y y +++++=, 整理得12122(2)()0my y b y y +++=, 即84(2)0bm b m -++=,即2b =. 故直线l 方程为2x my =+过定点(2,0).4.已知椭圆22221(0)x y a b a b+=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且0AC BC ⋅=u u u r u u u r ,||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r. (1)求椭圆的标准方程;(2)设P 、Q 为椭圆上不重合的两点且异于A 、B ,若PCQ ∠的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ AB =λu u u r u u u r?若不存在,请说明理由;若存在,求λ取得最大值时的PQ 的长.【答案】(1) 223144x y += (2)3【解析】(1)∵0AC BC ⋅=u u u r u u u r,∴90ACB ∠=︒,∵||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r.即||2||BC AC =u u u r u u u r ,∴AOC △是等腰直角三角形, ∵()2,0A ,∴()1,1C , 而点C 在椭圆上,∴22111a b +=,2a =,∴243b =, ∴所求椭圆方程为223144x y +=.(2)对于椭圆上两点P ,Q , ∵PCQ ∠的平分线总是垂直于x 轴, ∴PC 与CQ 所在直线关于1x =对称,PC k k =,则CQ k k =-,∵()1,1C ,∴PC 的直线方程为()11y k x =-+,①QC 的直线方程为()11y k x =--+,②将①代入223144x y +=,得()()22213613610k x k k x k k +--+--=,③∵()1,1C 在椭圆上,∴1x =是方程③的一个根,∴2236113P k k x k--=+, 以k -替换k ,得到2236131Q k k x k +-=+. ∴()213P Q PQ P Qk x x kk x x +-==-, ∵90ACB ∠=o ,()2,0A ,()1,1C ,弦BC 过椭圆的中心O , ∴()2,0A ,()1,1B --,∴13AB k =, ∴PQ AB k k =,∴PQ AB ∥,∴存在实数λ,使得PQ AB =λu u u r u u u r,||PQ =u u ur 3=≤, 当2219k k =时,即k =时取等号,max ||3PQ =u u u r ,又||AB =u u u r,maxλ==,∴λ取得最大值时的PQ的长为3. 5.已知抛物线216y x =,过抛物线焦点F 的直线l 分别交抛物线与圆22(4)16x y -+=于,,,A C D B (自上而下顺次)四点.(1)求证:||||AC BD ⋅为定值; (2)求||||AB AF ⋅的最小值. 【答案】(1)见证明;(2)108 【解析】(1)有题意可知,(4,0)F可设直线l 的方程为4x my =+,1122(,),(,)A x y B x y联立直线和抛物线方程2164y x x my ⎧=⎨=+⎩,消x 可得216640y my --=,所以1216y y m +=,1264y y =-, 由抛物线的定义可知,112||4,||42pAF x x BF x =+=+=+, 又||||4,||||4AC AF BD BF =-=-,所以2221212264||||(||4)(||4)16161616y y AC BD AF BF x x ⋅=--==⋅==,所以||||AC BD ⋅为定值16.(2)由(1)可知,12||||||8AB AF BF x x =+=++,1||4AF x =+,212111212||||(8)(4)12432AB AF x x x x x x x x ⋅=+++=++++,由1216x x =,可得2116x x =, 所以211164||||1248AB AF x x x ⋅=+++(其中1>0x ), 令264()1248f x x x x =+++,222642(2)(4)()212x x f x x x x -+'=+-=, 当(0,2)x ∈时,()0f x '<,函数单调递减,当(2,)x ∈+∞时,()0f x '>,函数单调递增, 所以()(2)108f x f ≥=. 所以||||AB AF ⋅的最小值为108.6.已知O 为坐标原点,点()()2,02,0A B -,,()01AC AD CB CD λλ===<<u u u r u u u r,过点B 作AC的平行线交AD 于点E .设点E 的轨迹为τ. (Ⅰ)求曲线τ的方程;(Ⅱ)已知直线l 与圆22:1O x y +=相切于点M ,且与曲线τ相交于P ,Q 两点,PQ 的中点为N ,求三角形MON 面积的最大值.【答案】(Ⅰ)()22105x y y +=≠;.【解析】(Ⅰ)因为,AD AC EB AC =∥, 故EBD ACD ADC ∠=∠=∠, 所以EB ED =,故EA EB EA ED AD +=+==由题设得()()2,02,04A B AB -=,,,由椭圆定义可得点E 的轨迹方程为:()22105x y y +=≠.(Ⅱ)由题意,直线l 的斜率存在且不为0, 设直线l 的方程为y kx m =+, 因为直线l 与圆O 相切,1=,∴221m k =+,由221,5,x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()2221510550k x kmx m +++-=. 设()()1122,,,P x y Q x y ,由韦达定理知:()1212122210221515km mx x y y k x x m k k +=-+=++=++,. 所以PQ 中点N 的坐标为225,1515kmm k k ⎛⎫- ⎪++⎝⎭, 所以弦PQ 的垂直平分线方程为22151515m km y x k k k ⎛⎫-=-+ ⎪++⎝⎭,即 24015kmx ky k++=+.所以MN =.将m =MN =得2441155||||kMNk kk====++…(当且仅当k=,即m=取等号).所以三角形MON的面积为11122S OM MN=⨯⨯⨯≤,综上所述,三角形MON.7.已知椭圆2222:1(0)x yC a ba b+=>>的离心率为2,F是椭圆C的一个焦点.点(02)M,,直线MF的.(1)求椭圆C的方程;(2)若过点M的直线l与椭圆C交于A B,两点,线段AB的中点为N,且AB MN=.求l的方程.【答案】(1)22182x y+=;(2)2y x=+【解析】(1)由题意,可得23cac⎧=⎪⎪⎨⎪=⎪⎩,解得ac⎧=⎪⎨=⎪⎩,则222=2b a c=-,故椭圆C的方程为22182x y+=.(2)当l 的斜率不存在时,=2AB MN AB MN≠=,,,不合题意,故l的斜率存在.设l的方程为2y kx=+,联立221822x yy kx⎧+=⎪⎨⎪=+⎩,得22(14)1680k x kx+++=,设1122(()A x yB x y,),,,则12122216k8,14k14kx x x x+=-=++,()222(16)3214128320k k k∆=-+=->即214k>,设00()N x y ,,则12028214x x kx k+==-+,120||||,0AB MN x =-=-Q0x =,即28||14k k =+整理得21124k =>.故k =,l 的方程为2y x =+.8.已知椭圆2222:1(0)x y C a b a b+=>>过点(,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN ⋅=-u u u u r u u u r 恒成立?若存在求出点Q 的坐标:若不存在,说明理由.【答案】(1) 2211612x y += (2)见解析【解析】(1)因为椭圆C 过点,所以221231a b +=, 又抛物线的焦点为()2,0,所以2c =. 所以2212314a a +=-,解得23a =(舍去)或216a =. 所以椭圆C 的方程为2211612x y +=.(2)假设在x 轴上存在定点(,0)Q m ,使得13516QM QN ⋅=-u u u u r u u u r .①当直线l 的斜率不存在时,则(2,3)M ,(2,3)N -,(2,3)QM m =-u u u u r ,(2,3)QN m =--u u u r, 由2135(2)916QM QN m ⋅=--=-u u u u r u u u r ,解得54m =或114m =;②当直线l 的斜率为0时,则(4,0)M -,(4,0)N ,(4,0)QM m =--u u u u r ,(4,0)QN m =-u u u r, 由21351616QM QN m ⋅=-=-u u u u r u u u r ,解得114m =-或114m =.由①②可得114m =,即点Q 的坐标为11,04⎛⎫ ⎪⎝⎭. 下面证明当114m =时,13516QM QN ⋅=-u u u u r u u u r 恒成立.当直线l 的斜率不存在或斜率为0时,由①②知结论成立.当直线l 的斜率存在且不为0时,设其方程为(2)(0)y k x k =-≠,()11,M x y ,()22,N x y .直线与椭圆联立得()()222234161630kxk x k +-+-=,直线经过椭圆内一点,一定与椭圆有两个交点,且21221643k x x k +=+,()212216343k x x k -=+. ()()()222121212122224y y k x k x k x x k x x k =-•-=-++,所以()1122121212111111121,,44416QM QN x y x y x x x x y y ⎛⎫⎛⎫•=-•-=-+++ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r ()()()()222222221212221631112111161211241244164344316k k k x x k x x k k k k k k -⎛⎫⎛⎫=+-++++=+-+++= ⎪ ⎪++⎝⎭⎝⎭13516-恒成立 综上所述,在x 轴上存在点11,04Q ⎛⎫ ⎪⎝⎭,使得13516QM QN ⋅=-u u u u r u u u r 恒成立.9.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P 的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.(1)利用上述结论,求过椭圆C 上的点(1,)(0)P n n >的切线方程;(2)若M 是直线4x =上任一点,过点M 作椭圆C 的两条切线MA ,MB (A ,B 为切点),设椭圆的右焦点为F ,求证:MF AB ⊥.【答案】(1)240x y +-=(2)见证明 【解析】(1)由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P ,所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=.(2)设(4,)M t ,11(,)A x y ,22(,)B x y ,则过A ,B 两点的椭圆C 的切线MA ,MB 的方程分别为11143x x y y +=,22143x x y y+=, 因为(4,)M t 在两条切线上,114143x y t ⨯∴+=,224143x y t⨯+=, 所以A ,B 两点均在直线4143x yt +=上,即直线AB 的方程为13tyx +=, 当0t ≠时,3AB k t=-,又(1,0)F ,0413MF t t k -==-,313AB MF tk k t ⋅=-⨯=-,所以MF AB ⊥, 若0t =,点(4,0)M 在x 轴上,A ,B 两点关于x 轴对称,显然MF AB ⊥.10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F ,,离心率为12,P 为椭圆上一动点(异于左右顶点),若12AF F △. (1)求椭圆C 的方程;(2)若直线l 过点1F 交椭圆C 于,A B 两点,问在x 轴上是否存在一点Q ,使得QA QB ⋅u u u r u u u r为定值?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)见解析【解析】(1)由题意,当P 在上或下顶点时,12PF F ∆的面积取值最大值,即最大值为bc = 又12c a =,且222a c b =+,解得24a =,23b =, 故椭圆C 的方程为22143x y +=.(2)易知()11,0F -,设直线l 的方程为1x my =-,()()()11220,,,,,0A x y B x y Q x ,联立方程组221431x y x my ⎧+=⎪⎨⎪=-⎩,整理得22(34)690m y my +--=, 则122634my y m +=+,122934y y m =-+, ()()()()10120200212,,y QA QB x x y x x y x x x x y y ⋅=-⋅-=--+u u u r u u u r()212001212x x x x x x y y =+-++,∵111x my =-,221x my =-,∴()()()2212121212215111134m x x my my m y y m y y m =--=+-+=-+, ()()()212122226112234m x x my my m y y m +=-+-=+-=-+, ∴222000222156912343434m m QA QB x x x m m m ⋅=-+-+-+++u u u r u u u r 2202281253434m x x m m +=+-++()222000231248534x m x x m -++-=+, 要使QA QB ⋅u u u r u u u r 为定值,则2200031248534x x x -+-=,解得0118x =-, 所以在x 轴上存在点11,08Q ⎛⎫-⎪⎝⎭,使得QA QB ⋅u u u r u u u r 为定值. 11.已知点()1,0F ,直线:1l x =-,P 为平面上的动点,过点P 作直线的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅u u u r u u u r u u u r u u u r .(1)求动点P 的轨迹C 的方程;(2)设直线y kx b =+与轨迹C 交于两点,()11,A x y 、()22,B x y ,且12y y a -= (0a >,且a 为常数),过弦AB 的中点M 作平行于x 轴的直线交轨迹C 于点D ,连接AD 、BD .试判断ABD ∆的面积是否为定值,若是,求出该定值,若不是,请说明理由 【答案】(1) 24y x = (2)见解析 【解析】(1)设(,)P x y ,则(1,)Q y -,QP QF FP FQ •=•u u u r u u u r u u u r u u u r Q ,(1,0)(2,)(1,)(2,)x y x y y ∴+•-=-•-,即22(1)2(1)x x y +=--+,即24y x =, 所以动点P 的轨迹的方程24y x =.(2)联立方程组2,4,y kx b y x =+⎧⎨=⎩消去x ,得2440ky y b -+=, 依题意,0k ≠,且124y y k+=,124b y y k =,由12y y a -=得()2212124y y y y a +-=, 即221616ba k k-=, 整理得:221616kb a k -=,所以2216(1)a k kb =-,① 因为AB 的中点222,bk M k k -⎛⎫⎪⎝⎭,所以点212,D k k ⎛⎫⎪⎝⎭,依题意, 122111||22BD bkS DM y y a k∆∆-=-=, 由方程2440ky y b -+=中的判别式16160kb ∆=->,得10kb ->,所以2112ABD bkS a k∆-=••, 由①知22116a k kb -=,所以23121632MBDa a S a ∆=••=,又a 为常数,故ABD S ∆的面积为定值. 12.已知点P 在抛物线()220C x py p =:>上,且点P 的横坐标为2,以P 为圆心,PO 为半径的圆(O 为原点),与抛物线C 的准线交于M ,N 两点,且2MN =. (1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H .过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求AF BF -的值.【答案】(1) 24x y = (2)4 【解析】(1)将点P 横坐标2P x =代入22x py =中,求得2P y p=, ∴P (2,2p),2244OP p =+,点P 到准线的距离为22p d p =+, ∴222||||2MN OP d ⎛⎫=+ ⎪⎝⎭, ∴22222212p p p ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,解得24p =,∴2p =,∴抛物线C 的方程为:24x y =;(2)抛物线24x y =的焦点为F (0,1),准线方程为1y =-,()01H -,; 设()()1122A x y B x y ,,,, 直线AB 的方程为1y kx =+,代入抛物线方程可得2440x kx --=,∴121244x x k x x +==-,,…① 由AB HB ⊥,可得1AB HB k k ⋅=-, 又111AB AF y k k x -==,221HB y k x +=, ∴1212111y y x x -+⋅=-, ∴()()1212110y y x x -++=,即2212121111044x x x x ⎛⎫⎛⎫-++=⎪⎪⎝⎭⎝⎭,∴()22221212121110164x x x x x x +--+=,…② 把①代入②得,221216x x -=,则()22121211||||1116444AF BF y y x x -=+--=-=⨯=. 13.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:()PFd P FQ=. (1)当8(1)3P --,时,求()d P ; (2)证明:存在常数a ,使得2()d P PF a =+.(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断13()()d P d P +与22()d P 的关系. 【答案】(1)83;(2)证明见解析;(3)()()()1322d P d P d P +>. 【解析】 (1)因为8443(1)233PFk y x ==⇒=-. 联立方程24(1)1344Qy x x y x ⎧=-⎪⇒=⎨⎪=⎩, 则1083()534PF d P QF ⎧=⎪⎪⇒=⎨⎪=⎪⎩. (2)当()1,0P -,易得2()2a d P PF =-=, 不妨设()1,P P y -,0P y >, 直线:1PF x my =+,则2P my =-,联立214x my y x=+⎧⎨=⎩,2440y my --=,2Q y m ==+()222212()||212221P P Q y m d P PF m y y m m m +-=-+=+++ 2212122m m m m m+-+=-+=.(3)设()()()1122331,,1,,1,P y P y P y ---,则()()()13224d P d P d P +-⎡⎤⎣⎦1322PF P F P F =+-2221324424y y y =+++222131344242y y y y +⎛⎫=+++ ⎪⎝⎭()22213134416y y y y =++++因为()222213134416y y y y ⎡⎤++-++⎣⎦22131224428y y y y =++-,又因()()()()2222213131313444480y y y y y y y y ++-+=+->,所以()()()1322d P d P d P +>.14.已知抛物线2:2(0)C x py p =>的焦点F 到准线距离为2. (1)若点(1,1)E ,且点P 在抛物线C 上,求||||PE PF +的最小值;(2)若过点(0,)N b 的直线l 与圆22:(2)4M x y +-=相切,且与抛物线C 有两个不同交点,A B ,求AOB ∆的面积.【答案】(1)2(2) 2ABC S b ∆=【解析】解:(1)根据题意可知2p =所以抛物线方程为24x y =则抛物线C 焦点为(0,1)F ,准线为1y =-;记点,P E 到抛物线C 准线的距离分别为12,d d ,故12||||||2PE PF PE d d +=+≥=,等号成立当且仅当PE 垂直于准线,故||||PE PF +的最小值为2(2)设()11,A x y ,()22,B x y由题意知,直线l 斜率存在,设直线l 的方程为:y kx b =+将y kx b =+与24x y =联立得2440x kx b --=,由韦达定理得12124,4x x k x x b +==-,由()0,2M 到直线l 的距离为12d ==得:2244b b k -=,又||AB ==点O 到直线l 的距离为2d =所以2|ABC S b b ∆=== 15.已知曲线C 上的任意一点到直线l :x=-12的距离与到点F (102,)的距离相等. (1)求曲线C 的方程; (2)若过P (1,0)的直线与曲线C 相交于A ,B 两点,Q (-1,0)为定点,设直线AQ 的斜率为k 1,直线BQ 的斜率为k 2,直线AB 的斜率为k ,证明:22212112k k k+-为定值.【答案】(1)y 2=2x ;(2)见解析【解析】(1)由条件可知,此曲线是焦点为F 的抛物线,p122=,p=1.∴抛物线的方程为y 2=2x ;(2)根据已知,设直线AB 的方程为y=k (x -1)(k ≠0), 由()2y k x 1y 2x ⎧=-⎨=⎩,可得ky 2-2y -2k=0.设A (211y y 2,),B (222y y 2,),则122y y k +=,y 1y 2=-2. ∵1112211y2y k y y 212==++,2222222y 2y k y y 212==++. ∴22221222221212(y 2)(y 2)11k k 4y 4y +++=+=22222212212212(y 2)y (y 2)y 4y y +++ =()42422222122112122212y y y y 8y y 4y y 4y y ++++=()2221212128y y 32(y y )2y y 4162+++-+= =22482k 42k +=+.∴222121124k k k +-=.。
十年高考真题分类汇编(2010—2019)数学专题10立体几何1.(2019·浙江·T4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是( )A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+62×3×6=162.2.(2019·全国1·理T12)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.8√6πB.4√6πC.2√6πD.√6π【答案】D【解析】设PA=PB=PC=2x.∵E,F 分别为PA,AB 的中点,∴EF ∥PB,且EF=12PB=x.∵△ABC 为边长为2的等边三角形, ∴CF=√3.又∠CEF=90°,∴CE=√3-x 2,AE=12PA=x.在△AEC 中,由余弦定理可知cos ∠EAC=x 2+4-(3-x 2)2×2·x .作PD ⊥AC 于点D,∵PA=PC,∴D 为AC 的中点,cos ∠EAC=AD PA =12x . ∴x 2+4-3+x 24x =12x.∴2x 2+1=2.∴x 2=12,即x=√22.∴PA=PB=PC=√2. 又AB=BC=AC=2, ∴PA ⊥PB ⊥PC. ∴2R=√2+2+2=√6.∴R=√62.∴V=43πR 3=43π×6√68=√6π.故选D.3.(2019·全国2·理T7文T7)设α,β为两个平面,则α∥β的充要条件是( ) A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知,“α内有两条相交直线与β平行”是“α∥β”的充分条件.由面面平行的性质知,“α内有两条相交直线与β平行”是“α∥β”的必要条件,故选B.4.(2019·全国3·理T8文T8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD,M 是线段ED 的中点,则( ) A.BM=EN,且直线BM,EN 是相交直线 B.BM ≠EN,且直线BM,EN 是相交直线 C.BM=EN,且直线BM,EN 是异面直线 D.BM ≠EN,且直线BM,EN 是异面直线 【答案】B【解析】如图,连接BD,BE.在△BDE 中,N 为BD 的中点,M 为DE 的中点, ∴BM,EN 是相交直线,排除选项C 、D. 作EO ⊥CD 于点O,连接ON. 作MF ⊥OD 于点F,连接BF.∵平面CDE ⊥平面ABCD,平面CDE ∩平面ABCD=CD,EO ⊥ CD,EO ⊂平面CDE,∴EO ⊥平面ABCD. 同理,MF ⊥平面ABCD.∴△MFB 与△EON 均为直角三角形. 设正方形ABCD 的边长为2,易知EO=√3,ON=1,MF=√32,BF=√22+94=52,则EN=√3+1=2,BM=√34+254=√7,∴BM ≠EN.故选B.5.(2019·浙江·T8)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B 的平面角为γ,则( ) A.β<γ,α<γ B.β<α,β<γ C.β<α,γ<α D.α<β,γ<β 【答案】B【解析】如图G 为AC 中点,点V 在底面ABC 上的投影为点O,则点P 在底面ABC 上的投影点D 在线段AO 上,过点D 作DE 垂直AE,易得PE ∥VG,过点P 作PF ∥AC 交VG 于点F,过点D 作DH ∥AC,交BG于点H,则α=∠BPF,β=∠PBD,γ=∠PED,所以cos α=PFPB=EGPB=DHPB<BDPB=cos β,所以α>β,因为tan γ=PDED>PDBD=tan β,所以γ>β.故选B.6.(2018·全国3·理T10文T12)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D-ABC体积的最大值为( )A.12√3B.18√3C.24√3D.54√3【答案】B【解析】由△ABC为等边三角形且面积为9√3,设△ABC边长为a,则S=12a·√32a=9√3.∴a=6,则△ABC的外接圆半径r=√32×23a=2√3<4.设球的半径为R,如图,OO1=√R2-r2=√42-(2√3)2=2.当D在O的正上方时,VD-ABC =13S△ABC·(R+|OO1|)=13×9√3×6=18√3,最大.故选B.7.(2018·全国1·理T7文T9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.2√17B.2√5C.3D.2【答案】B【解析】如图所示,易知N为CD⏜的中点,将圆柱的侧面沿母线MC剪开,展平为矩形MCC'M',易知CN=14CC'=4,MC=2,从M到N的路程中最短路径为MN.在Rt△MCN中,MN=√MC2+NC2=2√5.8.(2018·全国3·理T3文T3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应为A中图形.9.(2018·北京·理T5文T6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 ( )A.1B.2C.3D.4【答案】C【解析】由该四棱锥的三视图,得其直观图如图.由正视图和侧视图都是等腰直角三角形,知PD ⊥平面ABCD,所以侧面PAD和PDC都是直角三角形.由俯视图为直角梯形,易知DC⊥平面PAD.又AB∥DC,所以AB⊥平面PAD,所以AB⊥PA,所以侧面PAB也是直角三角形.易知PC=2√2,BC=√5,PB=3,从而△PBC不是直角三角形.故选C.10.(2018·上海·T15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图.若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4B.8C.12D.16【答案】D【解析】设正六棱柱为ABCDEF-A1B1C1D1E1F1,以侧面AA1B1B,AA1F1F为底面矩形的阳马有E-AA 1B 1B,E 1-AA 1B 1B,D-AA 1B 1B,D 1-AA 1B 1B,C-AA 1F 1F,C 1-AA 1F 1F,D-AA 1F 1F,D 1-AA 1F 1F,共8个,以对角面AA 1C 1C,AA 1E 1E 为底面矩形的阳马有F-AA 1C 1C,F 1-AA 1C 1C,D-AA 1C 1C,D 1-AA 1C 1C,B-AA 1E 1E,B 1-AA 1E 1E,D-AA 1E 1E,D 1-AA 1E 1E,共8个,所以共有8+8=16(个),故选D.11.(2018·全国1·文T10)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( ) A.8 B.6√2 C.8√2 D.8√3【答案】C【解析】在长方体ABCD-A 1B 1C 1D 1中,AB ⊥平面BCC 1B 1,连接BC 1,则∠AC 1B 为AC 1与平面BB 1C 1C 所成的角,∠AC 1B=30°,所以在Rt △ABC 1中,BC 1=ABtan∠AC 1B =2√3,又BC=2,所以在Rt △BCC 1中,CC 1=√(2√3)2-22=2√2, 所以该长方体体积V=BC ×CC 1×AB=8√2.12.(2018·全国2·理T9)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=√3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.√56C.√55D.√22【答案】C【解析】以DA,DC,DD 1所在直线为坐标轴建立空间直角坐标系如图, 则D 1(0,0,√3),A(1,0,0),D(0,0,0),B 1(1,1,√3).∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,√3),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,√3).设异面直线AD 1与DB 1所成的角为θ. ∴cos θ=|AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·DB1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||DB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||=|22×√5|=√55.∴异面直线AD 1与DB 1所成角的余弦值为√55.13.(2018·全国2·文T9)在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( )A.√22 B.√32 C.√52 D.√72【答案】C【解析】如图,因为AB∥CD,所以AE与CD所成的角为∠EAB. 在Rt△ABE中,设AB=2,则BE=√5,则tan∠EAB=BEAB=√52,所以异面直线AE与CD所成角的正切值为√5 2.14.(2018·全国1·文T5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.12√2π B.12πC.8√2πD.10π【答案】B【解析】过直线O1O2的平面截该圆柱所得的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=2√2,r=√2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.15.(2018·浙江·T3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2B.4C.6D.8【答案】C【解析】由三视图可知该几何体为直四棱柱.∵S底=12×(1+2)×2=3,h=2,∴V=Sh=3×2=6.16.(2017·全国2·理T4文T6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π【答案】B【解析】由三视图知,该几何体是一个圆柱截去一部分所得,如图所示.其体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V=π×32×4+π×32×6×12=63π.17.(2017·全国1·理T7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【答案】B【解析】由三视图可还原出几何体的直观图如图所示.该五面体中有两个侧面是全等的直角梯形,且该直角梯形的上底长为2,下底长为4,高为2,则S梯=(2+4)×2÷2=6,所以这些梯形的面积之和为12.18.(2017·全国2·理T10)已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.√32 B.√155C.√105D.√33【答案】C【解析】方法一:把三棱柱ABC-A 1B 1C 1补成四棱柱ABCD-A 1B 1C 1D 1,如图,连接C 1D,BD,则AB 1与BC 1所成的角为∠BC 1D. 由题意可知BC 1=√2,BD=√22+12-2×2×1×cos60°=√3,C 1D=AB 1=√5.可知B C 12+BD 2=C 1D 2, 所以cos ∠BC 1D=√2√5=√105,故选C. 方法二:以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图所示.由已知条件知B 1(0,0,0),B(0,0,1),C 1(1,0,0),A(-1,√3,1),则BC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,-√3,-1). 所以cos<AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=AB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√5×√2=√105.所以异面直线AB 1与BC 1所成角的余弦值为√105.19.(2017·北京·理T7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3√2B.2√3C.2√2D.2【答案】B【解析】由题意可知,直观图为四棱锥A-BCDE(如图所示),最长的棱为正方体的体对角线AE=√22+22+22=2√3.故选B.20.(2017·全国3·理T8文T9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .π B.3π4C.π2D.π4【答案】B【解析】由题意可知球心即为圆柱体的中心,画出圆柱的轴截面如图所示,则AC=1,AB=12,底面圆的半径r=BC=√32,所以圆柱的体积是V=πr 2h=π×(√32)2×1=3π4,故选B.21.(2017·全国1·文T6)如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )【答案】A【解析】易知选项B中,AB∥MQ,且MQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面MNQ;选项C中,AB ∥MQ,且MQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面MNQ;选项D中,AB∥NQ,且NQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面MNQ,故排除选项B,C,D;故选A.4.(2016·浙江·理T2文T2)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n ⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n【答案】C【解析】对于选项A,∵α∩β=l,∴l⊂α,∵m∥α,∴m与l可能平行,也可能异面,故选项A不正确; 对于选项B,D,∵α⊥β,m∥α,n⊥β,∴m与n可能平行,可能相交,也可能异面,故选项B,D不正确. 对于选项C,∵α∩β=l,∴l⊂β.∵n⊥β,∴n⊥l.故选C.22.(2016·天津·文T3)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】由题意得该长方体沿相邻三个面的对角线截去一个棱锥,如下图所示.易知其左视图为B项中图.故选B.23.(2016·全国3·理T10文T11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )A.4πB.9π2 C.6π D.32π3【答案】B【解析】先计算球与直三棱柱三个侧面相切的球的半径,再和与直三棱柱两底面相切的球的半径相比较,半径较小的球即为所求.设球的半径为R,∵AB⊥BC,AB=6,BC=8,∴AC=10.当球与直三棱柱的三个侧面相切时,有12(6+8+10)×R=12×6×8,此时R=2;当球与直三棱柱两底面相切时,有2R=3,此时R=32.所以在封闭的直三棱柱中,球的最大半径只能为32,故最大体积V=43π(32)3=9π2.24.(2016·全国1·文T4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB. πC.8πD.4π【答案】A【解析】设正方体的棱长为a,由a3=8,得a=2.由题意可知,正方体的体对角线为球的直径,故2r=√3a2,则r=√3.所以该球的表面积为4π×(√3)2=12π,故选A.25.(2016·全国1·理T11文T11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A.√32 B.√22 C.√33 D.13【答案】A【解析】∵α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平面ABCD=m,平面CB1D1∩平面A 1B1C1D1=B1D1,∴m∥B1D1.∵α∥平面CB1D1,平面ABB1A1∥平面DCC1D1,α∩平面ABB1A1=n,平面CB1D1∩平面DCC1D1=CD1,∴n∥CD1.∴B1D1,CD1所成的角等于m,n所成的角,即∠B1D1C等于m,n所成的角.∵△B1D1C为正三角形,∴∠B1D1C=60°,∴m,n所成的角的正弦值为√3 2.26.(2016·全国1·理T6文T7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π【答案】A【解析】由三视图可知该几何体是球截去18后所得几何体,则78×4π3×R3=28π3,解得R=2,故其表面积为78×4πR2+34×πR2=14π+3π=17π.27.(2016·全国2·理T6文T7)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ( )A.20πB.24πC.28πD.32π【答案】C【解析】因为原几何体由同底面的一个圆柱和一个圆锥构成,所以其表面积为S=π×(42)2+4π×4+12×4π×√(2√3)2+22=28π,故选C.28.(2016·全国3·理T9文T10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36√5B.54+18√5C.90D.81【答案】B【解析】由题意知该几何体为四棱柱,且四棱柱的底面是边长为3的正方形,侧棱长为3√5,所以所求表面积为(3×3+3×6+3×3√5)×2=54+18√5,故选B.29.(2016·山东·理T5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为( )A.13+23π B.13+√23πC.13+√26πD.1+√26π【答案】C【解析】由三视图可知,上面是半径为√22的半球,体积为V1=12×43π×(√22)3=√2π6,下面是底面积为1,高为1的四棱锥,体积V2=13×1×1=13,故选C.30.(2016·北京·理T6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1【答案】A【解析】由三视图可得,三棱锥的直观图如图,则该三棱锥的体积V=13×12×1×1×1=16,故选A.31.(2015·全国1·理T6文T6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛 【答案】B【解析】设底面圆弧半径为R,∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π.∴体积V=14×13π×(16π)2×5.∵π≈3,∴V ≈3209(尺3).∴堆放的米约为3209×1.62≈22(斛).32.(2015·全国2·理T6文T6)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15【答案】D【解析】由题意知该正方体截去了一个三棱锥,如图所示,设正方体棱长为a,则V正方体=a3,V截去部分=16a3,故截去部分体积与剩余部分体积的比值为16a3∶56a3=1∶5.33.(2015·重庆·理T5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2π D.23+2π【答案】A【解析】由题中三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=13×12×2×1×1=13;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2·12=π,所以该几何体的体积V=V1+V2=13+π.34.(2015·浙江·理T2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm3B.12 cm3C.323 cm3 D.403 cm3【答案】C【解析】由题中三视图知该几何体是一个正方体与正四棱锥的组合体,其中正方体与正四棱锥的底面边长为2 cm,正四棱锥的高为2 cm,则该几何体的体积V=2×2×2+13×2×2×2=323(cm3),故选C.35.(2015·山东·理T7)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3C.5π3 D.2π【答案】C【解析】由题意可得旋转体为一个圆柱挖掉一个圆锥,如图所示.V圆柱=π×12×2=2π,V圆锥=13×π×12×1=π3.∴V几何体=V圆柱-V圆锥=2π-π3=5π3.36.(2015·湖南·文T10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)()A.89π B.827πC.24(√2-1)3π D.8(√2-1)3π【答案】A【解析】由三视图可知该几何体是一个圆锥,其底面半径r=1,母线长l=3,所以其高h=√l2-r2=2√2.故该圆锥的体积V=π3×12×2√2=2√2π3.由题意可知,加工后的正方体是该圆锥的一个内接正方体,如图所示.正方体ABCD-EFGH的底面在圆锥的底面内,下底面中心与圆锥底面的圆心重合,上底面中心在圆锥的高线上,设正方体的棱长为x.在轴截面SMN中,由O1G∥ON可得,O1GON=SO1SO,即√22x1=√2-2√2,解得x=2√23.所以正方体的体积为V1=(2√23)3=16√227.所以该工件的利用率为V1V=16√2272√2π3=89π.故选A.37.(2015·全国1·理T11文T11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1B.2C.4D.8【答案】B【解析】由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2×12πr2+πr×2r+12×4πr2=5πr2+4r2=16+20π,解得r=2.38.(2015·北京·理T5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+√5B.4+√5C.2+2√5D.5【答案】C【解析】作出三棱锥的直观图如图,在△ABC中,作AB边上的高CD,连接SD.在三棱锥S-ABC 中,SC ⊥底面ABC,SC=1,底面三角形ABC 是等腰三角形,AC=BC=√5,AB 边上的高CD=2,AD=BD=1,斜高SD=√5.所以S 表=S △ABC +S △SAC +S △SBC +S △SAB =12×2×2+12×1×√5+12×1×√5+12×2×√5=2+2√5.39.(2015·陕西·理T5文T5)一个几何体的三视图如图所示,则该几何体的表面积为( ) A.3π B.4π C.2π+4D.3π+4【答案】D【解析】由三视图可知,该几何体是一个半圆柱,圆柱的底面半径r=1,高h=2.所以几何体的侧面积S 1=C 底·h=(π×1+2)×2=2π+4.几何体的底面积S 2=12π×12=12π.故该几何体的表面积为S=S 1+2S 2=2π+4+2×π2=3π+4.故选D.40.(2015·浙江·理T8)如图,已知△ABC,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A'CD,所成二面角A'-CD-B 的平面角为α,则( ) A.∠A'DB ≤α B.∠A'DB ≥α C.∠A'CB ≤α D.∠A'CB ≥α 【答案】B【解析】设∠ADC=θ,设AB=2,则由题意AD=BD=1. 在空间图形中,设A'B=t.在△A'BD 中, cos ∠A'DB=A 'D 2+DB 2-AB 22A 'D×DB=12+12-t 22×1×1=2-t 22.在空间图形中,过A'作A'N ⊥DC,过B 作BM ⊥DC,垂足分别为N,M.过N 作NP MB,连接A'P,所以NP ⊥DC.则∠A'NP 就是二面角A'-CD-B 的平面角, 所以∠A'NP=α.在Rt △A'ND 中,DN=A'Dcos ∠A'DC=cos θ,A'N=A'Dsin ∠A'DC=sin θ.同理,BM=PN=sin θ,DM=cos θ.故BP=MN=2cos θ. 显然BP ⊥面A'NP,故BP ⊥A'P.在Rt △A'BP 中,A'P 2=A'B 2-BP 2=t 2-(2cos θ)2=t 2-4cos 2θ.在△A'NP 中,cos α=cos ∠A'NP=A 'N 2+NP 2-A 'P 22A 'N×NP=sin 2θ+sin 2θ-(t 2-4cos 2θ)2sinθ×sinθ=2+2cos 2θ-t 22sin 2θ=2-t 22sin 2θ+cos 2θsin 2θ=1sin 2θcos ∠A'DB+cos 2θsin 2θ.因为1sin 2θ≥1,cos 2θsin 2θ≥0,所以cos α≥cos∠A'DB (当θ=π2时取等号),因为α,∠A'DB ∈[0,π],而y=cos x 在[0,π]上为递减函数,所以α≤∠A'DB.故选B. 41.(2015·全国2·理T9文T10)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为 ( ) A.36π B.64π C.144π D.256π【答案】C【解析】因为∠AOB=90°,所以S △AOB =12R 2.因为V O-ABC =V C-AOB ,而△AOB 面积为定值,所以三棱锥底面OAB 上的高最大时,其体积最大.因为高最大为半径R,所以V C-AOB =13×12R 2×R=36,解得R=6,故S 球=4πR 2=144π.42.(2015·安徽·理T5)已知m,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n 平行于同一平面,则m 与n 平行C.若α,β不平行...,则在α内不存在...与β平行的直线D.若m,n 不平行...,则m 与n 不可能...垂直于同一平面 【答案】D【解析】A选项α,β可能相交;B选项m,n可能相交,也可能异面;C选项若α与β相交,则在α内平行于它们交线的直线一定平行于β;由垂直于同一个平面的两条直线一定平行,可知D选项正确.43.(2015·浙江·文T4)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m【答案】A【解析】若l⊥β,又l⊂α,由面面垂直的判定定理,得α⊥β,故选项A正确;选项B,l⊥m或l∥m或l与m相交或异面都有可能;选项C,α∥β或α与β相交都有可能;选项D,l∥m或l 与m异面都有可能.44.(2015·广东·文T6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【答案】D【解析】l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.45.(2014·浙江·理T3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm2B.129 cm2C.132 cm2D.138 cm2【答案】D【解析】由题干中的三视图可得原几何体如图所示.故该几何体的表面积S=2×4×6+2×3×4+3×6+3×3+3×4+3×5+2××3×4=138(cm2).故选D.46.(2014·陕西·文T5)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A.4πB.3πC.2πD.π【答案】C【解析】依题意,知所得几何体是一个圆柱,且其底面半径为1,母线长也为1,因此其侧面积为2π×1×1=2π,故选C.47.(2014·辽宁·理T4文T4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【答案】B【解析】对A:m,n还可能异面、相交,故A不正确.对C:n还可能在平面α内,故C不正确.对D:n还可能在α内,故D不正确.对B:由线面垂直的定义可知正确.48.(2014·广东·理T7)在空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【答案】D【解析】如图,在正方体ABCD-A1B1C1D1中,取l1为BC,l2为CC1,l3为C1D1.满足l1⊥l2,l2⊥l3.若取l 4为A1D1,则有l1∥l4;若取l4为DD1,则有l1⊥l4.因此l1与l4的位置关系不确定,故选D.49.(2014·浙江·文T6)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α【答案】C【解析】当m⊥n,n∥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故A选项错误; 当m∥β,β⊥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故选项B错误;当m⊥β,n⊥β,n⊥α时,必有α∥β,从而m⊥α,故选项C正确;在如图所示的正方体ABCD-A1B1C1D1中,取m为B1C1,n为CC1,β为平面ABCD,α为平面ADD1A1,这时满足m⊥n,n⊥β,β⊥α,但m⊥α不成立,故选项D错误.50.(2014·陕西·理T5)已知底面边长为1,侧棱长为√2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B.4π C.2π D.4π3【答案】D【解析】依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径R,则2R=√12+12+(√2)2=2,解得R=1,所以V=4π3R3=4π3.51.(2014·大纲全国·理T8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B.16π C.9π D.27π4【答案】A【解析】由图知,R2=(4-R)2+2,∴R2=16-8R+R2+2,∴R=9 4,∴S表=4πR2=4π×8116=814π,选A.52.(2014·湖南·理T7文T8)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】由三视图可得原石材为如右图所示的直三棱柱A1B1C1-ABC,且AB=8,BC=6,BB1=12.若要得到半径最大的球,则此球与平面A1B1BA,BCC1B1,ACC1A1相切,故此时球的半径与△ABC内切圆的半径相等,故半径r=6+8-102=2.故选B.53.(2014·全国1·理T12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6√2B.6C.4√2D.4 【答案】B【解析】如图所示的正方体ABCD-A1B1C1D1的棱长为4.取B1B的中点G,即三棱锥G-CC1D1为满足要求的几何体,其中最长棱为D1G,D1G=√(4√2)2+22=6.54.(2014·全国1·文T8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】由所给三视图可知该几何体是一个三棱柱(如图).55.(2014·北京·理T7)在空间直角坐标系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1, √2).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【答案】D【解析】三棱锥的各顶点在xOy坐标平面上的正投影分别为A 1(2,0,0),B1(2,2,0),C1(0,2,0),D1(1,1,0).显然D1点为A1C1的中点,如图(1),正投影为Rt△A1B1C1,其面积S1=12×2×2=2.三棱锥的各顶点在yOz坐标平面上的正投影分别为A 2(0,0,0),B2(0,2,0),C2(0,2,0),D2(0,1,√2).显然B2,C2重合,如图(2),正投影为△A2B2D2,其面积S2=12×2×√2=√2.三棱锥的各顶点在zOx坐标平面上的正投影分别为A 3(2,0,0),B3(2,0,0),C3(0,0,0),D3(1,0,√2),由图(3)可知,正投影为△A3D3C3,其面积S 3=12×2×√2=√2.综上,S2=S3,S3≠S1.故选D.56.(2014·大纲全国·理T11)已知二面角α-l-β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C ∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为( )A.14 B.√24 C.√34 D.12【答案】B【解析】如图,在平面α内过C作CE∥AB,则∠ECD为异面直线AB与CD所成的角或其补角,不妨取CE=1,过E作EO⊥β于O. 在平面β内过O作OH⊥CD于H,连EH,则EH⊥CD.因为AB∥CE,AB⊥l,所以CE⊥l.又因为EO⊥平面β,所以CO⊥l.故∠ECO为二面角α-l-β的平面角,所以∠ECO=60°.而∠ACD=135°,CO ⊥l,所以∠OCH=45°.在Rt △ECO 中,CO=CE ·cos ∠ECO=1·cos 60°=12.在Rt △COH 中,CH=CO ·cos ∠OCH=12·sin45°=√24.在Rt △ECH 中,cos ∠ECH=CH CE =√241=√24.所以异面直线AB 与CD 所成角的余弦值为√24.故选B.57.(2014·大纲全国·文T4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16B.√36C.13D.√33【答案】B【解析】如图所示,取AD 的中点F,连EF,CF,则EF ∥BD,∴异面直线CE 与BD 所成的角即为CE 与EF 所成的角∠CEF.由题知,△ABC,△ADC 为正三角形,设AB=2,则CE=CF=√3,EF=12BD=1.∴在△CEF 中,由余弦定理,得cos ∠CEF=CE 2+EF 2-CF22CE ·EF=√3)22√3)22×√3×1=√36.故选B.58.(2014·全国2·理T6文T6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示. 切削掉部分的体积V 1=π×32×6-π×22×4-π×32×2=20π(cm 3), 原来毛坯体积V 2=π×32×6=54π(cm 3).故所求比值为V 1V 2=20π54π=1027.59.(2014·全国2·文T7)正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为√3,D 为BC 中点,则三棱锥A-B 1DC 1的体积为( ) A.3 B.32C.1D.√32【答案】C【解析】∵D 是等边△ABC 的边BC 的中点,∴AD ⊥BC. 又ABC-A 1B 1C 1为正三棱柱, ∴AD ⊥平面BB 1C 1C. 又四边形BB 1C 1C 为矩形,∴S △DB 1C 1=12S 四边形BB 1C 1C =12×2×√3=√3.又AD=2×√32=√3,∴V A -B 1DC 1=13S △B 1DC 1·AD=13×√3×√3=1.60.(2013·全国1·理T8文T11)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π 【答案】A【解析】该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱= π×22×4=8π,V 长方体=4×2×2=16. 所以所求体积为16+8π.故选A.61.(2013·浙江·文T5)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A.108 cm 3B.100 cm 3C.92 cm 3D.84 cm 3【答案】B【解析】由三视图可知,该几何体是如图所示长方体去掉一个三棱锥,故几何体的体积是6×3×6-13×12×3×42=100(cm 3).故选B.62.(2013·山东·理T4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为√3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π6【答案】B【解析】如图所示,由棱柱体积为94,底面正三角形的边长为√3,可求得棱柱的高为√3.设P 在平面ABC 上射影为O,则可求得AO 长为1,故AP 长为√12+(√3)2=2.故∠PAO=π3,即PA 与平面ABC 所成的角为π3.63.(2013·全国2·理T7文T9)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为 ( )【答案】A【解析】该四面体在空间直角坐标系O-xyz中的图象如图所示.则它在平面zOx上的投影,即正视图为.64.(2013·湖南·理T7)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( )A.1B.√2C.√2-12 D.√2+12【答案】C【解析】当俯视图是面积为1的正方形时,其正视图的最小面积等于一个面的面积1,最大面积等于对角面的面积√2.故正视图面积S的取值范围为1≤S≤√2.因为√2-12<1,故选C.65.(2013·全国1·理T6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( )A.500π3 cm3 B.866π3 cm3C.1372π3 cm3 D.2048π3 cm3【答案】A【解析】设球半径为R,由题可知R,R-2,正方体棱长的一半可构成直角三角形,即△OBA为直角三角形,如图.BC=2,BA=4,OB=R-2,OA=R, 由R2=(R-2)2+42,得R=5,所以球的体积为4π3×53=5003π(cm3),故选A.66.(2013·辽宁·理T10)已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )A.3√172 B.2√10 C.132 D.3√10【答案】C【解析】过C点作AB的平行线,过B点作AC的平行线,交点为D,同理过C1作A1B1的平行线,过B 1作A1C1的平行线,交点为D1,连接DD1,则ABCD-A1B1C1D1恰好成为球的一个内接长方体,故球的半径r=√32+42+1222=132.67.(2013·全国2·理T4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】因为m⊥α,l⊥m,l⊄α,所以l∥α.同理可得l∥β.又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D.68.(2013·广东·理T6)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是 ( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β【答案】D【解析】选项A中, m与n还可能平行或异面,故不正确;。
(2010-2019)十年高考数学真题分类汇编:坐标系与参数方程(含解析)1.(2018·北京·理T10)在极坐标系中,直线ρcos θ+ρsin θ=a(a>0)与圆ρ=2cos θ相切,则a=___________. 【答案】√2 +1【解析】由题意,可得直线的直角坐标方程为x+y=a(a>0),圆的直角坐标方程为x2+y2-2x=0,即(x-1)2+y2=1. 由直线与圆相切,可知√1+1=1,即|1-a|=√2,解得a=1±√2.∵a>0,∴a=√2+1.2.(2019·全国1·理T22文T22)在直角坐标系xOy 中,曲线C 的参数方程为{x =1-t 21+t 2,y =4t1+t (t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+√3 ρsin θ+11=0. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【解析】(1)因为-1<1-t 21+t ≤1,且x 2+(y 2)2=(1-t 21+t )2+4t 2(1+t 2)2=1,所以C 的直角坐标方程为x 2+y 24=1(x≠-1).l 的直角坐标方程为2x+√3y+11=0. (2)由(1)可设C 的参数方程为{x =cos α,y =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为√3sin √7=4cos(α-π3)+11√7.当α=-2π3时,4cos (α-π3)+11取得最小值7,故C 上的点到l 距离的最小值为√7.3.(2019·全国2·理T22文T22)[选修4—4:坐标系与参数方程]在极坐标系中,O 为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l 过点A(4,0)且与OM 垂直,垂足为P.(1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.【解析】(1)因为M(ρ0,θ)在C上,当θ=π3时,ρ=4sin π3=2√3.由已知得|OP|=|OA|cos π3=2.设Q(ρ,θ)为l上除P的任意一点.在Rt△OPQ中,ρcosθ-π3=|OP|=2.经检验,点P2,π3在曲线ρcosθ-π3=2上.所以,l的极坐标方程为ρcosθ-π3=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是π4,π2.所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈π4,π2.4.(2019·全国3·理T22文T22)[选修4—4:坐标系与参数方程]如图,在极坐标系Ox中,A(2,0),B(√2,π4),C(√2,3π4),D(2,π),弧AB⏜,BC⏜,CD⏜所在圆的圆心分别是(1,0),(1,π2),(1,π),曲线M1是弧AB⏜,曲线M2是弧BC⏜,曲线M3是弧CD⏜.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=√3【解析】(1)由题设可得,弧所在圆的极坐标方程分别为ρ=2cos θ,ρ=2sin θ,ρ=-2cos θ.所以M1的极坐标方程为ρ=2cos θ0≤θ≤,M2的极坐标方程为ρ=2sin θ≤θ≤,M3的极坐标方程为ρ=-2cos θ≤θ≤π. (2)设P(ρ,θ),由题设及(1)知若0≤θ≤,则2cos θ=,解得θ=;若≤θ≤,则2sin θ=,解得θ=或θ=;。
2014-2019年高考数学真题分类汇编专题11:解析几何(直线与圆)(一)直线与直线选择题1.(2014•四川文)设m R ∈,过定点A 的动直线0x my +=和过定点B 的直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A .B .C .D .,【考点】函数最值的应用;两条直线的交点坐标【分析】可得直线分别过定点(0,0)和(1,3)且垂直,可得22||||10PA PB +=.三角换元后,由三角函数的知识可得.【解答】解:由题意可知,动直线0x my +=经过定点(0,0)A , 动直线30mx y m --+=即(1)30m x y --+=,经过点定点(1,3)B , 动直线0x my +=和动直线30mx y m --+=的斜率之积为1-,始终垂直,P 又是两条直线的交点,PA PB ∴⊥,222||||||10PA PB AB ∴+==.设ABP θ∠=,则||PA θ=,||PB θ=, 由||0PA …且||0PB …,可得[0θ∈,]2π||||cos ))4PA PB πθθθ∴++=+,[0θ∈,]2π,[44ππθ∴+∈,3]4π,sin()4πθ∴+∈1],)4πθ∴+∈,故选:B .【点评】本题考查直线过定点问题,涉及直线的垂直关系和三角函数的应用,属中档题.2.(2018•北京理7)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离.当θ、m 变化时,d 的最大值为( ) A .1B .2C .3D .4【考点】点到直线的距离公式【分析】由题意s i n()2| d==,当s i n()θα+=-时,13maxd=+.由此能求出d的最大值.【解答】解:由题意d==1tanym xα==,∴当sin()1θα+=-时,13maxd=+.d∴的最大值为3.故选:C.【点评】本题考查点到直线的距离的最大值的求法,考查点到直线的距离公式、三角函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.填空题1.(2014•四川理)设m R∈,过定点A的动直线0x my+=和过定点B的动直线30mx y m--+=交于点(,)P x y.则||||PA PB的最大值是5.【考点】点到直线的距离公式【分析】先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA PB⊥;再利用基本不等式放缩即可得出||||PA PB的最大值.【解答】解:由题意可知,动直线0x my+=经过定点(0,0)A,动直线30mx y m--+=即(1)30m x y--+=,经过点定点(1,3)B,注意到动直线0x my+=和动直线30mx y m--+=始终垂直,P又是两条直线的交点,则有PA PB⊥,222||||||10PA PB AB∴+==.故22||||||||52PA PBPA PB+=…(当且仅当||||PA PB===”)故答案为:5【点评】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有22||||PA PB+是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.2.(2016•上海文理)设0a >,0b >,若关于x ,y 的方程组11ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围为(2,)+∞ .【考点】基本不等式及其应用;两条直线平行与倾斜角、斜率的关系【分析】根据方程组无解,得到两直线平行,建立a ,b 的方程关系,利用转化法,利用基本不等式的性质进行求解即可.【解答】解:关于x ,y 的方程组11ax y x by +=⎧⎨+=⎩无解,∴直线1ax y +=与1x by +=平行,0a >,0b >,∴1111a b =≠, 即1a ≠,1b ≠,且1ab =,则1b a=, 由基本不等式有:12a b a a a a+=+=…,当且仅当1a =时取等,而a 的范围为0a >且1a ≠,不满足取等条件,2a b ∴+>,故答案为:(2,)+∞.【点评】本题主要考查直线平行的应用以基本不等式的应用,考查学生的计算能力.3.(2016•上海文理)已知平行直线1:210l x y +-=,2:210l x y ++=,则1l ,2l 的距离 . 【考点】IU :两条平行直线间的距离【专题】11:计算题;29:规律型;5B :直线与圆 【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线1:210l x y +-=,2:210l x y ++=,则1l ,2l =. 【点评】本题考查平行线之间的距离公式的应用,考查计算能力.(二)圆与圆1.(2014•湖南文)若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则(m = )A .21B .19C .9D .11-【考点】圆的切线方程;圆与圆的位置关系及其判定【分析】化两圆的一般式方程为标准方程,求出圆心和半径,由两圆心间的距离等于半径和列式求得m 值. 【解答】解:由221:1C x y +=,得圆心1(0,0)C ,半径为1, 由圆222:680C x y x y m +--+=,得22(3)(4)25x y m -+-=-,∴圆心2(3,4)C .圆1C 与圆2C 外切,∴1=+,解得:9m =. 故选:C .【点评】本题考查两圆的位置关系,考查了两圆外切的条件,是基础题.2.(2015•新课标Ⅱ文)已知三点(1,0)A ,B ,C 则ABC ∆外接圆的圆心到原点的距离为()A .53B .3C D .43【考点】圆的标准方程【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论. 【解答】解:因为ABC ∆外接圆的圆心在直线BC 垂直平分线上,即直线1x =上, 可设圆心(1,)P p ,由PA PB =得||p =得p =圆心坐标为P ,所以圆心到原点的距离||OP == 故选:B .【点评】本题主要考查圆性质及ABC ∆外接圆的性质,了解性质并灵运用是解决本题的关键. 3.(2015•新课标Ⅱ理)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||(MN = )A .B .8C .D .10【考点】圆的方程,两点间的距离公式【分析】设圆的方程为220x y Dx Ey F ++++=,代入点的坐标,求出D ,E ,F ,令0x =,即可得出结论.【解答】解:设圆的方程为220x y Dx Ey F ++++=,则193016442014970D E F D E F D E F ++++=⎧⎪++++=⎨⎪++-+=⎩,2D ∴=-,4E =,20F =-,2224200x y x y ∴+-+-=, 令0x =,可得24200y y +-=,2y ∴=-±||MN ∴=故选:C .【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键. 4.(2015•北京文)圆心为(1,1)且过原点的圆的标准方程是( ) A .22(1)(1)1x y -+-= B .22(1)(1)1x y +++= C .22(1)(1)2x y +++= D .22(1)(1)2x y -+-=【考点】圆的标准方程【分析】利用两点间距离公式求出半径,由此能求出圆的方程. 【解答】解:由题意知圆半径r =∴圆的方程为22(1)(1)2x y -+-=.故选:D .【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.填空题1.(2014•山东文)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x轴所得弦的长为,则圆C 的标准方程为 22(2)(1)4x y -+-= . 【考点】圆的标准方程【分析】由圆心在直线20x y -=上,设出圆心坐标,再根据圆与y 轴相切,得到圆心到y 轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r ,由弦长的一半,圆的半径r 及表示出的d 利用勾股定理列出关于t 的方程,求出方程的解得到t 的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【解答】解:设圆心为(2,)t t ,半径为|2|r t =,圆C 截x 轴所得弦的长为 2234t t ∴+=, 1t ∴=±,圆C 与y 轴的正半轴相切, 1t ∴=-不符合题意,舍去,故1t =,22t =,22(2)(1)4x y ∴-+-=.故答案为:22(2)(1)4x y -+-=.【点评】此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.2.(2014•陕西理)若圆C 的半径为1,其圆心与点(1,0)关于直线y x =对称,则圆C 的标准方程为22(1)1x y +-= . 【考点】圆的标准方程【分析】利用点(,)a b 关于直线y x k =±的对称点为(,)b a ,求出圆心,再根据半径求得圆的方程. 【解答】解:圆心与点(1,0)关于直线y x =对称,可得圆心为(0,1),再根据半径等于1, 可得所求的圆的方程为22(1)1x y +-=, 故答案为:22(1)1x y +-=.【点评】本题主要考查求圆的标准方程,利用了点(,)a b 关于直线y x k =±的对称点为(,)b a ,属于基础题. 3.(2015•湖北文)如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,(B B 在A 的上方),且||2AB =.(1)圆C 的标准方程为 22(1)(2x y -+-= . (2)圆C 在点B 处切线在x 轴上的截距为 .【考点】圆的标准方程;圆的切线方程【分析】(1)确定圆心与半径,即可求出圆C 的标准方程;(2)求出圆C 在点B 处切线方程,令0y =可得圆C 在点B 处切线在x 轴上的截距.【解答】解:(1,∴圆C 的标准方程为22(1)(2x y -+=;(2)由(1)知,(0,1B ,∴圆C 在点B 处切线方程为(01)(1)(12x y --++=,令0y =可得1x =-故答案为:22(1)(2x y -+=;1-【点评】本题考查圆的标准方程,考查圆的切线方程,考查学生的计算能力,属于中档题.4.(2015•湖北理)如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,(B B 在A 的上方),且||2AB =.(1)圆C 的标准方程为 22(1)(2x y -+-= ;(2)过点A 任作一条直线与圆22:1O x y +=相交于M ,N 两点,下列三个结论:①||||||||NA MA NB MB =; ②||||2||||NB MA NA MB -=; ③||||||||NB MA NA MB += 其中正确结论的序号是 .(写出所有正确结论的序号)【考点】命题的真假判断与应用;圆与圆的位置关系及其判定【分析】(1)取AB 的中点E ,通过圆C 与x 轴相切于点T ,利用弦心距、半径与半弦长之间的关系,计算即可;(2)设(cos ,sin )M αα,(cos ,sin )N ββ,计算出||||MA MB 、||||NA NB 、||||NB NA 的值即可. 【解答】解:(1)圆C 与x 轴相切于点(1,0)T ,∴圆心的横坐标1x =,取AB 的中点E ,||2AB =,||1BE ∴=,则||BC =||r BC ==∴圆心C ,则圆的标准方程为22(1)(2x y -+=,故答案为:22(1)(2x y -+=.(2)圆心C ,E ∴, 又||2AB =,且E 为AB 中点,1)A ∴,1)B ,M 、N 在圆22:1O x y +=上,∴可设(cos ,sin )M αα,(cos ,sin )N ββ,||NA ∴=||NB∴||1||NA NB =,同理可得||1||MA MB =, ∴||||||||NA MA NB MB =,①成立,||||1)2||||NB MA NA MB -==,②正确.||||1)||||NB MA NA MB +==③正确. 故答案为:①②③.【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.5.(2015•江苏)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线210()mx y m m R ---=∈相切的所有圆中,半径最大的圆的标准方程为 22(1)2x y -+= . 【考点】圆的标准方程;圆的切线方程【分析】求出圆心到直线的距离d 的最大值,即可求出所求圆的标准方程. 【解答】解:圆心到直线的距离d =1m ∴=,∴所求圆的标准方程为22(1)2x y -+=.故答案为:22(1)2x y -+=.【点评】本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础. 6.(2016•浙江文)已知a R ∈,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是 ,半径是 .【考点】圆的一般方程【分析】由已知可得220a a =+≠,解得1a =-或2a =,把1a =-代入原方程,配方求得圆心坐标和半径,把2a =代入原方程,由2240D E F +-<说明方程不表示圆,则答案可求. 【解答】解:方程222(2)4850a x a y x y a +++++=表示圆, 220a a ∴=+≠,解得1a =-或2a =.当1a =-时,方程化为224850x y x y +++-=,配方得22(2)(4)25x y +++=,所得圆的圆心坐标为(2,4)--,半径为5; 当2a =时,方程化为225202x y x y ++++=, 此时2254144502D E F +-=+-⨯=-<,方程不表示圆, 故答案为:(2,4)--,5.【点评】本题考查圆的一般方程,考查圆的一般方程化标准方程,是基础题.7.(2016•天津文)已知圆C 的圆心在x轴正半轴上,点M 在圆C 上,且圆心到直线20x y -=的距,则圆C 的方程为 22(2)9x y -+= . 【考点】圆的标准方程【分析】由题意设出圆的方程,把点M 的坐标代入圆的方程,结合圆心到直线的距离列式求解. 【解答】解:由题意设圆的方程为222()(0)x a y r a -+=>,由点M 在圆上,且圆心到直线20x y -=,得225a r ⎧+=⎪=2a =,3r =.∴圆C 的方程为:22(2)9x y -+=.故答案为:22(2)9x y -+=.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.8.(2018•天津文12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 . 【考点】圆的一般方程【分析】【方法一】根据题意画出图形,结合图形求得圆心与半径,写出圆的方程. 【方法二】设圆的一般方程,把点的坐标代入求得圆的方程. 【解答】解:【方法一】根据题意画出图形如图所示,结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=.【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则042020F D F D E F =⎧⎪++=⎨⎪+++=⎩, 解得2D =-,0E F ==;∴所求圆的方程为2220x y x +-=.故答案为:22(1)1x y -+=(或2220)x y x +-=.【点评】本题考查了圆的方程与应用问题,是基础题.(三)直线与圆选择题1.(2014•新课标Ⅱ文)设点0(M x ,1),若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( ) A .[1-,1]B .1[2-,1]2C.[D.[【考点】直线和圆的方程的应用【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点0(M x ,1),要使圆22:1O x y +=上存在点N ,使得45OMN ∠=︒, 则OMN ∠的最大值大于或等于45︒时一定存在点N ,使得45OMN ∠=︒, 而当MN 与圆相切时OMN ∠取得最大值, 此时1MN =,图中只有M '到M ''之间的区域满足1MN =, 0x ∴的取值范围是[1-,1].故选:A .【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一. 2.(2014•北京文)已知圆22:(3)(4)1C x y -+-=和两点(,0)A m -,(B m ,0)(0)m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .7B .6C .5D .4【考点】直线与圆的位置关系【分析】根据圆心C 到(0,0)O 的距离为5,可得圆C 上的点到点O 的距离的最大值为6.再由90APB ∠=︒,可得12PO AB m ==,可得6m …,从而得到答案. 【解答】解:圆22:(3)(4)1C x y -+-=的圆心(3,4)C ,半径为1, 圆心C 到(0,0)O 的距离为5,∴圆C 上的点到点O 的距离的最大值为6.再由90APB ∠=︒可得,以AB 为直径的圆和圆C 有交点, 可得12PO AB m ==,故有6m …, 故选:B .【点评】本题主要直线和圆的位置关系,求得圆C 上的点到点O 的距离的最大值为6,是解题的关键,属于中档题.3.(2014•安徽文)过点(P ,1)-的直线l 与圆221x y +=有公共点,则直线l 的倾斜角的取值范围是()A .(0,]6πB .(0,]3πC .[0,]6πD .[0,]3π【考点】直线与圆的位置关系【分析】用点斜式设出直线方程,根据直线和圆有交点、圆心到直线的距离小于或等于半径可得1,由此求得斜率k 的范围,可得倾斜角的范围.【解答】解:由题意可得点(P 1)-在圆221x y +=的外部,故要求的直线的斜率一定存在,设为k ,则直线方程为1(y k x +=,即10kx y -+-=.1,即22311k k -++…,解得0k 剟,故直线l 的倾斜角的取值范围是[0,]3π,故选:D .【点评】本题主要考查用点斜式求直线方程,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.4.(2014•福建文)已知直线l 过圆22(3)4x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是()A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+=【考点】直线与圆的位置关系【分析】由题意可得所求直线l 经过点(0,3),斜率为1,再利用点斜式求直线l 的方程. 【解答】解:由题意可得所求直线l 经过点(0,3),斜率为1, 故l 的方程是30y x -=-,即30x y -+=, 故选:D .【点评】本题主要考查用点斜式求直线的方程,两条直线垂直的性质,属于基础题.5.(2014•福建理)直线:1l y kx =+与圆22:1O x y +=相交于A ,B 两点,则“1k =”是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【考点】充分条件、必要条件、充要条件;直线与圆相交的性质【分析】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:若直线:1l y kx =+与圆22:1O x y +=相交于A ,B 两点,则圆心到直线距离d =,||AB ===,若1k =,则||AB ==d =OAB ∆的面积为1122=成立,即充分性成立.若OAB ∆的面积为12,则2211||||1222112k k S k k ==⨯⨯==++, 即212||k k +=,即22||10k k -+=, 则2(||1)0k -=, 即||1k =,解得1k =±,则1k =不成立,即必要性不成立. 故“1k =”是“OAB ∆的面积为12”的充分不必要条件. 故选:A .【点评】本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.6.(2014•江西理)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A .45πB .34πC .(6π-D .54π【考点】直线与圆的位置关系【分析】如图,设AB 的中点为C ,坐标原点为O ,圆半径为r ,由已知得||||OC CE r ==,过点O 作直线240x y +-=的垂直线段OF ,交AB 于D ,交直线240x y +-=于F ,则当D 恰为AB 中点时,圆C 的半径最小,即面积最小.【解答】解:如图,设AB 的中点为C ,坐标原点为O ,圆半径为r , 由已知得||||OC CE r ==,过点O 作直线240x y +-=的垂直线段OF , 交AB 于D ,交直线240x y +-=于F ,则当D 恰为OF 中点时,圆C 的半径最小,即面积最小 此时圆的直径为(0,0)O 到直线240x y +-=的距离为:d ==此时12r d ==∴圆C 的面积的最小值为:245min S ππ=⨯=. 故选:A .【点评】本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.7.(2014•浙江文)已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是() A .2-B .4-C .6-D .8-【考点】直线与圆的位置关系【分析】把圆的方程化为标准形式,求出弦心距,再由条件根据弦长公式求得a 的值. 【解答】解:圆22220x y x y a ++-+= 即22(1)(1)2x y a ++-=-,故弦心距d再由弦长公式可得224a -=+,4a ∴=-, 故选:B .【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题. 8.(2015•广东理)平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A .250x y ++=或250x y +-=B .20x y ++或20x y +C .250x y -+=或250x y --=D .20x y -+或20x y --=【考点】圆的切线方程【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为20x y b ++=,则,5b =±,所以所求直线方程为:250x y ++=或250x y +-= 故选:A .【点评】本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.9.(2015•山东理)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( ) A .53-或35-B .32-或23-C .54-或45-D .43-或34-【考点】直线的斜率;圆的切线方程【分析】点(2,3)A --关于y 轴的对称点为(2,3)A '-,可设反射光线所在直线的方程为:3(2)y k x +=-,利用直线与圆相切的性质即可得出.【解答】解:点(2,3)A --关于y 轴的对称点为(2,3)A '-,故可设反射光线所在直线的方程为:3(2)y k x +=-,化为230kx y k ---=. 反射光线与圆22(3)(2)1x y ++-=相切,∴圆心(3,2)-到直线的距离1d ==,化为22450240k k ++=, 43k ∴=-或34-.故选:D .【点评】本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.10.(2015•重庆理)已知直线10x ay +-=是圆22:4210C x y x y +--+=的对称轴,过点(4,)A a -作圆C 的一条切线,切点为B ,则||(AB = )A .2B .6C .D .【考点】直线与圆的位置关系【分析】求出圆的标准方程可得圆心和半径,由直线:10l x ay +-=经过圆C 的圆心(2,1),求得a 的值,可得点A 的坐标,再利用直线和圆相切的性质求得||AB 的值. 【解答】解:圆22:4210C x y x y +--+=,即22(2)(1)4x y -+-=, 表示以(2,1)C 为圆心、半径等于2的圆.由题意可得,直线:10l x ay +-=经过圆C 的圆心(2,1), 故有210a +-=,1a ∴=-,点(4,1)A --.(AC ==,2CB R ==,∴切线的长||6AB ==.故选:B .【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.11.(2015•安徽文)直线34x y b +=与圆222210x y x y +--+=相切,则(b = ) A .2-或12 B .2或12- C .2-或12- D .2或12【考点】圆的切线方程【分析】化圆的一般式方程为标准式,求出圆心坐标和半径,由圆心到直线的距离等于圆的半径列式求得b 值.【解答】解:由圆222210x y x y +--+=,化为标准方程为22(1)(1)1x y -+-=,∴圆心坐标为(1,1),半径为1,直线34x y b +=与圆222210x y x y +--+=相切,∴圆心(1,1)到直线340x y b +-=的距离等于圆的半径,|7|15b -==,解得:2b =或12b =. 故选:D .【点评】本题考查圆的切线方程,考查了点到直线的距离公式的应用,是基础题.12.(2016•新课标Ⅱ文理)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则(a =)A .43-B .34-C D .2【考点】点到直线的距离公式;直线与圆的位置关系 【分析】求出圆心坐标,代入点到直线距离方程,解得答案.【解答】解:圆2228130x y x y +--+=的圆心坐标为:(1,4), 故圆心到直线10ax y +-=的距离1d ==,解得:43a =-,故选:A .【点评】本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.13.(2016•山东文)已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆22:(1)(1)1N x y -+-=的位置关系是( ) A .内切B .相交C .外切D .相离【考点】直线与圆的位置关系;圆与圆的位置关系及其判定【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可. 【解答】解:圆的标准方程为222:()(0)M x y a a a +-=>, 则圆心为(0,)a ,半径R a =, 圆心到直线0x y +=的距离d =圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是∴==24a =,2a =, 则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则MN =, 3R r +=,1R r -=, R r MN R r ∴-<<+,即两个圆相交. 故选:B .【点评】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.14.(2016•北京文)圆22(1)2x y ++=的圆心到直线3y x =+的距离为( )A .1B .2CD .【考点】点到直线的距离公式;圆的标准方程【分析】先求出圆22(1)2x y ++=的圆心,再利用点到到直线3y x =+的距离公式求解. 【解答】解:圆22(1)2x y ++=的圆心为(1,0)-,∴圆22(1)2x y ++=的圆心到直线3y x =+的距离为:d ==故选:C .【点评】本题考查圆心到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式和圆的性质的合理运用.15.(2018•新课标Ⅲ文理8)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP ∆面积的取值范围是( )A .[2,6]B .[4,8]C .D .【考点】直线与圆的位置关系【分析】求出(2,0)A -,(0,2)B -,||AB =,设(2P θ)θ,点P 到直线20x y ++=的距离:|2sin()4|d πθ++==,由此能求出ABP ∆面积的取值范围.【解答】解:直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,∴令0x =,得2y =-,令0y =,得2x =-,(2,0)A ∴-,(0,2)B -,||AB ==点P 在圆22(2)2x y -+=上,∴设(2P θ)θ,∴点P 到直线20x y ++=的距离:|2sin()4|d πθ++==,sin()[14πθ+∈-,1],|2sin()4|d πθ++∴=,ABP ∴∆面积的取值范围是:1[2⨯1[22⨯=,6]. 故选:A .【点评】本题考查三角形面积的取值范围的求法,考查直线方程、点到直线的距离公式、圆的参数方程、三角函数关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.填空题1.(2014•新课标Ⅱ理)设点0(M x ,1),若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是 [1-,1] . 【考点】直线与圆的位置关系【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论. 【解答】解:由题意画出图形如图:点0(M x ,1), 要使圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则OMN ∠的最大值大于或等于45︒时一定存在点N ,使得45OMN ∠=︒, 而当MN 与圆相切时OMN ∠取得最大值, 此时1MN =,图中只有M '到M ''之间的区域满足1MN …, 0x ∴的取值范围是[1-,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一. 2.(2014•大纲版文理)直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于43. 【考点】两直线的夹角与到角问题【分析】设1l 与2l 的夹角为2θ,由于1l 与2l 的交点(1,3)A 在圆的外部,由直角三角形中的边角关系求得sin r OA θ=的值,可得cos θ、tan θ 的值,再根据22tan tan 21tan θθθ=-,计算求得结果. 【解答】解:设1l 与2l 的夹角为2θ,由于1l 与2l 的交点(1,3)A 在圆的外部, 且点A 与圆心O之间的距离为OA =圆的半径为r =sin r OA θ∴==,cos θ∴=,sin 1tan cos 2θθθ==, 22tan 14tan 211tan 314θθθ∴===--,故答案为:43. 【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.3.(2014•上海文理)已知曲线:C x =:6l x =,若对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=,则m 的取值范围为 [2,3] . 【考点】直线与圆的位置关系【分析】通过曲线方程判断曲线特征,通过0AP AQ +=,说明A 是PQ 的中点,结合x 的范围,求出m 的范围即可.【解答】解:曲线:C x =,是以原点为圆心,2 为半径的圆,并且[2P x ∈-,0], 对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的横坐标6x =, 6[22Px m +∴=∈,3]. 故答案为:[2,3].【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想.4.(2014•湖北文)已知圆22:1O x y +=和点(2,0)A -,若定点(B b ,0)(2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则: (Ⅰ)b = 12- ;(Ⅱ)λ= . 【考点】三点共线【分析】(Ⅰ)利用||||MB MA λ=,可得222222()(2)x b y x y λλ-+=++,由题意,取(1,0)、(1,0)-分别代入,即可求得b ;(Ⅱ)取(1,0)、(1,0)-分别代入,即可求得λ.【解答】解:解法一:设点(cos ,sin )M θθ,则由||||MB MA λ=得22222(cos )sin [(cos 2)sin ]b θθλθθ-+=++,即2222cos 14cos 5b b θλθλ-++=+对任意θ都成立,所以2222415b b λλ⎧-=⎨+=⎩.又由||||MB MA λ=得0λ>,且2b ≠-,解得1212b λ⎧=-⎪⎪⎨⎪=⎪⎩. 解法二:(Ⅰ)设(,)M x y ,则 ||||MB MA λ=,222222()(2)x b y x y λλ∴-+=++,由题意,取(1,0)、(1,0)-分别代入可得222(1)(12)b λ-=+,222(1)(12)b λ--=-+, 12b ∴=-,12λ=.(Ⅱ)由(Ⅰ)知12λ=. 故答案为:12-,12.【点评】本题考查圆的方程,考查赋值法的运用,考查学生的计算能力,属于基础题.5.(2014•湖北理)直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += 2 .【考点】直线与圆的位置关系【分析】由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的14,|c o s 45==︒,由此求得22a b +的值.【解答】解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的14,∴cos 45==︒=,222a b ∴+=, 故答案为:2.【点评】cos45==︒是解题的关键,属于基础题.6.(2014•江苏)在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为. 【考点】直线与圆的位置关系【分析】求出已知圆的圆心为(2,1)C -,半径2r =.利用点到直线的距离公式,算出点C 到直线直线l 的距离d ,由垂径定理加以计算,可得直线230x y +-=被圆截得的弦长. 【解答】解:圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径2r =, 点C 到直线直线230x y +-=的距离d ,∴根据垂径定理,得直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为==【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.7.(2014•重庆文)已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于A 、B 两点,且AC BC ⊥,则实数a 的值为 0或6 .【考点】直线和圆的方程的应用【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆的标准方程为22(1)(2)9x y ++-=,圆心(1,2)C -,半径3r =, AC BC ⊥,∴圆心C 到直线AB 的距离3d即d ===, 即|3|3a -=, 解得0a =或6a =, 故答案为:0或6.【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.8.(2014•重庆理)已知直线20ax y +-=与圆心为C 的圆22(1)()4x y a -+-=相交于A ,B 两点,且ABC ∆为等边三角形,则实数a = 4± 【考点】直线和圆的方程的应用【分析】根据圆的标准方程,求出心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心(1,)C a ,半径2r =, ABC ∆为等边三角形,圆∴圆心C 到直线AB 的距离d =即d ===,平方得2810a a -+=,解得4a =故答案为:4【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.9.(2015•湖南文)若直线3450x y -+=与圆222(0)x y r r +=>相交于A ,B 两点,且120AOB ∠=︒,(O 为坐标原点),则r = 2 . 【考点】直线与圆相交的性质【分析】若直线3450x y -+=与圆222(0)x y r r +=>交于A 、B 两点,120AOB ∠=︒,则AOB ∆为顶角为120︒的等腰三角形,顶点(圆心)到直线3450x y -+=的距离12d r =,代入点到直线距离公式,可构造关于r 的方程,解方程可得答案.【解答】解:若直线3450x y -+=与圆222(0)x y r r +=>交于A 、B 两点,O 为坐标原点, 且120AOB ∠=︒,则圆心(0,0)到直线3450x y -+=的距离1201cos 22d r r ︒==,12r =,解得2r =,故答案为:2.【点评】本题考查的知识点是直线与圆相交的性质,其中分析出圆心(0,0)到直线3450x y -+=的距离12d r =是解答的关键.10.(2015•山东文)过点P 作圆221x y +=的两条切线,切点分别为A ,B ,则PA PB = 32. 【考点】平面向量数量积的性质及其运算;直线与圆相交的性质【分析】根据直线与圆相切的性质可求PA PB =,及APB ∠,然后代入向量数量积的定义可求PA PB . 【解答】解:连接OA ,OB ,PO则1OA OB ==,PO =,2,OA PA ⊥,OB PB ⊥,Rt PAO ∆中,1OA =,2PO =,PA = 30OPA ∴∠=︒,260BPA OPA ∠=∠=︒∴13||||cos6022PA PB PA PB =︒== 故答案为:32【点评】本题主要考查了圆的切线性质的应用及平面向量的数量积的定义的应用,属于基础试题. 11.(2015•重庆文)若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为250x y +-= .【考点】圆的切线方程;直线与圆的位置关系【分析】由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P 处的切线的方程.。
十年高考真题分类汇编(2010—2019)数学专题11 直线与圆一、选择题1.(2019·全国2·理T11文T12)设F 为双曲线C:x 2a 2−y 2b2=1(a>0,b>0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为( ) A.√2 B.√3 C.2 D.√5【答案】A【解析】如图,设PQ 与x 轴交于点A,由对称性可知PQ ⊥x 轴. ∵|PQ|=|OF|=c,∴|PA|=c2.∴PA 为以OF 为直径的圆的半径,A 为圆心, ∴|OA|=c 2.∴P c 2,c2.又点P 在圆x 2+y 2=a 2上,∴c 24+c 24=a 2,即c 22=a 2, ∴e2=c 2a 2=2,∴e=√2,故选A.2.(2018·北京·理T7)在平面直角坐标系中,记d 为点P(cos θ,sin θ)到直线x-my-2=0的距离.当θ,m 变化时,d 的最大值为( ) A.1 B.2 C.3 D.4 【答案】C【解析】设P(x,y),则{x =cosθ,y =sinθ,x 2+y 2=1.即点P 在单位圆上,点P 到直线x-my-2=0的距离可转化为圆心(0,0)到直线x-my-2=0的距离加上(或减去)半径,所以距离最大为d=1+2=1+2.当m=0时,d max =3.3.(2018·全国3·理T6文T8)直线x+y+2=0分别与x 轴、y 轴交于A,B 两点,点P 在圆(x-2)2+y 2=2上,则△ABP 面积的取值范围是( ) A.[2,6] B.[4,8]C.[√2,3√2]D.[2√2,3√2]【答案】A【解析】设圆心到直线AB 的距离d=√2=2√2.点P到直线AB的距离为d'.易知d-r≤d'≤d+r,即√2≤d'≤3√2.又AB=2√2,∴S△ABP=12·|AB|·d'=√2d',∴2≤S△ABP≤6.4.(2016·山东·文T7)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2√2.则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )A.内切B.相交C.外切D.相离【答案】B【解析】圆M的方程可化为x2+(y-a)2=a2,故其圆心为M(0,a),半径R=a.所以圆心到直线x+y=0的距离d=√1+1=√22a.所以直线x+y=0被圆M所截弦长为2√R2-d2=2√a2-(√22a)2=√2a,由题意可得√2a=2√2,故a=2.而|MN|=√(1-0)2+(1-2)2=√2,显然R-r<|MN|<R+r,所以两圆相交.5.(2016·全国2·理T4文T6)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-4B.-3C.√3D.2【答案】A【解析】圆的方程可化为(x-1)2+(y-4)2=4,圆心坐标为(1,4).所以d=2=1,解得a=-43,故选A.6.(2015·全国2·理T7)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2√6B.8C.4√6D.10【答案】C【解析】设圆的方程为x2+y2+Dx+Ey+F=0,将点A,B,C代入,得{D+3E+F+10=0,4D+2E+F+20=0,D-7E+F+50=0,解得{D=-2,E=4,F=-20.则圆的方程为x2+y2-2x+4y-20=0.令x=0得y2+4y-20=0,设M(0,y1),N(0,y2),则y1,y2是方程y2+4y-20=0的两根, 由根与系数的关系,得y1+y2=-4,y1y2=-20,故|MN|=|y1-y 2|=√(y 1+y 2)2-4y 1y 2=√16+80=4√6.7.(2015·全国2·文T7)已知三点A(1,0),B(0,√3),C(2,√3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.√213C.2√53D.43【答案】B【解析】由题意知,△ABC 外接圆的圆心是直线x=1与线段AB 垂直平分线的交点为P,而线段AB 垂直平分线的方程为y-√32=√33(x -12),它与x=1联立得圆心P 坐标为(1,2√33),则|OP|=√12+(2√33)2=√213.8.(2015·北京·文T2)圆心为(1,1)且过原点的圆的方程是( ) A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2 【答案】D【解析】圆的半径r=√2 ,标准方程为(x-1)2+(y-1)2=2.9.(2015·广东·理T5)平行于直线2x+y+1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x+y+5=0或2x+y-5=0 B.2x+y+√5=0或2x+y-√5=0 C.2x-y+5=0或2x-y-5=0 D.2x-y+√5=0或2x-y-√5=0 【答案】A【解析】设与直线2x+y+1=0平行的直线方程为2x+y+m=0(m ≠1), 因为直线2x+y+m=0与圆x 2+y 2=5相切, 所以√5=√5,|m|=5.故所求直线的方程为2x+y+5=0或2x+y-5=0.10.(2015·山东·理T9)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( ) A.-53或-35 B.-32或-23 C.-54或-45D.-43或-34【答案】D【解析】如图,作出点P(-2,-3)关于y 轴的对称点P 0(2,-3).由题意知反射光线与圆相切,其反向延长线过点P 0.故设反射光线为y=k(x-2)-3,即kx-y-2k-3=0. ∴圆心到直线的距离d=√1+k=1,解得k=-43或k=-34.11.(2015·重庆·理T8)已知直线l:x+ay-1=0(a ∈R)是圆C:x 2+y 2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C 的一条切线,切点为B,则|AB|=( ) A.2 B.4√2 C.6 D.2√10【答案】C【解析】依题意,直线l 经过圆C 的圆心(2,1),因此2+a-1=0,所以a=-1,因此点A 的坐标为(-4,-1).又圆C 的半径r=2,由△ABC 为直角三角形可得|AB|=√|AC |2-r 2. 又|AC|=2√10,所以|AB|=√(2√10)2-22=6.12.(2014·全国2·文T12)设点M(x 0,1),若在圆O:x 2+y 2=1上存在点N,使得∠OMN=45°,则x 0的取值范围是( ) A.[-1,1] B.[-12,12] C.[-√2,√2] D.[-√22,√22]【答案】A【解析】建立三角不等式,利用两点间距离公式找到x 0的取值范围.如图,过点M 作☉O 的切线,切点为N,连接ON.M 点的纵坐标为1,MN 与☉O 相切于点N. 设∠OMN=θ,则θ≥45°,即sin θ≥√22, 即ON OM ≥√22.而ON=1,∴OM≤√2.∵M 为(x 0,1),∴√x 02+1≤√2,∴x 02≤1,∴-1≤x 0≤1,∴x 0的取值范围为[-1,1].13.(2014·浙江·文T5)已知圆x 2+y 2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a 的值是( ) A.-2B.-4C.-6D.-8【答案】B【解析】圆的方程可化为(x+1)2+(y-1)2=2-a,因此圆心为(-1,1),半径r=√2-a .圆心到直线x+y+2=0的距离d=√2=√2,又弦长为4,因此由勾股定理可得(√2)2+(42)2=(√2-a )2, 解得a=-4.故选B.14.(2014·安徽·文T6)过点P(-√3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.(0,π] B.(0,π] C.[0,π6] D.[0,π3]【答案】D【解析】设过点P 的直线方程为y=k(x+√3)-1,则由直线和圆有公共点知√3k √1+k ≤1,解得0≤k≤√3.故直线l 的倾斜角的取值范围是[0,π3].15.(2014·北京·文T7)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C 上存在点P,使得∠APB=90°,则m 的最大值为( ) A.7 B.6 C.5 D.4【答案】B【解析】因为A(-m,0),B(m,0)(m>0),所以使∠APB=90°的点P 在以线段AB 为直径的圆上,该圆的圆心为O(0,0),半径为m.而圆C 的圆心为C(3,4),半径为1. 由题意知点P 在圆C 上,故两圆有公共点. 所以两圆的位置关系为外切、相交或内切, 故m-1≤|CO|≤m+1,即m-1≤5≤m+1,解得4≤m ≤6. 所以m 的最大值为6.故选B.16.(2014·四川·文T9)设m ∈R,过定点A 的动直线x+my=0和过定点B 的动直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是( ) A.[√5,2√5] B.[√10,2√5] C.[√10,4√5] D.[2√5,4√5]【答案】B【解析】由题意,得A(0,0),B(1,3),因为1×m+m×(-1)=0,所以两直线垂直,所以点P在以AB为直径的圆上,所以PA⊥PB.所以|PA|2+|PB|2=|AB|2=10,设∠ABP=θ,则|PA|+|PB|=√10sin θ+√10cos θ=2√5sin(θ+π4).因为|PA|≥0,|PB|≥0,所以0≤θ≤π2.所以√10≤|PA|+|PB|≤2√5,故选B.17.(2013·重庆·理T7)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P 为x轴上的动点,则|PM|+|PN|的最小值为( )A.5√2-4B.√17-1C.6-2√2D.√17【答案】A【解析】圆C1,C2的圆心分别为C1,C2,由题意知|PM|≥|PC1|-1,|PN|≥|PC2|-3,∴|PM|+|PN|≥|PC1|+|PC2|-4,故所求值为|PC1|+|PC2|-4的最小值.又C1关于x轴对称的点为C3(2,-3),所以|PC1|+|PC2|-4的最小值为|C3C2|-4=√(2-3)2+(-3-4)2-4=5√2-4,故选A.18.(2013·湖南·理T8)在等腰直角三角形ABC中,AB=AC=4,点P为边AB上异于A,B的一点,光线从点P出发,经BC,CA反射后又回到点P.若光线QR经过△ABC的重心,则AP等于( )A.2B.1C.83D.43【答案】D【解析】以A为原点,AB为x轴,AC为y轴建立直角坐标系如图所示. 则A(0,0),B(4,0),C(0,4).设△ABC的重心为D,则D点坐标为(43,43 ).设P点坐标为(m,0),则P点关于y轴的对称点P1为(-m,0),因为直线BC方程为x+y-4=0,所以P点关于BC 的对称点P2为(4,4-m),根据光线反射原理,P1,P2均在QR所在直线上,∴k P 1D =k P 2D ,即4343+m=43-4+m 43-4, 解得,m=43或m=0.当m=0时,P 点与A 点重合, 故舍去.∴m=43.19.(2012·浙江·理T3)设a ∈R,则“a=1”是“直线l 1:ax+2y-1=0与直线l 2:x+(a+1)y+4=0平行”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A【解析】l 1与l 2平行的充要条件为a(a+1)=2×1且a×4≠1×(-1),可解得a=1或a=-2,故a=1是l 1∥l 2的充分不必要条件.20.(2010·安徽·文T4)过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 【答案】A【解析】设直线方程为x-2y+c=0,将点(1,0)代入,解得c=-1,故直线方程为x-2y-1=0. 二、填空题1.(2019·江苏·T10)在平面直角坐标系xOy 中,P 是曲线y=x+4x (x>0)上的一个动点,则点P 到直线x+y=0的距离的最小值是 . 【答案】4【解析】当直线x+y=0平移到与曲线y=x+4x 相切位置时,切点Q 即为点P 到直线x+y=0的最小距离的点,有y'=(x +4x )'=1-4x 2=-1(x>0),得x=√2(-√2舍). 此时y=√2√2=3√2,即切点Q(√2,3√2),则切点Q 到直线x+y=0的距离为d=√2+3√2|√1+1=4,即为所求最小值.2.(2019·天津·理T12)设a ∈R,直线ax-y+2=0和圆{x =2+2cosθ,y =1+2sinθ(θ为参数)相切,则a 的值为____.【答案】34【解析】由{x =2+2cosθ,y =1+2sinθ(θ为参数),得(x-2)2+(y-1)2=4, 圆心为(2,1),r=2. 由直线与圆相切,得√2=2,解得a=3.3.(2019·浙江·T 12)已知圆C 的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C 相切于点A(-2,-1),则m= ,r= . 【答案】-2 √5【解析】由题意知k AC =-12⇒AC:y+1=-12(x+2),把(0,m)代入得m=-2,此时r=|AC|=√4+1=√5. 4.(2018·天津·文T12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 . 【答案】x 2+y 2-2x=0【解析】画出示意图如图所示,则△OAB 为等腰直角三角形,故所求圆的圆心为(1,0),半径为1,所以所求圆的方程为(x-1)2+y 2=1,即x 2+y 2-2x=0.5.(2018·全国1·文T15)直线y=x+1与圆x 2+y 2+2y-3=0交于A,B 两点,则|AB|= . 【答案】2【解析】圆的方程可化为x 2+(y+1)2=4,故圆心C(0,-1),半径r=2,圆心到直线y=x+1的距离d=√2=√2,所以弦长|AB|=2√r 2-d 2=2√4-2=2√2.6.(2018·天津·理T12)已知圆x 2+y 2-2x=0的圆心为C, 直线{x =-1+√22t ,y =3-√22t (t 为参数)与该圆相交于A,B两点,则△ABC 的面积为_____________. 【答案】12【解析】圆C 的方程可化为(x-1)2+y 2=1,得圆心为C(1,0),半径为1.由{x =-1+√22t ,y =3-√22t(t 为参数),可得直线的普通方程为x+y-2=0.所以圆心C(1,0)到直线x+y-2=0的距离d=√1+1=√22.所以|AB|=2√1-(√22)2=√2. 所以S △ABC =12·|AB|·d=12×√2×√22=12.7.(2016·全国1·文T15)设直线y=x+2a 与圆C:x 2+y 2-2ay-2=0相交于A,B 两点,若|AB|=2√3,则圆C 的面积为 . 【答案】4π【解析】圆C 的方程可化为x 2+(y-a)2=2+a 2,直线方程为x-y+2a=0, 所以圆心坐标为(0,a),半径r 2=a 2+2,圆心到直线的距离d=√2.由已知(√3)2+a 22=a 2+2,解得a 2=2,故圆C 的面积为π(2+a 2)=4π.8.(2016·上海·理T3)已知平行直线l 1:2x+y-1=0,l 2:2x+y+1=0,则l 1,l 2的距离是 . 【答案】2√55 【解析】d=12√A +B =√2+1=2√55.9.(2016·浙江·文T10)已知a ∈R,方程a 2x 2+(a+2)y 2+4x+8y+5a=0表示圆,则圆心坐标是 ,半径是 .【答案】(-2,-4) 5【解析】由题意,可得a 2=a+2,解得a=-1或2.当a=-1时,方程为x 2+y 2+4x+8y-5=0,即(x+2)2+(y+4)2=25,故圆心为(-2,-4),半径为5;当a=2时,方程为4x 2+4y 2+4x+8y+10=0,(x +12)2+(y+1)2=-54不表示圆.10.(2016·天津·文T12)已知圆C 的圆心在x 轴的正半轴上,点M(0,√5)在圆C 上,且圆心到直线2x-y=0的距离为4√55,则圆C 的方程为 . 【答案】(x-2)2+y 2=9【解析】设圆心C 的坐标为(a,0)(a>0),√5=4√55⇒a=2.又点M(0,√5)在圆C 上,则圆C 的半径r=√22+5=3.故圆C 的方程为(x-2)2+y 2=9.11.(2016·全国3·理T16文T15)已知直线l:mx+y+3m-√3=0与圆x 2+y 2=12交于A,B 两点,过A,B 分别作l 的垂线与x 轴交于C,D 两点.若|AB|=2√3,则|CD|= .【答案】4【解析】因为|AB|=2√3,且圆的半径R=2√3,所以圆心(0,0)到直线mx+y+3m-√3=0的距离为√R 2-(|AB |2)2=3.由√3|2=3,解得m=-√33.将其代入直线l 的方程,得y=√33x+2√3,即直线l 的倾斜角为30°. 由平面几何知识知在梯形ABDC 中, |CD|=|AB |cos30°=4. 12.(2015·江苏·T10)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为 . 【答案】(x-1)2+y 2=2【解析】(方法一)设A(1,0).由mx-y-2m-1=0,得m(x-2)-(y+1)=0,则直线过定点P(2,-1),即该方程表示所有过定点P 的直线系方程.当直线与AP 垂直时,所求圆的半径最大.此时,半径为|AP|=√(2-1)2+(-1-0)2=√2.故所求圆的标准方程为(x-1)2+y 2=2.(方法二)设圆的半径为r,根据直线与圆相切的关系得r=√2=√m 2+2m+1m 2+1=√1+2mm 2+1,当m<0时,1+2m m 2+1<1,故1+2mm 2+1无最大值; 当m=0时,r=1;当m>0时,m 2+1≥2m(当且仅当m=1时取等号). 所以r≤√1+1=√2,即r max =√2, 故半径最大的圆的方程为(x-1)2+y 2=2. 13.(2015·全国1·理T14)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________. 【答案】(x -32)2+y 2=254【解析】由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以√(a -0)2+(0-2)2=4-a,解得a=32,故圆心为(32,0),此时半径r=4-32=52,因此该圆的标准方程是(x -3)2+y 2=25.14.(2014·重庆·理T13)已知直线ax+y-2=0与圆心为C 的圆(x-1)2+(y-a)2=4相交于A,B 两点,且△ABC 为等边三角形,则实数a= .【答案】4±√15【解析】由△ABC 为等边三角形可得,C 到AB 的距离为√3,即(1,a)到直线ax+y-2=0的距离d=2=√3,即a 2-8a+1=0,可求得a=4±√15.15.(2014·陕西·理T12)若圆C 的半径为1,其圆心与点(1,0)关于直线y=x 对称,则圆C 的标准方程为 .【答案】x 2+(y-1)2=1【解析】因为(1,0)关于y=x 的对称点为(0,1),所以圆C 是以(0,1)为圆心,以1为半径的圆,其方程为x 2+(y-1)2=1.16.(2011·浙江·文T12)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m= .【答案】1【解析】由题意知1×2+(-2)·m=0,即m=1.17.(2010·全国·理T15)过点A(4,1)的圆C 与直线x-y-1=0相切于点B(2,1),则圆C 的方程为 .【答案】(x-3)2+y 2=2【解析】由题意知A,B 两点在圆C 上,∴线段AB 的垂直平分线x=3过圆心C.又圆C 与直线y=x-1相切于点B(2,1),∴k BC =-1.∴直线BC 的方程为y-1=-(x-2),即y=-x+3.y=-x+3与x=3联立得圆心C 的坐标为(3,0),∴r=|BC|=√(3-2)2+(0-1)2=√2. ∴圆C 的方程为(x-3)2+y 2=2. 18.(2010·全国·文T13)圆心在原点且与直线x+y-2=0相切的圆的方程为 .【答案】x 2+y 2=2【解析】圆心(0,0)到直线x+y-2=0的距离R=√1+1=√2.∴圆的方程为x 2+y 2=2.三、计算题1.(2015·全国1·文T20)已知过点A(0,1)且斜率为k 的直线l 与圆C:(x-2)2+(y-3)2=1交于M,N 两点.(1)求k 的取值范围;(2)若OM⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ =12,其中O 为坐标原点,求|MN|. 【解析】(1)由题设,可知直线l 的方程为y=kx+1.因为l 与C 交于两点, 所以√1+k <1.解得4-√73<k<4+√73. 所以k 的取值范围为(4-√73,4+√73). (2)设M(x 1,y 1),N(x 2,y 2).将y=kx+1代入方程(x-2)2+(y-3)2=1,整理得(1+k 2)x 2-4(1+k)x+7=0.所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2.OM⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k(x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k=1,所以l 的方程为y=x+1.故圆心C 在l 上,所以|MN|=2.2.(2015·广东·理T20)已知过原点的动直线l 与圆C 1:x 2+y 2-6x+5=0相交于不同的两点A,B.(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【解析】(1)由x 2+y 2-6x+5=0,得(x-3)2+y 2=4,从而可知圆C 1的圆心坐标为(3,0).(2)设线段AB 的中点M(x,y),由弦的性质可知C 1M ⊥AB,即C 1M ⊥OM.故点M 的轨迹是以OC 1为直径的圆,该圆的圆心为C (32,0),半径r=12|OC 1|=12×3=32,其方程为(x -32)2+y 2=(32)2,即x 2+y 2-3x=0.又因为点M 为线段AB 的中点,所以点M 在圆C 1内,所以√(x -3)2+y 2<2.又x 2+y 2-3x=0,所以可得x>53.易知x≤3,所以53<x≤3. 所以线段AB 的中点M 的轨迹C 的方程为x 2+y 2-3x=0(53<x ≤3).(3)存在实数k 满足题意. 由(2)知点M 的轨迹是以C (32,0)为圆心,32为半径的圆弧EF ⏜(如图所示,不包括两个端点),且E (53,2√53),F (53,-2√53). 又直线L:y=k(x-4)过定点D(4,0),当直线L 与圆C 相切时,由|k (32-4)-0|√k +1=32,得k=±34. 又k DE =-k DF =-0-(-2√53)4-53=2√5,结合上图可知当k ∈{-3,3}∪[-2√5,2√5]时,直线L:y=k(x-4)与曲线C 只有一个交点.3.(2014·全国1·文T20)已知点P(2,2),圆C:x 2+y 2-8y=0,过点P 的动直线l 与圆C 交于A,B 两点,线段AB 的中点为M,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP|=|OM|时,求l 的方程及△POM 的面积.【解析】设M(x,y),则CM ⃗⃗⃗⃗⃗⃗ =(x,y-4),MP⃗⃗⃗⃗⃗⃗ =(2-x,2-y). 由题设知CM⃗⃗⃗⃗⃗⃗ ·MP ⃗⃗⃗⃗⃗⃗ =0, 故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x-1)2+(y-3)2=2.(2)由(1)可知M 的轨迹是以点N(1,3)为圆心,√2为半径的圆.由于|OP|=|OM|,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM. 因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为y=-13x+83.又|OM|=|OP|=2√2,O 到l 的距离为4√105,|PM|=4√105,所以△POM 的面积为165.4.(2013·江苏·T17)如图,在平面直角坐标系xOy 中,点A(0,3),直线l:y=2x-4.设圆C 的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.【解析】(1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在. 设过A(0,3)的圆C的切线方程为y=kx+3,由题意,√k+1=1,解得k=0或k=-34,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1. 设点M(x,y),因为MA=2MO,所以√x2+(y-3)2=2√x2+y2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD≤2+1, 即1≤√a2+(2a-3)2≤3.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤125.所以点C的横坐标a的取值范围为[0,125].。
历年高考数学真题汇编专题10 直线与圆的应用1、【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=.2、【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.3、【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x轴的上方,求得32P ⎛-⎝⎭,所以212PF k ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得32P ⎛- ⎝⎭,所以212PF k ==.本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁.4、【2018年高考全国I 卷文数】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为()2214x y ++=,所以圆的圆心为()0,1-,且半径是2,根据点到直线的距离公式可以求得d ==结合圆中的特殊三角形,可知AB ==该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形,即半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形,利用勾股定理求得弦长.5、【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】2220x y x +-=【解析】设圆的方程为220x y Dx Ey F ++++=,圆经过三点(0,0),(1,1),(2,0),则01104020F D E F D F =⎧⎪++++=⎨⎪+++=⎩,解得200D E F =-⎧⎪=⎨⎪=⎩,则圆的方程为2220x y x +-=. 6、【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x轴的上方,求得32P ⎛-⎝⎭,所以212PF k ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得32P ⎛-⎝⎭,所以212PF k ==.本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁.7、【2018年高考全国I 卷文数】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为()2214x y ++=,所以圆的圆心为()0,1-,且半径是2,根据点到直线的距离公式可以求得d ==结合圆中的特殊三角形,可知AB==8、【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】2220x y x +-=【解析】设圆的方程为220x y Dx Ey F ++++=,圆经过三点(0,0),(1,1),(2,0),则01104020F D E F D F =⎧⎪++++=⎨⎪+++=⎩,解得200D E F =-⎧⎪=⎨⎪=⎩,则圆的方程为2220x y x +-=. 求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.9、【2018年高考全国Ⅲ卷文数】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A【解析】Q 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则AB =.Q 点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1d ==故点P 到直线20x y ++=的距离2d 的范围为,则[]2212,62ABP S AB d ==∈△.故答案为A.本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.先求出A ,B 两点坐标得到AB ,再计算圆心到直线的距离,得到点P 到直线距离的范围,由面积公式计算即可. 10、【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M e 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M e 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M e 与直线x +2=0相切,所以M e 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥u u u u r u u u r,故可得2224(2)a a +=+,解得=0a 或=4a . 故M e 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M e 的半径为=|+2|,||=2r x AO .由于MO AO ⊥u u u u r u u u r,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.一、圆的有关概念和方程1、定义:在平面上到定点的距离等于定长的点的轨迹是圆2、圆的标准方程:设圆心的坐标(),C a b ,半径为r ,则圆的标准方程为:()()222x a y b r -+-=3、圆的一般方程:圆方程为220x y Dx Ey F ++++=(1)22,x y 的系数相同(2)方程中无xy 项(3)对于,,D E F 的取值要求:2240D E F +-> 4、确定圆的方程的方法和步骤;确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 5.点与圆的位置关系 点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 二、直线与圆的位置关系1、直线与圆位置关系的判定:相切,相交,相离,位置关系的判定有两种方式:(1)几何性质:通过判断圆心到直线距离与半径的大小得到直线与圆位置关系,设圆的半径为r ,圆心到直线的距离为d ,则: ① 当r d >时,直线与圆相交 ② 当r d =时,直线与圆相切③ 当r d <时,直线与圆相离(2)代数性质:可通过判断直线与圆的交点个数得到直线与圆位置关系,即联立直线与圆的方程,再判断解的个数。
2010年高考题一、选择题2.(2010重庆理)(3)2241lim 42x x x →⎛⎫- ⎪--⎝⎭= A. —1 B. —14 C. 14D. 1 【答案】 B 解析:2241lim 42x x x →⎛⎫-⎪--⎝⎭=4121)2)(4(2(lim lim 222-=+-=+--→→x x x x x x 3.(2010北京理)(5)极坐标方程(p-1)(θπ-)=(p ≥0)表示的图形是(A )两个圆 (B )两条直线(C )一个圆和一条射线 (D )一条直线和一条射线 【答案】C4.(2010湖南理)5、421dx x⎰等于 A 、2ln 2- B 、2ln 2 C 、ln 2- D 、ln 25.(2010湖南理)3、极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A 、圆、直线B 、直线、圆C 、圆、圆D 、直线、直线6.(2010安徽理)7、设曲线C 的参数方程为23cos 13sin x y θθ=+⎧⎨=-+⎩(θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 的点的个数为 A 、1 B 、2C 、3D 、4【答案】B【解析】化曲线C 的参数方程为普通方程:22(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离3d ==<,直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求,又31010>-,在直线l 的另外一侧没有圆上的点符合要求,所以选B.【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 距离为,然后再判断知3>. 二、填空题3.(2010北京理)(12)如图,O 的弦ED ,CB 的延长线交于点A 。
若BD ⊥AE ,AB =4, BC =2, AD =3,则DE = ;CE = 。
十年高考真题分类汇编(2010—2019)数学专题11 直线与圆一、选择题1.(2019·全国2·理T11文T12)设F为双曲线C:x 2a2−y2b2=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.√2B.√3C.2D.√52.(2018·北京·理T7)在平面直角坐标系中,记d为点P(cos θ,sin θ)到直线x-my-2=0的距离.当θ,m 变化时,d的最大值为( )A.1B.2C.3D.43.(2018·全国3·理T6文T8)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[√2,3√2]D.[2√2,3√2]4.(2016·山东·文T7)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2√2.则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )A.内切B.相交C.外切D.相离5.(2016·全国2·理T4文T6)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-43B.-34C.√3D.26.(2015·全国2·理T7)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2√6B.8C.4√6D.107.(2015·全国2·文T7)已知三点A(1,0),B(0,√3),C(2,√3),则△ABC外接圆的圆心到原点的距离为()A.53B.√213C.2√53D.438.(2015·北京·文T2)圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=29.(2015·广东·理T5)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( )A.2x+y+5=0或2x+y-5=0B.2x+y+√5=0或2x+y-√5=0C.2x-y+5=0或2x-y-5=0D.2x-y+√5=0或2x-y-√5=010.(2015·山东·理T9)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( ) A.-53或-35B.-32或-23C.-5或-4D.-4或-311.(2015·重庆·理T8)已知直线l:x+ay-1=0(a ∈R)是圆C:x 2+y 2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C 的一条切线,切点为B,则|AB|=( ) A.2B.4√2C.6D.2√1012.(2014·全国2·文T12)设点M(x 0,1),若在圆O:x 2+y 2=1上存在点N,使得∠OMN=45°,则x 0的取值范围是( ) A.[-1,1] B.[-1,1] C.[-√2,√2]D.[-√22,√22]13.(2014·浙江·文T5)已知圆x 2+y 2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a 的值是( ) A.-2B.-4C.-6D.-814.(2014·安徽·文T6)过点P(-√3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.(0,π6] B.(0,π3] C.[0,π6]D.[0,π3]15.(2014·北京·文T7)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C 上存在点P,使得∠APB=90°,则m 的最大值为( ) A.7B.6C.5D.416.(2014·四川·文T9)设m ∈R,过定点A 的动直线x+my=0和过定点B 的动直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是( ) A.[√5,2√5] B.[√10,2√5] C.[√10,4√5]D.[2√5,4√5]17.(2013·重庆·理T7)已知圆C 1:(x-2)2+(y-3)2=1,圆C 2:(x-3)2+(y-4)2=9,M,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A.5√2-4 B.√17-1 C.6-2√2D.√1718.(2013·湖南·理T8)在等腰直角三角形ABC 中,AB=AC=4,点P 为边AB 上异于A,B 的一点,光线从点P 出发,经BC,CA 反射后又回到点P.若光线QR 经过△ABC 的重心,则AP 等于( )A.2B.1C.83D.4319.(2012·浙江·理T3)设a ∈R,则“a=1”是“直线l 1:ax+2y-1=0与直线l 2:x+(a+1)y+4=0平行”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件20.(2010·安徽·文T4)过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 二、填空题1.(2019·江苏·T10)在平面直角坐标系xOy 中,P 是曲线y=x+4x (x>0)上的一个动点,则点P 到直线x+y=0的距离的最小值是 .2.(2019·天津·理T12)设a ∈R,直线ax-y+2=0和圆{x =2+2cosθ,y =1+2sinθ(θ为参数)相切,则a 的值为____.3.(2019·浙江·T 12)已知圆C 的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C 相切于点A(-2,-1),则m= ,r= .4.(2018·天津·文T12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 .5.(2018·全国1·文T15)直线y=x+1与圆x 2+y 2+2y-3=0交于A,B 两点,则|AB|= .6.(2018·天津·理T12)已知圆x 2+y 2-2x=0的圆心为C, 直线{x =-1+√22t ,y =3-√22t(t 为参数)与该圆相交于A,B两点,则△ABC 的面积为_____________.7.(2016·全国1·文T15)设直线y=x+2a 与圆C:x 2+y 2-2ay-2=0相交于A,B 两点,若|AB|=2√3,则圆C 的面积为 .8.(2016·上海·理T3)已知平行直线l 1:2x+y-1=0,l 2:2x+y+1=0,则l 1,l 2的距离是 . 9.(2016·浙江·文T10)已知a ∈R,方程a 2x 2+(a+2)y 2+4x+8y+5a=0表示圆,则圆心坐标是 ,半径是 .10.(2016·天津·文T12)已知圆C 的圆心在x 轴的正半轴上,点M(0,√5)在圆C 上,且圆心到直线2x-y=0的距离为4√55,则圆C 的方程为 .11.(2016·全国3·理T16文T15)已知直线l:mx+y+3m-√3=0与圆x 2+y 2=12交于A,B 两点,过A,B 分别作l 的垂线与x 轴交于C,D 两点.若|AB|=2√3,则|CD|= .12.(2015·江苏·T10)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为 .13.(2015·全国1·理T14)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________. 14.(2014·重庆·理T13)已知直线ax+y-2=0与圆心为C 的圆(x-1)2+(y-a)2=4相交于A,B 两点,且△ABC 为等边三角形,则实数a= .15.(2014·陕西·理T12)若圆C 的半径为1,其圆心与点(1,0)关于直线y=x 对称,则圆C 的标准方程为 .16.(2011·浙江·文T12)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m= .17.(2010·全国·理T15)过点A(4,1)的圆C 与直线x-y-1=0相切于点B(2,1),则圆C 的方程为 . 18.(2010·全国·文T13)圆心在原点且与直线x+y-2=0相切的圆的方程为 . 三、计算题1.(2015·全国1·文T20)已知过点A(0,1)且斜率为k 的直线l 与圆C:(x-2)2+(y-3)2=1交于M,N 两点. (1)求k 的取值范围;(2)若OM⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ =12,其中O 为坐标原点,求|MN|. 2.(2015·广东·理T20)已知过原点的动直线l 与圆C 1:x 2+y 2-6x+5=0相交于不同的两点A,B. (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.3.(2014·全国1·文T20)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB 的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.4.(2013·江苏·T17)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.。