2020年最新高考数学--以平面向量为背景的选择填空题(原卷版)
- 格式:docx
- 大小:355.18 KB
- 文档页数:7
专题01 平面向量的概念一、单选题1.下列说法正确的是A .单位向量都相等B .若a b ≠,则a b ≠C .若a b =,则//a bD .若a b ≠,则a b ≠2.给出下列四个说法:①若||0a =,则0a =;②若||||a b =,则a b =或a b =-;③若//a b ,则||||a b =;④若//a b ,//b c ,则//a c .其中错误的说法有A .1B .2C .3D .43.下列关于向量的命题正确的是A .若||||a b =,则a b =B .若||||a b =,则//a bC .若a b =,b c =,则a c =D .若//a b ,//b c ,则//a c 4.下列命题正确的是A .若||0a =,则0a =B .若||||a b =,则a b =C .若||||a b =,则//a bD .若//a b ,则a b = 5.下列说法中,正确的个数是①时间、摩擦力、重力都是向量;②向量的模是一个正实数;③相等向量一定是平行向量;④向量a →与b →不共线,则a →与b →都是非零向量A .1B .2C .3D .4 6.下列说法中正确的是A .平行向量就是向量所在的直线平行的向量B .长度相等的向量叫相等向量C .零向量的长度为零D .共线向量是在一条直线上的向量7.下列命题正确的是A .若,a b 都是单位向量,则a b =B .两个向量相等的充要条件是它们的起点和终点都相同C .向量AB 与BA 是两个平行向量D .若AB DC =,则,,,A B C D 四点是平行四边形的四个顶点8.下列说法错误的是A .向量OA 的长度与向量AO 的长度相等B .零向量与任意非零向量平行C .长度相等方向相反的向量共线D .方向相反的向量可能相等9.有下列命题:①若向量a 与b 同向,且||||a b >,则a b >;②若四边形ABCD 是平行四边形,则AB CD =;③若m n =,n k =,则m k =;④零向量都相等.其中假命题的个数是A .1B .2C .3D .410.下列说法中正确的是A .零向量没有方向B .平行向量不一定是共线向量C .若向量a 与b 同向且a b =,则a b =D .若向量a ,b 满足a b >且a 与b 同向,则a b >11.以下说法正确的是 A .若两个向量相等,则它们的起点和终点分别重合B .零向量没有方向C .共线向量又叫平行向量D .若a 和b 都是单位向量,则a b =12.给出下列命题:①零向量的长度为零,方向是任意的;②若,a b 都是单位向量,则a b =;③向量AB 与BA 相等.则所有正确命题的序号是A .①B .③C .①③D .①②13.下列关于平面向量的命题中,正确命题的个数是(1)长度相等、方向相同的两个向量是相等向量;(2)平行且模相等的两个向量是相等向量;(3)若a b ≠,则a b →→≠;(4)两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3 14.下列命题中,正确命题的个数是①单位向量都共线;②长度相等的向量都相等;③共线的单位向量必相等;④与非零向量a 共线的单位向量是||a a . A .0B .1C .2D .3 15.有下列命题:①若a b →→=,则a b →→=;②若AB DC →→=,则四边形ABCD 是平行四边形;③若m n →→=,n k →→=,则m k →→=;④若//a b →→,//b c →→,则//a c →→.其中,假命题的个数是A .1B .2C .3D .4 16.下列说法不正确的是A .平行向量也叫共线向量B .两非零向量平行,则它们所在的直线平行或重合C .若a 为非零向量,则a a是一个与a 同向的单位向量D .两个有共同起点且模相等的向量,其终点必相同17.下列四个命题正确的是A .两个单位向量一定相等B .若a 与b 不共线,则a 与b 都是非零向量C .共线的单位向量必相等D .两个相等的向量起点、方向、长度必须都相同18.有下列说法:①若两个向量不相等,则它们一定不共线;②若四边形ABCD 是平行四边形,则AB CD =;③若//a b ,//b c ,则//a c ;④若AB CD =,则AB CD 且//AB CD .其中正确说法的个数是A .0B .1C .2D .3 19.下列说法正确的是A .单位向量都相等B .若//a b ,则a b =C .若a b =,则a b =D .若λa b ,(0b ≠),则a 与b 是平行向量 20.如图所示,在正ABC 中,D ,E ,F 均为所在边的中点,则以下向量中与ED 相等的是A .EFB .BEC .FBD .FC21.已知a 、b 是平面向量,下列命题正确的是A .若||||1a b ==,则a b =B .若||||a b <,则a b <C .若0a b +=,则//a bD .零向量与任何非零向量都不共线 22.下列命题中正确的是A .若||a b |=|,则a b =B .若a b ≠,则a b ≠C .若||a b |=|,则a 与b 可能共线D .若a b ≠,则a 一定不与b 共线 23.下列关于向量的概念叙述正确的是A .方向相同或相反的向量是共线向量B .若//a b ,//b c ,则//a cC .若a 和b 都是单位向量,则a b =D .若两个向量相等,则它们的起点和终点分别重合24.已知向量a 与b 共线,下列说法正确的是A .a b =或a b =-B .a 与b 平行C .a 与b 方向相同或相反D .存在实数λ,使得λa b25.下列关于平面向量的命题中,正确命题的个数是①任一向量与它的相反向量都不相等;②长度相等、方向相同的两个向量是相等向量;③平行且模相等的两个向量是相等向量;④若a b ≠,则||||a b ≠;⑤两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .326.判断下列命题:①两个有共同起点而且相等的非零向量,其终点必相同;②若//a b ,则a 与b 的方向相同或相反;③若//a b 且//b c ,则//a c ;④若a b =,则2a b >.其中正确的命题个数为A .0B .1C .2D .327.设,a b 是非零向量,则“2a b =”是“a a b b=” 成立的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件28.若四边形ABCD 是矩形,则下列说法不正确的是A .AB →与CD →共线 B .AC →与BD →共线C .AD →与CB →模相等,方向相反 D .AB →与CD →模相等29.设,a b →→是两个平面向量,则“a b →→=”是“||||a b →→=”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件30.下列关于向量的结论:(1)若||||a b =,则a b =或a b =-;(2)向量a 与b 平行,则a 与b 的方向相同或相反;(3)起点不同,但方向相同且模相等的向量是相等向量;(4)若向量a 与b 同向,且||||a b >,则a b >.其中正确的序号为A .(1)(2)B .(2)(3)C .(4)D .(3)二、多选题1.下面的命题正确的有.A .方向相反的两个非零向量一定共线B .单位向量都相等C .若a ,b 满足a b >且a 与b 同向,则a b >D .“若A 、B 、C 、D 是不共线的四点,且AB DC =”⇔“四边形ABCD 是平行四边形” 2.若四边形ABCD 是矩形,则下列命题中正确的是A .,AD CB 共线B .,AC BD 相等 C .,AD CB 模相等,方向相反D .,AC BD 模相等 3.在下列结论中,正确的有A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等 4.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量5.设0a 为单位向量,下列命题是假命题的为A .若a 为平面内的某个向量,则0=a a aB .若a 与0a 平行,则0=a a aC .若a 与0a 平行且1=a ,则0=a aD .若a 为单位向量,则0=a a三、填空题1.如图,设O 是边长为1的正六边形ABCDER 的中心,写出图中与向量AB 相等的向量__________.(写出两个即可)2.下列命题中正确的有__________.(填序号)①两个向量相等,则它们的起点相同,终点相同; ②若 =a b ,则a b =; ③若AB DC =,则,,,A B C D 四点构成平行四边形; ④在▱ABCD 中,一定有AB DC =;⑤若a b =,b c =,则a c =;⑥若//a b ,//b c ,则//a c ;3.给出以下结论:①平面任意两个共起点的向量是共面的;②两个相等向量就是相等长度的两条有向线段表示的向量;③平面向量的加法满足结合律:()()a b c a b c ++=++;④首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量. 请将正确的说法题号填在横线上:__________.4.下列说法中正确的是__________.(填序号)①温度含零上和零下温度,所以温度是向量;②向量的模是一个正实数;③若||||a b >,则a b >;④长度相等且方向相同的两个向量表示相等向量.5.给出下列几种说法:①若非零向量a 与b 共线,则a b =;②若向量a 与b 同向,且||||a b >,则a b >;③若两向量有相同的基线,则两向量相等;④若//a b ,//b c ,则//a c 其中错误说法的序号是__________.6.给出下列命题:①若//,//a b b c ,则//a c ;②若单位向量的起点相同,则终点相同; ③起点不同,但方向相同且模相等的几个向量是相等向量;④向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在同一直线上.其中正确命题的序号是__________.四、解答题1.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC相等的向量;(2)与OB长度相等的向量;(3)与DA共线的向量.2.如图所示,O是正六边形ABCDEF的中心,且OA=a,OB=b,OC=c.(1)与a的长度相等、方向相反的向量有哪些?(2)与a共线的向量有哪些?(3)请一一列出与a,b,c.相等的向量.3.如图所示,4×3的矩形(每个小方格都是单位正方形),在起点和终点都在小方格的顶点处的向量中,试问:(1)与AB→相等的向量共有几个;(2)与AB→方向相同且模为.。
2020年高考数学(理)二轮专项复习专题06 平面向量平面向量是工具性的知识,向量的坐标化使得向量具有代数和几何两种形式,它把“数”和“形”很好地结合在一起,体现了重要的数学思想方法,在高考中,除了对向量本身的概念与运算的知识进行考察外,向量还与平面几何、三角几何、解析几何、立体几何等知识综合在一起考查,本专题应该掌握向量的基本概念、向量的运算方法与公式以及向量的应用.§6-1 向量的概念与运算【知识要点】1.向量的有关概念与表示(1)向量:既有方向又有大小的量,记作向量c b a ,,,自由向量:数学中所研究的向量是可以平移的,与位置无关,只要是长度相等,方向相同的向量都看成是相等的向量.(2)向量的模:向量的长度,记作:|||,|a AB向量的夹角:两个非零向量a ,b ,作b a ==OB OA ,,则(AOB 称为向量a ,b 的夹角,记作:〈a ,b 〉 零向量:模为0,方向任意的向量,记作:0单位向量:模为1,方向任意的向量,与a 共线的单位向量是:)0(||=/±a a a(3)相等向量:长度相等,且方向相同的向量叫相等向量. 相反向量:长度相等,方向相反的向量.向量共线:方向相同或相反的非零向量是共线向量,零向量与任意向量共线;共线向量也称为平行向量.记作a ∥b向量垂直;〈a ,b )=90°时,向量a 与b 垂直,规定:0与任意向量垂直. 2.向量的几何运算(注意:运算法则、运算律)(1)加法:平行四边形法则、三角形法则、多边形法则. (2)减法:三角形法则. (3)数乘:记作:λ a .它的长度是:|λ a |=|λ |·|a | 它的方向:①当λ >0时,λ a 与a 同向 ②当λ <0时,λ a 与a 反向 ③当λ =0时,λ a =0 (4)数量积:①定义:a ·b =|a ||b |cos 〈a ,b 〉其物理背景是力在位移方向所做的功. ②运算律:1.(交换律)a ·b =b ·a2.(实数的结合律)λ (a ·b )=(λ a )·b =a ·(λ b ) 3.(分配律)(a +b )·c =a ·c +b ·c ③性质:设a ,b 是非零向量,则:a ·b =0⇔a ⊥ba 与b 同向时,a ·b =|a |·|b | a 与b 反向时,a ·b =-|a |·|b | 特殊地:a ·a =|a |2或a a a ⋅=||夹角:||||,cos b a ba b a ⋅>=<|a ·b |≤|a | |b |3.向量的坐标运算若在平面直角坐标系下,a =(x 1,y 1),b =(x 2,y 2) (1)加法:a +b =(x 1+x 2,y 1+y 2) (2)减法:a -b =(x 1-x 2,y 1-y 2) (3)数乘:λ a =(λ x 1,λ y 1) (4)数量积:a ·b =x 1x 2+y 1y 2 (5)若a =(x ,y ),则22||y x +=a(6)若a =(x 1,y 1),b =(x 2,y 2),则222221212121||||,cos yx yx y y x x +++=>=<⋅⋅b a ba b a(7)若A (x 1,y 1),B (x 2,y 2),则221221)()(||y y x x AB -+-=(8)a 在b 方向上的正射影的数量为22222121||,cos ||y x y y x x ++=>=<⋅b b a b a a 4.重要定理(1)平行向量基本定理:若a =λ b ,则a ∥b ,反之:若a ∥b ,且b ≠0,则存在唯一的实数λ 使得a =λ b (2)平面向量基本定理:如果e 1和e 2是平面内的两个不共线的向量,那么该平面内的任一向量a ,存在唯一的一对实数a 1,a 2使a =a 1e 1+a 2e 2(3)向量共线和垂直的充要条件:若在平面直角坐标系下,a =(x 1,y 1),b =(x 2,y 2) 则:a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0(4)若a =(x 1,y 1),b =(x 2,y 2),则⎪⎩⎪⎨⎧==⇔=2121y y x x b a【复习要求】1.准确理解相关概念及表示,并进行简单应用;2.掌握向量的加法、减法、数乘运算的方法、几何意义和坐标运算,了解向量的线性运算的法则、性质;会选择合适的方法解决平面向量共线等相关问题;3.熟练掌握向量的数量积的运算、性质与运算律,会利用向量的数量积解决有关长度、角度、垂直、平行等问题.【例题分析】例1 向量a 、b 、c 是非零的不共线向量,下列命题是真命题的个数有( )个 (1)(b ·c )a -(c ·a )b 与c 垂直,(2)若a ·c =b ·c ,则a =b , (3)(a ·b )c =a (b ·c ), (4)a ·b ≤|a ||b | A .0 B .1 C .2 D .3【分析】(1)真命题,注意:向量的数量积是一个实数,因此[(b ·c )a -(c ·a )b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0,所以c (b ·c )a -(c ·a )b 与c 垂直;(2)假命题.a ·c =b ·c ≠a =b ;即向量的数量积不能两边同时消掉相同的向量,比如:向量a 与向量b 都是与向量c 垂直且模长不等的向量,可以使得左边的式子成立,但是a 、b 这两个向量不相等;(3)假命题.(a ·b )c ≠a (b ·c ),实际上(a ·b )c 是与向量c 方向相同或相反的一个向量,a (b ·c )是与a 方向相同或相反的一个向量,向量a 、c 的方向可以不同,左右两边的向量就不等;(4)真命题.a ·b =|a ||b |cos 〈a ,b 〉,且cos 〈a ,b 〉≤1,所以a ·b ≤|a ||b |. 解答:选C .【评析】(1)我们在掌握向量的有关概念时要力求准确和完整,比如平行向量(共线向量)、零向量等,注意积累像这样的容易错误的判断并纠正自己的认识;(2)向量的加减运算与数乘运算的结果仍然是一个向量,而向量的数量积运算结果是一个实数,要熟练掌握向量的运算法则和性质.例2 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A .)37,97(B .)97,37(--C .)97,37(D .)37,97(--【分析】知道向量的具体坐标,可以进行向量的坐标运算;向量的平行与垂直的关系也可以用坐标体现,因此用待定系数法通过坐标运算求解.解:不妨设c =(m ,n ),则a +c =(1+m ,2+n ),a +b =(3,-1),对于(c +a )∥b ,则有-3(1+m )=2(2+n );又c ⊥(a +b ),则有3m -n =0,则有37,97-=-=n m 故选择D 【评析】平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.此外,待定系数法是在解决向量的坐标运算中常用的方法.例3 (1)已知向量)10,(),5,4(),12,(k OC OB k OA -===,且A 、B 、C 三点共线,求实数k 的值. (2)已知向量a =(1,1),b =(2,-3),若k a -2b 与a 垂直,求实数k 的值. 【分析】(1)向量a 与b (b ≠0)共线⇔存在实数m 使a =m b . 当已知向量的坐标时,a ∥b ⇔x 1y 2-x 2y 1=0.(2)利用向量的数量积能够巧妙迅速地解决有关垂直的相关问题. a ·b =0⇔a ⊥b ⇔x 1x 2+y 1y 2=0解:(1)∵)10,(),5,4(),12,(k OC OB k OA -===, ∴)5,4(),7,4(-+=--=k k , ∵A 、B 、C 三点共线,∴CB AB //,即(4-k )(-5)-(4+k )(-7)=0,解得:⋅-=32k (2)由(k a -2b )⊥a ,得(k a -2b )·a =k a 2-2b ·a =2k -2·(2-3)=0,所以k =-1.【评析】①向量a 与b (b ≠0)共线的充要条件是存在实数m 使a =m b ;当已知向量的坐标时,a ∥b ⇔x 1y 2-x 2y 1=0.若判断(或证明)两个向量是否共线,只要判断(或证明)两个向量之间是否具有这样的线性关系即可;反之,已知两个向量具有平行关系时,也有线性等量关系成立.②利用向量的共线定理来解决有关求参数、证明点共线或线段平行,以及利用向量的数量积解决垂直问题等是常见的题型,注意在解题过程中适当选择方法、正确使用公式,并注意数形结合.例4 已知:|a |=2,|b |=5,〈a ,b 〉=60°,求:①a ·b ;②(2 a +b )·b ;③|2a +b |;④2 a +b 与b 的夹角θ 的余弦值【分析】利用并选择合适的公式来求数量积、模、夹角等:a ·b =|a ||b |cos 〈a ,b 〉=x 1x 2+y 1y 2a a a a a a ⋅⋅=⇒=||||2,若a =(x ,y ),则22||y x +=a222221212121||||,cos yx yx y y x x +++=>=<⋅⋅b a ba b a解:①∵|a |=2,|b |=5,〈a ,b 〉=60°,∴a ·b =|a ||b |cos 〈a ,b 〉=5; ②(2a +b )·b =2a ·b +b ·b =10+25=35; ③;6125201644)2(|2|222=++=++=+=+⋅⋅b b a a b a b a④⋅==++=++>=+<⋅⋅⋅⋅6161756135||)2()2(|||2|)2(,2cos 2b b a b b a b b a b b a b b a【评析】向量的数量积是一个非常好的工具,利用向量的数量积可以解决求长度、角度、距离等相关问题,同时用向量的数量积解决垂直相关问题也是常见的题型,注意使用正确的公式.例5 已知向量a =(sin θ ,cos θ -2sin θ ),b =(1,2). (Ⅰ)若a ∥b ,求tan θ 的值;(Ⅱ)若|a |=|b |,0<θ <π,求θ 的值.【分析】已知向量的坐标和平行关系与模长,分别用坐标公式刻画. 解:(Ⅰ)因为a ∥b ,所以2sin θ =cos θ -2sin θ ,于是4sin θ =cos θ ,故41tan =θ. (Ⅱ)由|a |=|b |知,sin 2θ +(cos θ -2sin θ )2=5,所以1-2sin2θ +4sin 2θ =5. 从而-2sin2θ +2(1-cos2θ )=4,即sin2θ +cos2θ =-1, 于是22)4π2sin(-=+θ又由0<θ <π知,49π4π24π<+<θ,所以45π4π2=+θ,或47π4π2=-θ 因此2π=θ,或43π=θ.例6 设a 、b 、c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( ) (A)-2(B)22-(C)-1(D)21-【分析】由向量的模长以及夹角,考虑从数量积的运算寻找解决问题的突破口解:∵a ,b ,c 是单位向量,∴(a -c )·(b -c )=a ·b -(a +b )·c +c 221〉,〈cos 121-≥+-=⋅⋅c b a故选D .例7 在△ABC ,已知23||.||32BC ==⋅,求角A ,B ,C 的大小. 【分析】熟悉向量的数量积的形式,再结合三角公式来解决问题 解:设BC =a ,AC =b ,AB =c由||||32⋅⋅=得bc A bc 3cos 2=,所以23cos =A 又A ∈(0,π),因此6π=A 由23||||3BC AC AB =⋅得23a bc =,于是43sin 3sin sin 2==⋅A B C 所以43)sin 23cos 21(sin ,43)6π5sin(sin =+=-⋅⋅C C C C C ,因此02cos 32sin ,3sin 32cos sin 22=-=+⋅C C C C C ,即0)3π2sin(=-C由6π=A 知6π50<<C ,所以34π3π2,3π<--C ,从而03π2=-C ,或π3π2=-C ,即6π=C ,或32π=C ,故 6π,32π,6π===C B A ,或⋅===32π,6π,6πC B A【评析】向量往往是一步工具性的知识应用,继而转化为三角函数、不等式、解三角形等知识,因此,熟练准确掌握向量的基本概念、基本运算法则、性质,以及灵活选择合适的公式非常必要.练习6-1一、选择题1.平面向量a ,b 共线的充要条件是( ) A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ ∈R ,b =λ aD .存在不全为零的实数λ 1,λ 2,λ 1a +λ 2b =02.已知平面向量a =(1,-3),b =(4,-2),λ a +b 与a 垂直,则λ 是( ) A .-1 B .1 C .-2 D .2 3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且2=,则顶点D 的坐标为( ) A .)27,2(B .)21,2(-C .(3,2)D .(1,3)4.设△ABC 的三个内角A ,B ,C ,向量)cos 3,(cos ),sin ,sin 3(A B B A ==n m ,若m ·n =1+cos(A +B ),则C =( ) A .6π B .3π C .32π D .65π 二、填空题5.设a =(2k +2,4),b =(8,k +1),若a 与b 共线,则k 值为______. 6.已知向量),3(),2,1(m OB OA =-=,若AB OA ⊥,则 m =______. 7.已知M (3,-2),N (-5,-1),MN MP 21=,则P 点坐标为______. 8.已知a 2=1,b 2=2,(a -b )·a =0,则a 和b 的夹角是______. 三、解答题9.已知向量a =(x +3,x 2-3x -4)与AB 相等,其中A (1,2),B (3,2),求实数x 的值.10.已知向量a 与b 同向,b =(1,2),a ·b =10.(1)求向量a 的坐标;(2)若c =(2,-1),求(b ·c )a .11.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,求向量a 的模.§6-2 向量的应用【知识要点】1.向量的基本概念与运算与平面几何联系解决有关三角形的形状、解三角形的知识; 2.以向量为载体考查三角函数的知识;3.在解析几何中用向量的语言来表达平行、共线、垂直、中点以及定比分点等信息,实际上还是考查向量的运算方法与公式. 【复习要求】会用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力.例1若·==⋅⋅,求证三角形ABC 是正三角形, 【分析】给出的是一个连等的等式,考虑移项进行向量的运算,进而得到正三角形的某些判定的结论. 证明0)()(=+=-=-⋅⋅⋅⋅,即BC 与BC 边上的中线垂直,所以AB =AC ,同理BC =BA ,可以得到该三角形是等边三角形;例2 已知四边形ABCD 中,若⋅⋅⋅⋅===,判断四边形ABCD 的形状. 【分析】已知向量的数量积的对称式,可以从运算和几何意义上分别研究. 解答1从几何意义上设k ====⋅⋅⋅⋅若k >0,则∠ABC ,∠BCD ,∠CDA ,∠DAB 都是钝角,与四边形内角和为360°矛盾,舍;同理k <0时,也不可能,故k =0,即四边形ABCD 为矩形.解答2从运算上,0)()(=+=-=-⋅⋅⋅⋅DC AB BC CD AB BC CD BC BC AB 同理;0)()(=+=-=-⋅⋅⋅⋅ 于是BC AD //,同理CD AB //,得到四边形ABCD 是平行四边形;∴02)()(==+=-=-⋅⋅⋅⋅⋅ ∴BC AB ⊥,∴四边形ABCD 为矩形.【评析】利用数量积解决三角形的形状时,常常涉及向量的夹角问题,注意向量的数量积的正负对向量夹角的约束,另外,一些对称式告诉我们几何图形应该具有一个规则的形状,不因为改变字母而变化形状,我们可以直观判断形状.例3 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量)1,3(-=m ,n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,求角A ,B 的大小.【分析】在三角形中,借助垂直向量的条件可以得到A 角的三角方程,从而求出三角形的内角A ,已知的等式左右两边是边的齐次式,可以借助三角形的正弦定理、三角公式等知识求三角形的其余内角.解:∵ 0sin cos 3=-=⊥⋅∴A A n m n m ,即3tan =A ,∴三角形内角;3π=A ∵a cosB +b cos A =c sinC ,∴sin A cos B +sin B cos A =sin 2C ,即sin(A +B )=sin 2C ,sin C =1,,2π=C ∴⋅=6πB 【评析】向量的知识经常被用在三角形或者解析几何等知识里,结合相关的知识点进行考查,常见的有中点的表达(比如221OB OA OM AB AM 、MBAM +===、等都说明M 是AB 中点)、定比分点的表达、平行(或共线)或垂直的表达等,要注意分析并积累向量语言表达的信息.例4 已知△ABC 的三个顶点的直角坐标分别为A (3,4)、B (0,0)、C (c ,0).(1)若0=⋅AC AB ,求c 的值;(2)若c =5,求sin ∠A 的值.【分析】(1)利用点的坐标求向量的坐标,利用向量数量积的坐标公式转化为代数问题进行运算求解即可.(2)向量的数量积有代数和几何两种运算公式,为我们沟通了更多的等量关系,我们不仅可以数形结合,还可以利用解三角形的其他知识,如①利用数量积AC AB ⋅求出cos A 进而求sin A ;②余弦定理正弦定理解:(1))4,3(),4,3(--=--=c AC AB 由0=⋅AC AB 可得-3(c -3)+16=0解得325=c (2)[法一]当c =5时,可得AB =5,52=AC ,BC =5,△ABC 为等腰三角形, 过B 作BD ⊥AC 交AC 于D ,可求得52=BD 故,552sin ==ABBD A[法二].cos ||||),4,2(),4,3(A ⋅=-=--=⋅=∈=+-=⨯∴∴∴552sin ],π,0[,55cos 166cos 525A A A A 【评析】向量的数量积有代数和几何两种运算公式,为我们沟通了更多的等量关系,使用时不仅可以数形结合,还可以和解三角形的其他知识——余弦定理、正弦定理一起来解决有关三角形的问题.例5 若等边△A B C 的边长为32,平面内一点M 满足CA CB CM 3261+=,则 =⋅______.解析:建立直角坐标系,因为三角形是正三角形,故设C (0,0),)3,3(),0,32(B A ,利用向量坐标运算,求得)21,233(M ,从而求得)25,23(),21,23(--=-=,运用数量积公式解得为-2.另外,还可以通过向量的几何运算求解.解:),3265()6131()()(--=--=⋅⋅⋅ 660cos 3232,32||||=⨯===⋅⋅ ,得到.2-=⋅【评析】注意向量有两套运算公式,有坐标时用代数形式运算,没有坐标时用向量的几何形式运算,同时注意向量在解三角形中的几何运用,以及向量的代数化手段的重要性.例6 已知向量a =(cos a ,sin a ),b =(cos β ,sin β ),c =(-1,0) (Ⅰ)求向量b +c 的长度的最大值;(Ⅱ)设4π=α,且a ⊥(b +c ),求cos β 的值. 【分析】关于向量的模一方面有坐标的计算公式和平方后用向量的数量积运算的公式,另一方面有几何意义,可以数形结合;解:(1)解法1:b +c =(cos β -1,sin β ),则 |b +c |2=(cos β -1)2+sin 2β =2(1-cos β ).∵-1≤cos β ≤1,∴0≤|b +c |2≤4,即0≤|b +c |≤2.当cos β =-1时,有|b +c |=2,所以向量b +c 的长度的最大值为2. 解法2:∵|b |=1,|c |=1,|b +c |≤|b |+|c |=2 当cos β =-1时,有|b +c |=(-2,0),即|b +c |=2, b +c 的长度的最大值为2.(2)解法1:由已知可得b +c =(cos β -1,sin β ),a ·(b +c )=cos α cos β +sin α sin β -cos α =cos(α -β )-cos α . ∵a ⊥(b +c ),∴a ·(b +c )=0,即cos(α -β )=cos α .由4π=α,得4πcos )4πcos(=-β,即).(4ππ24πZ ∈±=-k k β ∴4ππ2+=k β或β =2k π,(k ∈Z ),于是cos β =0或cos β =1.解法2:若4π=α,则)22,22(=a ,又由b =(cos β ,sin β ),c =(-1,0)得,22sin 22cos 22)sin ,1(cos )22,22()(-+=-⋅=+⋅ββββc b a ∵a ⊥(b +c ),∴a ·(b +c )=0,即cos β (cos β -1)=0∴sin β =1-cos β ,平方后sin 2β =(1-cos β )2=1-cos 2β ,化简得cos β (cos β -1)=0 解得cos β =0或cos β =1,经检验,cos β =0或cos β =1即为所求例7 已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角,3π=C 求△ABC 的面积. 【分析】已知向量的坐标和位置关系,考虑用坐标运算入手,结合三角形的条件解决问题证明:(1)∵m ∥n ,∴a sin A =b sin B , 即Rbb R a a 22⋅⋅=,其中R 是三角形ABC 外接圆半径,a =b , ∴△ABC 为等腰三角形.解(2)由题意可知m ⊥p ,m ·p =0,即a (b -2)+b (a -2)=0,∴a +b =ab , 由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0,∴ab =4(舍去ab =-1) ∴33πsin 421sin 21===⋅⋅C ab S 例8 已知向量)2sin ,2(cos ),23sin ,23(cos xx x x -==b a ,其中].2π,0[∈x(1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ |a +b |的最小值是23-,求λ 的值. 【分析】只要借助向量的数量积以及模的坐标公式代入,继而转化为三角函数与函数的有关知识. 解:(1)x xx x x 2cos 2sin 23sin2cos 23cos =-=⋅b a ]2π,0[,cos 22cos 22)(||2∈=+=+=+x x x b a b a或]2π,0[,cos 22cos 22)2sin 23(sin )2cos 23(cos||22∈=+=-++=+x x x x x x x b a (2)f (x )=a ·b -2λ |a +b |=cos2x -4λ cos x =2cos 2x -4λ cos x -1=2(cos x -λ )2-2λ 2-1 ∵],1,0([cos ]2π,0[x x ∴∈①当λ ≤0时;f (x )的最小值是-1,不可能是23-,舍; ②当0<λ <1时,f (x )的最小值是23122-=--λ,解得;21=λ③当λ ≥1时,f (x )的最小值是2341-=-λ,解得185<=λ,舍;∴⋅=21λ【评析】向量的知识经常和三角函数、函数、不等式等的知识联系在一起进行考查,向量仅仅是一步坐标运算,继而转化为其他知识,因此使用公式时要准确,为后续解题做好准备.练习6-2一、选择题1.若为a ,b ,c 任意向量,m ∈R ,则下列等式不一定成立的是( ) A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )c =a (b ·c ) 2.设)31,(cos ),sin ,23(αα==b a ,且a ∥b ,则α 的值是( ) A .)(,4ππ2Z ∈+=k k α B .)(,4ππ2Z ∈-=k k α C .)(,4ππZ ∈+=k k α D .)(,4ππZ ∈-=k k α3.在△ABC 中,b a ==,,且a ·b >0,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰直角三角形4.已知:△ABC 的三个顶点A 、B 、C 及平面内一点P ,且=++,则点P 与△ABC 的位置关系是( ) A .P 在△ABC 内部B .P 在△ABC 外部 C .P 在AB 边上或其延长线上D .P 在AC 边上二、填空题5.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为3π,则|a +b |=______. 6.已知向量a =(cos θ ,sin θ ),向量)1,3(-=b ,则|2a -b |的最大值是______. 7.若)1,2(),3,1(x ==b a ,且(a +2b )⊥(2a -b ),则x =______.8.已知向量)5,3(),6,4(==OB OA ,且OB AC OA OC //,⊥,则向量=______ 三、解答题9.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,求|a +2b |.10.P 在y 轴上,Q 在x 轴的正半轴上,H (-3,0),M 在直线PQ 上,,0=⋅MQ 23-=.当点P 在y 轴移动时,求点M 的轨迹C 方程.11.已知向量a =(sin θ ,1),2π2π),cos ,1(<<-=θθb (1)若a ⊥b ,求θ ;(2)求|a +b |的最大值.习题6一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2 a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4) 2.给出下列五个命题: ①|a |2=a 2;②ab a b a 2=⋅;③(a ·b )2=a 2·b 2; ④(a -b )2=a 2-2a ·b +b 2;⑤若a ·b =0,则a =0或b =0;其中正确命题的序号是( ) A .①②③ B .①④ C .①③④D .②⑤3.函数y =2x +1的图象按向量a 平移得到函数y =2x +1的图象,则( ) A .a =(-1,-1) B .a =(1,-1) C .a =(1,1) D .a =(-1,1) 4.若a 2=1,b 2=2,(a -b )·a =0,则a 与b 的夹角为( ) A .30° B .45° C .60° D .90° 5.已知在△ABC 中,,⋅⋅⋅==则O 为△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 二、填空题6.已知p =(1,2),q =(-1,3),则p 在q 方向上的正射影长为______; 7.如图,正六边形ABCDEF 中,有下列四个命题:①.2=+ ②.AF AB AD 22+= ③.AB AD AD AC ⋅⋅=④.)()(⋅=⋅其中真命题的代号是______(写出所有真命题的代号).8.给定两个长度为1的平面向量OA 和OB ,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若y x +=,其中x ,y ∈R ,则x +y 的最大值是______.9.已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λ b ),则实数λ 的值______;若b ba aa a c )(⋅⋅-=,则向量a 与c 的夹角为______;10.已知|a |=3,|b |=4,a ·b =-2,则|a +b |=______. 三、解答题11.已知).1,3(),3,1(-==b a(1)证明:a ⊥b ;(2)若k a -b 与3a -k b 平行,求实数k ; (3)若k a -b 与k a +b 垂直,求实数k .12.设向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b ,(t ∈R ).(1)求a ·b(2)求u 的模的最小值.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,.73tan =C(1)求cos C ; (2)若25=⋅,且a +b =9,求c .14.已知函数f (x )=kx +b 的图象与x ,y 轴相交于点A ,B ,j i j i ,(22+=,分别是与x ,y 轴正半轴同方向的单位向量)函数g (x )=x 2-x -6,(1)求k ,b 的值;(2)当x 满足f (x )>g (x )时,求函数)(1)(x f x g +的最小值.15.已知向量a =(x 2,x +1),b =(1-x ,t ),若f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.专题06 平面向量参考答案练习6-1一、选择题1.D 2.A 3.A 4.C 二、填空题5.3或-5 6.4 7.)23,1(-- 8.45° 三、解答题9.由已知)0,2(==a ,所以⎩⎨⎧=--=+043232x x x ,得x =-1.10.(1)由已知设a =(λ ,2λ )且λ >0,a ·b =λ +4λ =10,λ =2,所以a =(2,4); (2)(b ·c )a =(2-2)a =0. 11.6.练习6-2一、选择题1.D . 2.C . 3.C . 4.D . 二、填空题5.7 6.4 7.-6或9 8.)214,72(- 三、解答题9.32 由已知|a |=2,|a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴32|2|=+b a .10.解答:设M (x ,y ),∵M 在直线PQ 上, ),0,32(),2,0(,23x Q y P --=∴ ∵)2,(),2,3(,0y y x PM yHP PM HP +=-==⋅ ∴02323.=-yy x ,即y 2=4x .(除原点.) 11.解:(Ⅰ)若a ⊥b ,则sin θ +cos θ =0,由此得)2π2π(1tan <<--=θθ,所以;4π-=θ(Ⅱ)由a =(sin θ ,1),b =(1,cos θ )得)cos (sin 23)cos 1()1(sin ||22θθθθ++=++=+b a,)4πsin(223++=θ当1)4πsin(=+θ时,|a +b |取得最大值,即当4π=θ时,|a +b |最大值为.12+习题6一、选择题1.B 2.B 3.A 4.B 5.D 二、填空题6.2107.①、②、④ 8.2 9.λ =-3;90° 10.21 三、解答题11.(2)k =±3;(3)k =±1. 12.答案:(1)22=⋅b a ,(2)22||min =u13.解答:(1)∵73tan =C ,∴73cos sin =C C ,又∵sin 2C +cos 2C =1 解得⋅±=81cos C ∵tan C >0,∴C 是锐角. ∴⋅=81cos C(2)∵20,25cos ,25===⋅∴∴ab C ab .又∵a +b =9 ∴a 2+2ab +b 2=81.∴a 2+b 2=41.∴c 2=a 2+b 2-2ab cos C =36.∴c =6.14.略解:(1)由已知得)0,(k b A -,B (0,b ),则),(b k b AB =,于是.2,2==b kb∴k =1,b =2. (2)由f (x )>g (x ),得x +2>x 2-x -6,即(x +2)(x -4)<0,得-2<x <4,521225)(1)(2-+++=+--=+x x x x x x f x g由于x +2>0,则3)(1)(-≥+x f x g ,其中等号当且仅当x +2=1,即x =-1时成立∴)(1)(x f x g +的最小值是-3. 15.略解:解法1:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,则f '(x =-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f '(x )≥0.∴f '(x )≥0⇔t ≥3x 2-2x ,在区间(-1,1)上恒成立,考虑函数g (x )=3x 2-2x ,由于g (x )的图象是对称轴为31=x ,开口向上的抛物线,故要使t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.而当t ≥5时,f '(x )在(-1,1)上满足f ′(x )>0,即f (x )在(-1,1)上是增函数.故t 的取值范围是t ≥5. 解法2:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,f '(x )=-3x 2+2x +t . 若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f '(x )≥0. ∵f '(x )的图象是开口向下的抛物线,∴当且仅当f '(1)=t -1≥0,且f '(-1)=t -5≥0时,f '(x )在(-1,1)上满足f '(x )>0,即f (x )在(-1,1)上是增函数.故t 的取值范围是t ≥5.。
专题一 压轴选择填空题第2关 以向量为背景的选择填空题【名师综述】平面向量是高中数学的重要知识,是高中数学中数形结合思想的典型体现.近年来,高考对向量知识的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与三角函数或平面解析几何相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显平面向量的交汇价值.【典例解剖】类型一 平面向量数量积在三角形中的应用典例1.(2020上海徐汇区一模)设H 是ABC V 的垂心,且3450HA HB HC ++=u u u r u u u r u u u r r,则cos BHC ∠的值为( )A .10-B .5-C .6-D . 【答案】D 【解析】【分析】由三角形垂心性质及已知条件可求得HB =u u u r ,HC =u u u r 由向量的夹角公式即可求解.【详解】由三角形垂心性质可得,HA HB HB HC HC HA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,不妨设HA HB HB HC HC HA ⋅=⋅=⋅=u u u r u u u r u u u r u u u r u u u r u u u rx ,∵3HA +u u u r 4HB +u u u r 50HC =u u u r r,∴23450HA HB HB HC HB ⋅++⋅=u u u r u u u r u u u r u u u r u u u r,∴HB =u u u r HC =u u u r HB HC cos BHC HB HC ⋅∠==u u u r u u u r u u u r u u u r D .【名师点睛】本题考查平面向量的运用及向量的夹角公式,解题的关键是由三角形的垂心性质,进而用同一变量表示出HB HC u u u r u u u r,,要求学生有较充实的知识储备,属于中档题.【举一反三】在直角ABC ∆中,M ,N 是斜边BC 上的两个三等分点,已知ABC ∆的面积为2,则AM AN ⋅u u u u r u u u r的最小值为______.【答案】169【解析】如图,以A 为坐标原点,分别以AB ,AC 为x 、y 轴建立直角坐标系,设(),0B t ,∵122ABC S AB AC ∆=⋅=,4AC t =,40,C t ⎛⎫ ⎪⎝⎭,∴8,33t M t ⎛⎫ ⎪⎝⎭,24,33t N t ⎛⎫⎪⎝⎭,2223216999AM AN t t ⋅=+≥=u u u u r u u u r ,当且仅当2223299t t =即2t =时取“=”,()min169AM AN⋅=u u u u r u u u r .故答案为169. 类型二 几何图形中的向量问题典例2.(2020上海华师大二附中高三)如图,B 是AC 的中点,2BE OB =u u u r u u u r,P 是平行四边形BCDE 内(含边界)的一点,且()OP xOA yOB x y R =+∈u u u r u u u r u u u r,.有以下结论:①当x =0时,y ∈[2,3];②当P 是线段CE 的中点时,1522x y =-=,; ③若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段; ④x ﹣y 的最大值为﹣1;其中你认为正确的所有结论的序号为_____.【答案】②③④【解析】对于①,当OP yOB u u u r u u u r=,据共线向量的充要条件得到P 在线段BE 上,故1≤y ≤3,故①错;对于②,当P 是线段CE 的中点时,()132OP OE EP OB EB BC u u u r u u u r u u u r u u u r u u u r u u u r =+=++()11532222OB OB AB OA OB =+-+=-+u u u r u u u r u u u r u u ur u u u r ,故②对;对于③,x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对;对于④,()OP xOA yOB xOA y OB =+=--u u u r u u u r u u u r u u u r u u u r ,令OB OF -=u u u r u u u r,则()xOA y OF OP =-u u u r u u u r u u u r ,当,,P A F 共线,则1x y -=,当AF 平移到过B 时,x ﹣y 的最大值为﹣1,故④对,故答案为②③④。
2020年高考数学试题分项版——平面向量(原卷版)一、选择题1.(2020·全国Ⅲ理,6)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935 C.1735 D.19352.(2020·新高考全国Ⅰ,7)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB → 的取值范围是( )A .(-2,6)B .(-6,2)C .(-2,4)D .(-4,6)3.(2020·新高考全国Ⅱ,3)若D 为△ABC 的边AB 的中点,则CB →等于( )A .2CD →-CA →B .2CA →-CD →C .2CD →+CA → D .2CA →+CD →4.(2020·全国Ⅱ文,5)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( )A .a +2bB .2a +bC .a -2bD .2a -b5.(2020·全国Ⅲ文,6)在平面内,A ,B 是两个定点,C 是动点,若AC →·BC →=1,则点C 的轨迹为( )A .圆B .椭圆C .抛物线D .直线二、填空题1.(2020·全国Ⅰ理,14)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________.2.(2020·全国Ⅱ理,13)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.3.(2020·北京,13)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________.4.(2020·天津,15)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB→=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.5.(2020·江苏,13)在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9,若P A →=mPB →+⎝⎛⎭⎫32-m PC →(m 为常数),则CD 的长度是________.6.(2020·浙江,17)已知平面单位向量e1,e2满足|2e1-e2|≤2,设a=e1+e2,b=3e1+e2,向量a,b的夹角为θ,则cos2θ的最小值是________.7.(2020·全国Ⅰ文,14)设向量a=(1,-1),b=(m+1,2m-4),若a⊥b,则m=________.。
第6单元 平面向量第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量(2,)m =a ,(3,1)=b ,若∥a b ,则实数m 的值为( ) A .14B .13C .23D .12【答案】C【解析】由题意,向量(2,)m =a ,(3,1)=b ,因为∥a b ,则231m =,即32m =,解得23m =.故选C .2.已知向量(2,1)=a ,(,1)m =-b ,且()⊥-a a b ,则m 的值为( ) A .1 B .3C .1或3D .4【答案】B【解析】因为(2,1)=a ,(,1)m =-b ,所以(2,2)m -=-a b ,因为()⊥-a a b ,则()2(2)20m ⋅-=-+=a a b ,解得3m =,所以答案选B . 3.已知向量a ,b 满足||1=a,=b ,a 与b 的夹角为2π3,则2-a b 为( ) A .21 BCD【答案】B【解析】2||12b ==,2π1||||cos12132a b a b 骣琪?=创-=-琪桫,|2|a b \-=故选B .4.已知向量a ,b 满足||1=a ,⊥a b ,则向量2-a b 在向量a 方向上的投影为( ) A .0 B .1C .2D .1-【答案】B【解析】根据向量的投影公式可知,向量2-a b 在向量a 方向上的投影为2(2)()1||||-⋅==a b a a a a ,故选B .5.设a ,b 是非零向量,则“存在实数λ,使得λ=a b ”是“+=+a b a b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】存在实数λ,使得λ=a b ,说明向量a ,b 共线, 当a ,b 同向时,+=+a b a b 成立,当a ,b 反向时,+=+a b a b 不成立,所以充分性不成立.当+=+a b a b 成立时,有a ,b 同向,存在实数λ,使得λ=a b 成立,必要性成立, 即“存在实数λ,使得λ=a b ”是“+=+a b a b ”的必要而不充分条件. 故选B .6.已知非零向量a ,b ,若(3)0⋅+=a a b ,2=a b ,则向量a 和b 夹角的余弦值为( ) A .23B .23-C .32D .32-【答案】B【解析】设向量a 与向量b 的夹角为θ,||2||=a b ,∴由(3)0⋅+=a a b ,可得2222()33cos 46cos 0θθ+⋅=+⋅=+=a a b a a b b b , 化简即可得到2cos 3θ=-,故答案选B . 7.如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF=( )A .3144AB AD + B .1344AB AD + C .12AB AD + D .3142AB AD + 【答案】D【解析】根据题意得1()2AF AC AE =+, 又AC AB AD =+,12AE AB =,所以1131()2242AF AB AD AB AB AD =++=+,故选D .8.设D 为所在平面内一点,1433AD AB AC =-+,若,则( )A .2B .3C .D .【答案】D【解析】因为D 为所在平面内一点,由1433AD AB AC =-+, 可得34AD AB AC =-+,即44AD AC AD AB -=-, 则4CD BD =,即4BD DC =-,可得3BD DC DC +=-,故3BC DC =-,则,故选D .9.在四边形中,2AB =+a b ,43BC =--a b ,55CD =--a b ,那么四边形的形状是( ) A .矩形 B .平行四边形C .梯形D .以上都不对【答案】C【解析】86AD AB BC CD =++=--a b ,2AD BC ∴=,AD BC ∴∥,AB CD ∥,四边形是梯形,答案选C .10.在中,为的重心,为上一点,且满足3MC AM =,则( )A .11312GM AB AC =+ B .11312GM AB AC =-- C .17312GM AB AC =-+ D .17312GM AB AC =- 【答案】B【解析】由题意,画出几何图形如下图所示:根据向量加法运算可得GM GA AM =+, 因为G 为△ABC 的重心,M 满足3MC AM =,所以()()211323AG AB AC AB AC =⨯+=+,14AM AC =, 所以11111334312GM AB AC AC AB AC ⎛⎫=-++=--⎪⎝⎭,所以选B .11.如图所示,设为所在平面内的一点,并且1142AP AB AC =+,则与的面积之比等于( )A .25B .35C .34D .14【答案】D【解析】延长AP 交BC 于点D ,因为A 、P 、D 三点共线, 所以()1CP mCA nCD m n =++=,设CD kCB =,代入可得CP mCA nkCB =+,即()()1AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+, 又因为1142AP AB AC =+,即14nk =,112m nk --=,且,解得1344m n ==,,所以1344CP CA CD =+,可得4AD PD =, 因为与有相同的底边,所以面积之比就等于DP 与AD 之比,所以与的面积之比为14.故选D . 12.已知向量a ,b 满足4=a ,b 在a 上投影为,则3-a b 的最小值为( ) A .B .C .D .【答案】B【解析】b 在a 上投影为,即cos ,2=-b a b ,0>b ,cos ,0∴<a b ,又[)cos ,1,0∈-a b ,min 2∴=b ,2222223696cos ,9964-=-⋅+=-+=+a b a a b b a a b a b b b ,min 310∴-==a b ,本题正确选项B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若向量(1,2)x =+a 和向量(1,2)=-b 垂直,则-=a b _______. 【答案】5 【解析】向量()1,2x =+a 和向量()1,2=-b 垂直,140x ∴⋅=+-=a b ,解得3x =,()3,4∴-=a b,5∴-==a b ,本题正确结果5.14.已知向量()2,3=a ,(,6)m =-b ,若⊥a b ,则m =________. 【答案】9【解析】因为⊥a b ,所以(2,3)(,6)2180m m ⋅=⋅-=-=a b ,解得m =9,故填9.15.已知向量=a ,向量b 为单位向量,且1⋅=a b ,则2-b a 与2b 夹角为__________. 【答案】60︒【解析】很明显2=a ,设向量,a b 的夹角为θ,则21cos 1θ⋅=⨯⨯=a b ,1cos 2θ∴=,π3θ=, 据此有()()22224242-⋅=-⋅=-=b a b b a b ,且22==-=b a ,22=b ,向量2-b a 与2b 的夹角为β,则21cos 222β==⨯,60β=︒, 综上可得:2-b a 与2b 夹角为60︒.16.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,若点P 满足PA PB PC ++=0, 则OP =_____.【答案】12x x 【解析】因为PA PB PC ++=0,所以P 为ABC △的重心,故P 的坐标为123123,33++++⎛⎫⎪⎝⎭,即()2,2,故22OP =.填12x x .三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知向量(1,2)=a ,(3,4)=-b . (1)求3-a b 的值;(2)若()λ⊥+a a b ,求λ的值.【答案】(1)3-=a b ;(2)1λ=-.【解析】(1)因为向量(1,2)=a ,(3,4)=-b ,则3(6,2)-=a b ,则3-==a b .(2)因为向量(1,2)=a ,(3,4)=-b ,则(13,24)λλλ+=-+a b , 若()λ⊥+a a b ,则()1(13)2(24)550λλλλ⋅+=⨯-+⨯+=+=a a b , 解得1λ=-.18.(12分)如图,在平行四边形ABCD 中,M 为DC 的中点,13BN BC =,设AB =a,AD =b .(1)用向量,a b 表示向量AM ,AN ,MN ; (2)若2=a ,3=b ,a 与b 的夹角为π3,求AM MN ⋅的值. 【答案】(1)见解析;(2)92-. 【解析】(1)因为在平行四边形ABCD 中,M 为DC 的中点,13BN BC =,又AB =a ,AD =b ,故1122AM AD DM AD AB ===+++a b , 1133AN AB BN AB AD ===+++a b ,11123223MN AN AM ⎛⎫⎛⎫-+-+=- ⎪ ⎪⎝⎭=⎝=⎭a b a a b b .(2)2211212192234362AM MN ⎛⎫⎛⎫+⋅-=-⋅=-⎪ ⎪⋅⎝⎭⎝=⎭+a b a a b a b b ,故答案为92-.19.(12分)如图,点是单位圆与轴正半轴的交点,34,55B ⎛⎫- ⎪⎝⎭.(1)若,求的值;(2)设点为单位圆上的一个动点,点满足OQ OA OP =+.若,π6π2θ≤≤, 表示OQ ,并求OQ 的最大值.【答案】(1)15;(2).【解析】(1)点是单位圆与轴正半轴的交点,34,55B ⎛⎫- ⎪⎝⎭. 可得4sin 5α=,3cos 5α=-,∴341cos sin 555αα+=-+=. (2)因为,,所以()1cos2,sin 2OQ OA OP θθ=+=+,所以(12cos OQ θ===,因为π6π2θ≤≤,所以2cos OQ θ⎡=∈⎣, OQ 的最大值.20.(12分)设向量()()()11,cos22,14sin 1sin,12θθ⎛⎫==== ⎪⎝⎭,,,,a b c d ,其中4π0,θ⎛⎫∈ ⎪⎝⎭. (1)求⋅-⋅a b c d 的取值范围; (2)若函数,比较()f ⋅a b 与()f ⋅c d 的大小. 【答案】(1);(2)()()f f ⋅>⋅a b c d .【解析】(1)∵2cos2θ⋅=+a b ,22sin 12cos2θθ⋅=+=-c d ,∴2cos2θ⋅-⋅=a b c d , ∵0π4θ<<,∴0π22θ<<,∴,∴()0,2⋅-⋅的取值范围是a b c d .(2)∵()22cos211cos22cos f θθθ⋅=+-=+=a b ,()22cos211cos22sin f θθθ⋅=--=-=c d ,∴()()()222cos sin 2cos2f f θθθ⋅-⋅=-=a b c d ,∵0π4θ<<,∴0π22θ<<,∴,∴()()f f ⋅>⋅a b c d . 21.(12分)在中,三内角的对边分别为,已知向量()2sin ,cos2x x =m ,),1x =n ,函数()f x =⋅m n 且.(1)求角的值;(2)若23BA BC +=且成等差数列,求.【答案】(1)π3B =;(2)2. 【解析】(1)()cos cos2cos2f x x x x x x =⋅=+=+m n , 整理得()2sin 2π6f x x ⎛⎫=+⎪⎝⎭,∵,∴12sin 21si 62ππn 26B B ⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭,∵,∴π3B =. (2)由成等差数列,得,由余弦定理得,由23BA BC +=,得,三个等式联立解得.22.(12分)如图,在平行四边形中,分别是上的点,且满足,记AB =a ,AD =b ,试以,a b 为平面向量的一组基底.利用向量的有关知识解决下列问题.(1)用,a b 来表示向量DE ,BF ;(2)若,且3BF =,求.【答案】(1)见解析;(2).【解析】(1)∵在中,2DF FC =,∴111222DE DC CE AB CB AB AD =+=+=-=-a b , 111333BF BC CF AD CD AD AB =+=+=-=-b a .(2)由(1)可知:13BF AD AB =-,12DE AB AD =-, ∴2222121·339BF AD AB AD AD AB AB ⎛⎫=-=-+ ⎪⎝⎭,∵且,∴22221223cos 339BAD ∠=-⨯⨯⨯+⨯,∴1cos 2BAD ∠=,∴222211·24DE AB AD AB AB AD AD ⎛⎫=-=-+ ⎪⎝⎭2211332cos 2961742BAD =-⨯⨯∠+⨯=-⨯+=,∴7DE =。
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2.若α为第四象限角,则( ) A. cos2α>0B. cos2α<0C. sin2α>0D. sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A. 10名B. 18名C. 24名D. 32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A. 3699块B. 3474块C. 3402块D. 3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A. 55B. 255 C.355D.4556.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k=( )A. 2B. 3C. 4D. 57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A. EB. FC. GD.H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y Ca b ab-=>>的两条渐近线分别交于,D E 两点,若O D E 的面积为8,则C 的焦距的最小值为( )A. 4B. 8C. 16D. 329.设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减 C. 是偶函数,且在1(,)2-∞-单调递增 D. 是奇函数,且在1(,)2-∞-单调递减10.已知△ABC 934等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) 3 B.32C. 1 3211.若2233x y x y ---<-,则( ) A. ln (1)0y x -+>B. ln (1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<12.0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i mi a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i mi a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m+===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A.11010B.11011C.10001D.11001二、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.15.设复数1z ,2z 满足12||=||=2z z ,12iz z +=,则12||z z -=__________.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.A B C 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求A B C 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800i i ixy x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))nii ii in ni ix yxx yyyx===----∑∑∑((((,≈1.414.19.已知椭圆C1:22221x ya b+=(a>b>0)右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F 且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.20.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2x sin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:33()8f x≤(3)设n∈N*,证明:sin2x sin22x sin24x…sin22n x≤34n n.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分. [选修4—4:坐标系与参数方程]22.已知曲线C1,C2的参数方程分别为C1:224c o s4s inxyθθ⎧=⎨=⎩,(θ为参数),C2:1,1x tty tt⎧=+⎪⎪⎨⎪=-⎪⎩(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a=-+-+.(1)当2a=时,求不等式()4f x的解集;(2)若()4f x,求a的取值范围.2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i-的虚部是( )A. 310-B. 110-C.110D.310【答案】D【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i ii i +===+--+,所以复数113z i=-的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C.14230.2,0.3p p p p ====D.14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et I Kt --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63 C. 66 D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I tK*=求得t *即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t KI tK e**--==+,则()0.235319te*-=,所以,()0.2353ln 193t *-=≈,解得353660.23t *≈+≈.故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.设O 为坐标原点,直线2x =与抛物线C :22(0)y p x p =>交于D ,E 两点,若O D O E ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫⎪⎝⎭C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件O D O E ⊥,结合抛物线的对称性,可知4D O xE O x π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y p x p =>交于,E D 两点,且O D O E ⊥, 根据抛物线的对称性可以确定4D O xE O x π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则c o s,=+a a b ( )A.3135-B.1935-C.1735D. 1935【答案】D 【解析】 【分析】计算出()a a b ⋅+、ab+的值,利用平面向量数量积可计算出c o s ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a ab aa b ∴⋅+=+⋅=-=.()2222257a b a ba ab b+=+=+⋅+=-=,因此,()1919c o s ,5735a a ba ab a a b⋅+<+>===⨯⋅+.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C.12D.23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得A B ,再根据222co s 2A B B C A CB A B B C+-=⋅,即可求得答案.【详解】在A B C 中,2c o s 3C =,4A C =,3B C =根据余弦定理:2222co s A B A C B C A C B C C =+-⋅⋅2224322433A B=+-⨯⨯⨯可得29A B = ,即3A B=由22299161 c o s22339A B B C A CBA B B C+-+-===⋅⨯⨯故1 c o s9B=.故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A. 6+42B. 4+42C. 6+23D. 4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222A B C A D C C D BS S S===⨯⨯=△△△根据勾股定理可得:2A B A D D B===∴A D B△是边长为2根据三角形面积公式可得:211s in60(222A D BS A B A D=⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tanθ–tan(θ+π4)=7,则tanθ=()A. –2B. –1C. 1D. 2【答案】D【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2ta n ta n74πθθ⎛⎫-+=⎪⎝⎭,ta n12ta n71ta nθθθ+∴-=-,令ta n,1t tθ=≠,则1271ttt+-=-,整理得2440t t-+=,解得2t=,即tan2θ=.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l与曲线yx2+y2=15都相切,则l的方程为()A. y=2x+1B. y=2x+12C. y=12x+1 D. y=12x+12【答案】D【解析】【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y=(0,x,则00x>,函数y=1y'=,则直线l的斜率k=,设直线l的方程为)0y x x-=-,即x x-+=,由于直线l 与圆2215x y +=x =两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 11.设双曲线C :22221x y ab-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2 C. 4 D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5c a=,c ∴=,根据双曲线的定义可得122P F P F a -=,12121||42P F F P F F S P =⋅=△,即12||8P F P F ⋅=,12F P F P ⊥,()22212||2P F P F c ∴+=,()22121224P F P F P F P F c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8lo g 5b =,得85b =,结合5458<可得出45b <,由13lo g 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、()0,1c ∈,()222528lo g 3lg 3lg 81lg 3lg 8lg 3lg 8lg 241lo g 5lg 5lg 522lg 5lg 25lg 5ab ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8lo g 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13lo g 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x z y =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以m a x 31227z =⨯+⨯=.故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题. 14.262()x x +的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.【详解】622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r rrrxC x--⋅=⋅1236(2)rrrC x-=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=. 故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C r n r rr n T a b -+=,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】23π【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3B C A B A C ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于22312A M =-=,故12222S =⨯⨯=△A B C设内切圆半径为r ,则:A B C A O B B O C A O C S S S S =++△△△△111222A B r B C r A C r =⨯⨯+⨯⨯+⨯⨯()133222r =⨯++⨯=解得:22r ,其体积:34233V r π==.23.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1s in s in x x+有如下四个命题:①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin fx x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11s in c o s 22c o s s in 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,11s in c o s 22c o s s in 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2xπ=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n+=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n . 【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立; 假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; (2)由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n nn S n n -=⨯+⨯+⨯++-⋅++⋅,①23412325272(21)2(21)2nn n S n n +=⨯+⨯+⨯++-⋅++⋅,② 由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n a d b cKa b c d a c b d-=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111A B C D A B C D -中,点,E F 分别在棱11,D D B B 上,且12D EE D =,12BF F B =.(1)证明:点1C 在平面A E F 内;(2)若2A B =,1A D =,13A A =,求二面角1A E F A --的正弦值.【答案】(1)证明见解析;(2)427.【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1A E C F 为平行四边形,进而可证得点1C 在平面A E F 内; (2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C x y z -,利用空间向量法可计算出二面角1A E F A --余弦值,进而可求得二面角1A E F A --的正弦值.【详解】(1)在棱1C C 上取点G ,使得112C G C G =,连接D G 、F G 、1C E 、1C F ,在长方体1111A B C D A B C D -中,//A D B C 且A D B C =,11//B B C C 且11B B C C =,112C G C G =,12B F F B =,112233C G C C B B B F ∴===且C G B F =,所以,四边形B C G F 为平行四边形,则//A F D G 且A F D G =, 同理可证四边形1D E C G 为平行四边形,1//C E D G ∴且1C E D G =,1//C E A F ∴且1C E A F =,则四边形1A E C F 为平行四边形,因此,点1C 在平面A E F 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C x y z -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1A E =--,()2,0,2A F =--,()10,1,2A E =-,()12,0,1A F =-,设平面A E F 的法向量为()111,,m x y z =,由00m A E m A F ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A E F 的法向量为()222,,n x y z =,由110n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,7c o s ,7321m n m n m n⋅<>===⨯⋅设二面角1A E F A --的平面角为θ,则7c o s 7θ=,242s in 1c o s 7θθ∴=-=.因此,二面角1A E F A --427【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题. 20.已知椭圆222:1(05)25xy Cm m+=<<的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||B PB Q =,B P B Q ⊥,求A P Q 的面积.【答案】(1)221612525xy +=;(2)52.【解析】 【分析】 (1)因为222:1(05)25xy Cm m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||B PB Q =,B P B Q⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得P M B B N Q ≅△△,可求得P 点坐标,求出直线A Q直线方程,根据点到直线距离公式和两点距离公式,即可求得A P Q 的面积. 【详解】(1)222:1(05)25xy C m m+=<<∴5a =,b m =,根据离心率4c e a ====解得54m =或54m =-(舍),∴C 的方程为:22214255xy⎛⎫ ⎪⎝⎭+=,即221612525xy +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||B PB Q =,B P B Q⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||B P B Q =,B P B Q ⊥,90P M B Q N B ∠=∠=︒,又90P B M Q B N ∠+∠=︒,90B Q N Q B N ∠+∠=︒,∴P B M B Q N∠=∠,根据三角形全等条件“A A S ”, 可得:P M B B N Q ≅△△,221612525xy +=,∴(5,0)B ,∴651P M B N ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1Py =,将其代入221612525xy +=,可得:21612525Px +=,解得:3P x =或3P x =-,∴P点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532M B =-=,P M B B N Q ≅△△, ∴||||2M B N Q ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线A Q 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线A Q 的距离为:222311110555125211d ⨯-⨯+===+,根据两点间距离公式可得:()()22652055A Q =++-=,∴A P Q面积为:15555252⨯⨯=;②当P 点为(3,1)-时, 故5+38M B ==,P M B B N Q ≅△△, ∴||||8M B N Q ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线A Q 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线A Q 的距离为:d ===,根据两点间距离公式可得:A Q ==∴A P Q面积为:15522⨯=,综上所述,A P Q 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题. 21.设函数3()f x xb x c=++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b . (2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b =-;(2)证明见解析【解析】 【分析】(1)利用导数的几何意义得到'1()02f =,解方程即可;(2)由(1)可得'2311()32()()422f x x x x =-=+-,易知()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-;(2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-,令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<,所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,若()f x 所有零点中存在一个绝对值大于1零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-.当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<, 由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->, 由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t ty t t⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||A B ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3co s sin 120ρθρθ-+= 【解析】 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出A B 的值; (2)由,A B 的坐标得出直线A B 的直角坐标方程,再化为极坐标方程即可. 【详解】(1)令0x =,则220t t +-=,解得2t=-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.A B ∴==(2)由(1)可知12030(4)A B k -==--,则直线A B 的方程为3(4)y x =+,即3120x y -+=.由co s ,sin x y ρθρθ==可得,直线A B 的极坐标方程为3co s sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c a b a c b c ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设m a x {,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c b ca a ab cb c+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c a b a c b c ++=+++++=,()22212a b b c c a ab c∴++=-++1,,,a b c a b c =∴均不为0,则2220a b c ++>,()222120a b b c c a ab c∴++=-++<;(2)不妨设m a x {,,}a b c a =,由0,1a b c a b c ++==可知,0,0,0a b c ><<,1,a b c a b c=--=,()222322224b c b c b cb c b ca a ab cb cb c++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3m a x {,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。
平面向量小题基础练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·江苏泰州·统考一模)已知向量,a b 满足2π1,2,,3a b a b ==<>= ,则()a ab ⋅+= ()A .-2B .-1C .0D .22.(2023·湖北·荆州中学校联考二模)已知向量()3,4m =- ,()12,5n =- ,则m n n ⋅+=()A .56-B .69C .43-D .433.(2023·江苏·二模)在ABC 所在平面内,D 是BC 延长线上一点且4BD CD =,E 是AB 的中点,设AB a =,AC b = ,则ED = ()A .1455a b + B .3144a b + C .5463a b -+ D .5564a b -+ 4.(2023·江苏泰州·泰州中学校考一模)已知平面单位向量a ,b ,c 满足2π,,,3a b b c c a 〈〉=〈〉=〈〉=r r r r r r ,则32a b c ++=r r r ()A .0B .1CD 5.(2023·江苏南通·统考模拟预测)若向量,a b 满足||||||a b a b +=+ ,则向量,a b 一定满足的关系为()A .0a =B .存在实数λ,使得a bλ= C .存在实数,m n ,使得ma nb= D .||||||a b a b -=- 6.(2023·湖北武汉·统考模拟预测)平面向量()()2,,2,4a k b =-= ,若a b ⊥ ,则a b -=r r ()A .6B .5C .D .7.(2023·湖南邵阳·统考二模)已知向量()1,3a = ,()1,1b =- ,()4,5c = .若a 与b cλ+ 垂直,则实数λ的值为()A .219B .411C .2D .47-8.(2023·湖南·模拟预测)如图,在平行四边形ABCD 中,AB a =,AD b = ,若23AE AC = ,则DE = ()A .1233a b -B .2133a b -C .1233a b +D .2133a b + 9.(2023·湖南常德·统考一模)已知向量a 为单位向量,向量()1,1b = ,()()21a b a b +⋅-= ,则向量a 与向量b 的夹角为()A .π6B .π4C .π3D .π210.(2023·广东佛山·统考一模)已知单位向量a ,b 满足0a b ⋅= ,若向量c a = ,则cos ,a c = ()A B .12C D .1411.(2023·广东深圳·统考一模)已知a ,b 为单位向量,且357a b -= ,则a 与a b - 的夹角为()A .π3B .2π3C .π6D .5π612.(2023·广东茂名·统考一模)在ABC 中,AB c = ,AC b = ,若点M 满足2MC BM =uuu r uuu r ,则AM = ()A .1233b c + B .2133b c - C .5233c b - D .2133b c + 13.(2023·广东湛江·统考一模)在平行四边形ABCD 中,E 为边BC 的中点,记AC a = ,DB b = ,则AE = ()A .1124a b - B .2133a b + C .12a b + D .3144a b + 14.(2023·浙江金华·浙江金华第一中学校考模拟预测)若向量(),2a x = ,()1,2b =- ,且a b ⊥ ,则a = ()A .B .4C .D .15.(2023·浙江·校联考模拟预测)已知向量,a b 满足||1a = ,||3b = ,(3,1)a b -= ,则|3|a b -= ()A .B C .D .16.(2023·浙江嘉兴·统考模拟预测)等边ABC 的边长为3,若2AD DC = ,BF FD = ,则AF = ()A .2B .2C .2D .217.(2023·江苏南通·二模)在平行四边形ABCD 中,12BE BC = ,13AF AE = .若AB mDF nAE =+ ,则m n +=()A .12B .34C .56D .43二、填空题18.(2023·湖北·校联考模拟预测)已知向量(2,4),(,1)m n x =-=- ,若m n ∥,则x =__________.19.(2023·湖北·统考模拟预测)已知()4,2a = ,()1,1b = ,则a 在b 方向上的投影向量的坐标为__________.20.(2023·湖南湘潭·统考二模)已知向量(,2),(1,3)a m b =-= ,若()a b b -⊥ ,则m =__________.21.(2023·广东惠州·统考模拟预测)已知平面向量(2,4)a =- ,(,1)b λ= ,若a 与b 垂直,则实数λ=__________.22.(2023·广东广州·统考一模)已知向量()()1,2,3,,a b x a == 与a b + 共线,则a b -=r r __________.23.(2023·浙江·校联考模拟预测)已知向量(4,),(3,1)a m m b =+= ,且//a b r r ,则m =______.24.(2023·浙江温州·统考二模)已知向量()()1,2,2,a b λ== ,若()()a b a b +- ∥,则λ=__________.25.(2023·江苏·统考一模)在ABC 中,已知2BD DC = ,CE EA = ,BE 与AD 交于点O .若CO xCB yCA =+(),R x y ∈,则x y +=________.26.(2023·江苏·统考一模)已知向量a ,b 满足2a = ,3b = ,0a b ⋅= .设2c b a =- ,则cos ,a c = ___________.27.(2023·山东·烟台二中校联考模拟预测)已知1e ,2e是夹角为120°的单位向量,若1223m e e =+ ,124n e e =- ,则m ,n 的夹角为__________.28.(2023·山东济宁·统考一模)已知平面向量()1,2a =- ,(),3b m =- ,若2a b + 与a 共线,则m =______.29.(2023·湖南张家界·统考二模)已知a 是单位向量,()1,1b =- ,若向量a 与向量b 夹角π0,4α⎛⎫∈ ⎪⎝⎭,写出一个满足上述条件的向量a ______.30.(2023·广东·统考一模)已知向量,a b 满足()2,4,0a b b a a ==-⋅= ,则a 与b 的夹角为___________.。
专题一 压轴选择填空题第2关 以向量为背景的选择填空题【名师综述】平面向量是高中数学的重要知识,是高中数学中数形结合思想的典型体现.近年来,高考对向量知识的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与三角函数或平面解析几何相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显平面向量的交汇价值.【典例解剖】类型一 平面向量数量积在三角形中的应用典例1.(2020上海徐汇区一模)设H 是ABC V 的垂心,且3450HA HB HC ++=u u u r u u u r u u u r r,则cos BHC ∠的值为( )A .10-B .5-C .6-D . 【举一反三】在直角ABC ∆中,M ,N 是斜边BC 上的两个三等分点,已知ABC ∆的面积为2,则AM AN ⋅u u u u r u u u r的最小值为______.类型二 几何图形中的向量问题典例2.(2020上海华师大二附中高三)如图,B 是AC 的中点,2BE OB =u u u r u u u r,P 是平行四边形BCDE 内(含边界)的一点,且()OP xOA yOB x y R =+∈u u u r u u u r u u u r,.有以下结论:①当x =0时,y ∈[2,3];②当P 是线段CE 的中点时,1522x y =-=,; ③若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段; ④x ﹣y 的最大值为﹣1;其中你认为正确的所有结论的序号为_____.【举一反三】1.(2020上海青浦中学月考)已知正方形ABCD 的边长为1,当每个()1,2,3,4,5,6i λ=取遍±1时,125634AB BC CD DA AC BD λ+λ+λ+λ+λ+λu u u r u u u r u u u r u u u r u u u r u u u r的最大值是____________.类型三 不等式中的向量问题典例3.(2020上海大同中学月考)平面直角坐标系中,e r 为单位向量,a r 向量满足a e ⋅=r r,其中λ为正常数,若2||||a a te λ≤+r r r 对任意实数t 成立,则||a r的取值范围是________【举一反三】1.(2020上海崇明区一模)已知向量a r 、b r 、c r 满足0a b c ++=r r r r ,且222a b c <<r r r ,则a b ⋅r r 、b c ⋅r r 、a c ⋅r r 中最小的值是( ) A .a b ⋅r rB .b c ⋅r rC .a c ⋅r rD .不能确定类型四 平面向量的新定义问题典例4.(2020上海高三模拟试卷三)将向量1a u r =(1x ,1y ),2a u u r =(2x ,2y ),…n a u u r =(n x ,n y )组成的系列称为向量列{n a u u r },并定义向量列{n a u u r}的前n 项和12nn S a a a u u r u r u u r u u r=++⋅⋅⋅+.如果一个向量列从第二项起,每一项与前一项的差都等于同一个向量,那么称这样的向量列为等差向量列.若向量列{n a u u r}是等差向量列,那么下述四个向量中,与21S u u r一定平行的向量是( )A .10a u u rB .11a u u rC .20a u u rD .21a u u r【举一反三】1.(2020上海大同中学月考)对于数集12{1,,,,}n A x x x =-⋅⋅⋅,其中120n x x x <<⋅⋅⋅<,2n ≥,定义向量集{|(,),s ,}B a a s t A t A ==∈∈r r ,若对任意1a B ∈u r ,存在2a B ∈u u r,使得120a a ⋅=u r u u r ,若1n x >,则( )A .11x >B .11x =C .11<xD .11x ≠【精选名校模拟】1.(2020上海南洋模范中学月考)已知非零向量a r 、br ,“函数2()()f x ax b =+r r 为偶函数”是“a b ⊥r r”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.(2020上海格致中学9月开学考)设向量(cos ,sin )a αα=r ,(sin ,cos )b αα=-r ,向量1210,,,x x x ⋅⋅⋅u r u u r u u r 中有4个a r ,其余为b r ,向量1210,,,y y y ⋅⋅⋅u r u u r u u r 中有3个a r ,其余为b r,则11221010x y x y x y ⋅+⋅+⋅⋅⋅+⋅u r u r u u r u u r u u r u u r 的所有可能取值中最小的值是( ) A .2 B .3C .4D .53.(2020上海长宁区嘉定区一模)已知向量a r 和b r的夹角为3π,且||2,||3a b ==r r ,则(2)(2)a b a b -+=r r r r ( )A .10-B .7-C .4-D .1-4.(2020上海高三一模)已知在正方形ABCD 中,12AE AB =u u u r u u u r ,14AF AD =u u u r u u u r ,则CE u u u r 在CF uuu r方向上的投影为( )A .4B .225C . D5.(2020上海西南位育中学上学期期中)将一圆的六个等分点分成两组相同的三点,它们所构成的两个正三角形扣除内部六条线段后可以形成一正六角星,如图所示的正六角星的中心为点O ,其中x r 、y u r分别为点O 到两个顶点的向量,若将点O 到正六角星12个顶点的向量,都写出ax b y +r u r的形式,则a b +的最大值为( )A .3B .4C .5D .66.(2020上海格致中学检测)设数列{}n x 的各项都为正数且11x =,ABC ∆内的点()n P n N*∈均满足n P AB ∆和n P AC ∆的面积比为2:1,若()112102n n n n n P A x P B x P C ++++=u u u r u u u r u u u r r,则5x 的值为( )A .15B .17C .29D .317.(2020上海建平中学高三月考)如果将12OA ⎫=⎪⎪⎝⎭u u u r 绕原点O 逆时针方向旋转120°得到OB uuu r ,则OB uuu r 的坐标是( ) A.12⎛- ⎝⎭B.21⎫-⎪⎪⎝⎭ C.(-D.21⎛⎫⎪ ⎪⎝⎭8.(2020上海二中上学期期中)如图所示,将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星.设正八角星的中心为O ,并且,,若将点O 到正八角是16个顶点的向量都写成,的形式,则的取值范围为( )1OA e =u u u r u r2OB e =u u u r u u r12e e λμ+R λμ∈、λμ+A .B .C .D .9.(2020上海青浦中学月考)已知非零向量a r ,b r 满足2a b =r r ,且()a b b -⊥r r r ,则a r 与b r的夹角为_________.10.(2020上海南模中学上学期期中考试)已知向量(a =r ,()3,b m =r 且b r 在a r 上的投影为3,则a r与b r的夹角为______.11.(2020上海向明中学月考)已知菱形ABCD 的边长为2,120BAD ︒∠=,点,E F 分别在边,BC DC 上,3BC BE =,DC DF λ=.若1AE AF ⋅=u u u r u u u r,则λ的值为 .12.(2020上海南模中学月考)已知平面上三点A 、B 、C满足AB BC CA ====u u u v u u u v u u u v AB BC BC CA CA AB ⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r的值等于_____.13.(2020上海建平中学月考)已知平面向量PA u u u r 、PB u u u r满足22||||4PA PB +=u u u r u u u r ,2||2AB =u u u r,设2PC PA PB=+u u u r u u u r u u u r,则||PC ∈u u u r ________.14.(2020上海奉贤区一模)设平面直角坐标系中,O 为原点,N 为动点,6ON =u u u r,ON =u u u r u u u r,过点M 作1MM y ⊥轴于1M ,过N 作1NN x ⊥轴于点1N ,M 与1M 不重合,N 与1N 不重合,设11OT MM N N =+u u u r u u u u u r u u u u r,则点T 的轨迹方程是__________.[-[-+[1--+[1--15.(2020上海崇明区一模)正方形ABCD 的边长为4,O 是正方形ABCD 的中心,过中心O 的直线l 与边AB 交于点M ,与边CD 交于点N ,P 为平面上一点,满足()21OP OB OC λλ=+-u u u r u u u r u u u r ,则PM PN ⋅u u u u r u u u r 的最小值为________.16.(2020上海七宝中学10月月考)已知两定点(3,2)E 和(3,2)F -,若对于实数λ,函数|2||2|4y x x =++--(44x -≤≤)的图像上有且仅有6个不同的点P ,使得PE PF λ⋅=u u u r u u u r成立,则λ的取值范围是________17.(2020上海西南位育中学期中)如图,在ABC ∆中,若3AB AC ==,3BAC π∠=,2DC BD =uuu r uu u r,则AD BC ⋅=u u u r u u u r________.18.(2020上海市北中学上学期期中)若向量a r 、b r 满足()7a b b +⋅=r r r ,且||a =r ||2b =r ,则向量a r 在br上的投影为_______.19.(2020上海青浦区一模)已知平面向量、、满足,,且,则当时,的取值范围是_______20.(2020上海建平中学上学期期中)已知、、是平面内三个单位向量,若,则的最小值是________21.(2020上海普陀区上学期统考)如图,已知直角的斜边长为,设是以为圆心的单位圆的任意一点,则的取值范围为________.a rb rc r ||1a =r ||||2b c ==r r 0b c ⋅=r r 01λ≤≤|(1)|a b c λλ---r r ra rb r 2c r a b ⊥r r |4|2|32|a c a b c +++-r r r r rABC ∆AB 4P C PA PB ⋅u u u r u u u r22.(2020上海吴淞中学上学期开学考)已知梯形中,是边上一点,且.当在边上运动时,的最大值是________________.23.(2020上海普陀区11月调研)在平面内,已知非零向量与单位向量的夹角为,若向量满足,则的最小值为________.24.(2020上海交大附中9月开学考)如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD与CE 交于点.若,则的值是_____.25.(2020上海建平中学月考)在中,,,为锐角,点是外接圆的圆心,则的取值范围是______.ABCD 1//,,2AB DC AD DC CB AB P ===BC AP xAB y AD =+u u u r u u u r u u u rP BC x y +a r e r 3πb r 2680b e b -⋅+=r r r||a b -r r ABC V O 6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ABACABC ∆2BC =45A ∠=︒B ÐO ABC ∆OA BC ⋅u u u r u u u r。