平面向量(选择、填空题型)
- 格式:ppt
- 大小:1.95 MB
- 文档页数:12
平面向量题型学霸总结五(含答案)阳光老师:祝你学业有成一、选择题(本大题共14小题,共70.0分)1.已知平面非零向量,满足:,在方向上的投影为,则与夹角的余弦值为A. B. C. D.【答案】D【解析】【试题解析】【分析】本题主要考查平面向量的数量积以及平面向量的投影.属于基础题.设出两向量的夹角,结合向量的数量积和向量垂直转化,再结合投影公式、夹角公式计算公式求解即可.【解答】解:设,两向量夹角为,则有,所以.故选D.2.在中,角A,B,C所对的边分别是a,b,c,若角A,C,B成等差数列,且,则的形状为A. 直角三角形B. 等腰非等边三角形C. 等边三角形D. 钝角三角形【答案】C【解析】【分析】本题主要考查了等差数列的性质,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.由已知利用等差数列的性质可得,由正弦定理可得,根据余弦定理可求,即可判断三角形的形状.【解答】解:由题意可知,,,则,所以,所以,故的形状为等边三角形.故选C.3.已知,,且,则向量在方向上的投影为A. B. C. D.【答案】D【解析】略4.已知向量,,,若,则A. B. C. D. 2【答案】C【解析】【分析】本题考查平面向量垂直的充要条件,以及向量加法、数乘和数量积的坐标运算.可求出,根据即可得出,进行数量积的坐标运算即可求出.【解答】解:;又;;解得.故选:C.5.已知向量,满足,为向量与向量的夹角,那么A. B. C. D. 0【答案】C【解析】【分析】本题考查向量的夹角,向量的模,向量的数量积的计算,考查运算化简的能力,属于基础题.设向量,的夹角为,由,求得,再由向量夹角公式可得结论.【解答】解:设向量,的夹角为,,,可得,,解得,.故选C.6.已知向量,,则下列结论正确的是A. B. C. D.【答案】C【解析】【分析】本题考查向量的模、数量积及判断两个平面向量的平行、垂直关系,属于基础题.由,,易求出向量的模,结合平面向量的数量坐标运算,对四个答案逐一进行判断,即可得到答案.【解答】解:,,,,故不正确,即A错误,故B错误,,易得,故C正确,D错误;故选C.7.已知两个单位向量,若,则的夹角为A. B. C. D.【答案】B【解析】略8.设向量,,则下列结论中正确的是A. B.C. 与的夹角为D. 在方向上的投影为【答案】C【解析】【分析】本题考查向量的运算,共线,垂直的条件,考查了向量的夹角,向量的投影,属于基础题.利用向量共线的条件判断A,利用向量垂直的条件判断B,利用向量的夹角公式判断C,利用向量的投影公式判断D.【解答】解:A.,不平行,故A错误;B.,不垂直,故B错误;C.设的夹角为,则夹角为,故C正确;D.在方向上的投影为,故D错误.故选C.9.在中,若,则A. 一定是正三角形B. 一定是直角三角形C. 一定是等腰三角形D. 形状无法确定【答案】C【解析】【分析】本题考查三角形形状的判定和向量数量积的运算,属于基础题.根据向量数量积的运算化简,然后将运算结果运用于三角形中判定三角形的形状即可.【解答】解:在中,,,即.故:所以一定是等腰三角形.故答案为C.10.已知,,,则.A. 5B. 7C. 9D. 11【答案】D【解析】【试题解析】【分析】本题主要考查向量的数量积及模,考查向量的坐标运算,属于基础题.由,求出的坐标,根据,可求t,结合向量数量积的坐标运算即可求解.【解答】解:由,,则,,所以.故选D.11.已知向量,,若与的夹角为,则A. 2B.C.D. 1【答案】B【解析】【分析】本题考查向量数量积的坐标运算,向量的模,属于基础题.由题意可得,,即可求,由展开即可求解.【解答】解:由题意可知:,,,则.故选B.12.如图,,为互相垂直的两个单位向量,则A. 20B.C.D.【答案】C【解析】【试题解析】【分析】本题考查两个向量的加减法的法则,以及其模的公式的运用,考查运算能力,属于基础题.以,是互相垂直的单位向量,所在的直线分别为x轴和y轴,建立直角坐标系,得到向量,的终点坐标和起点坐标,从而得到向量a,b的坐标,即可得到和向量的坐标,再由模的公式即可得到答案.【解答】解:以,是互相垂直的单位向量,所在的直线分别为x轴和y轴,建立直角坐标系,则向量的终点坐标为,起点坐标为,的终点坐标为,起点坐标为,则有,,,即有.故选C.13.已知O为内一点且满足,若的面积为且,则A. B. C. D.【答案】A【解析】【分析】本题为中档题.考查向量的平行四边形法则;向量的数量积公式及三角形的面积公式,得出O为三角形的重心是解决问题的关键.根据向量判断出点O为三角形的重心,由重心的性质得出的面积与面积的关系,利用向量的数量积公式和三角形的面积公式可求出,即可求出【解答】解:,,为三角形的重心,的面积为面积的,的面积为,,,,即,由可得,即,即,故选A14.已知向量,若,则与夹角为A. B. C. D.【答案】A【解析】【分析】本题主要考查用数量积表示两个向量的夹角,两个向量的夹角公式,属于基础题.由题意可得与反向,故与的夹角即为与的夹角,利用两个向量的夹角公式求解即可.【解答】解:向量,,,若,则与反向,与的夹角即为与的夹角,设为,,,,即与的夹角为.故选A.二、不定项选择题(本大题共3小题,共12.0分)15.已知向量,,则A. 若与垂直,则B. 若,则的值为C. 若,则D. 若,则与的夹角为【答案】BC【解析】【分析】本题主要考查了向量的数量积公式,向量的模长公式,向量垂直的条件,平行的条件,夹角,属于较易题逐个判断即可得出结果.【解答】解:向量,,A.若与垂直,则,解得,故A错误;B.若,则,解得,则,,故B正确;C.若,则,,则,故C正确;D.若,则,,,,,故D错误.故选BC.16.对于任意向量,,,下列命题正确的是A. 若,,则B. 若,则C. 若,,则D. 若,则【答案】CD【解析】【分析】本题主要考查平面向量的基本概念以及数量积,属于较易题目,根据向量的定义和向量数量积的性质逐一判断即可.【解答】解:A项,若为零向量,零向量与任何向量都平行,则不能推出,故A项错误设与的夹角为,与的夹角为,则B项,,可得即,不能推出,故B项错误C 项,若,,由概念可得,故C正确;D项,即为,化简得于是有,故D项正确故选CD.17.已知向量,则A. B.C. 共线D. 夹角是钝角【答案】BCD【解析】【分析】本题考查平面向量的坐标运算、模长公式、共线和夹角,属于基础题.利用已知条件逐个判断即可.【解答】解:由题意,得,对于A,因为,故错误;对于B,因为,故正确;对于C,因为,故与共线,故正确;对于D,因为,则,且与不共线,故与夹角是钝角,故正确,故选BCD.三、填空题(本大题共6小题,共30.0分)18.已知向量,,且与的夹角为钝角,则的取值范围是.【答案】19.若a,b,a与b的夹角为,则a b_______,a b_______.【答案】【解析】【分析】本题考查向量的有关计算,属于基础题先求出向量和与向量差的平方,再开平方即可得到结果.【解答】解:由题可得:,.故答案为.20.已知a,b.当a b时,a b_______.当a b时,a b_______.当a b时,a与b的夹角为_______.【答案】【分析】本题考查向量的夹角,数量积及向量平行或垂直的公式,属于基础题.【解答】解:根据向量垂直的定义得,当时,;当时,向量的夹角为或,;,故,因此向量的夹角为.故答案为.21.已知向量,,,则________.【答案】4【解析】【分析】本题考查平面向量数量积的坐标运算,向量的模,考查运算求解能力,属于基础题.利用平面向量数量积的坐标运算求解得,由向量的模得关于m的方程求解.【解答】解:因为,所以,则,,,,所以.故答案为4.22.已知向量,若,则;若,则【答案】2或,【解析】【分析】本题主要考查两个向量平行和垂直的性质,属于基础题.由条件利用两个向量平行和垂直的条件,求得t的值.【解答】解:向量,若,则,求得或,若,,求得,故答案为:2或,.23.已知向量,,,若,,则的值为________.【答案】10【解析】【分析】本题考查向量的数量积运算,向量的坐标运算,以及向量平行、垂直的条件,属于基础题.由解得x,由解得y,得到和,进而得解.【解答】解:由,可得,解得,则,由,可得,解得,则,即,则.故答案为10.四、解答题(本大题共7小题,共84.0分)24.已知向量,,若与向量垂直,求实数k的值;若向量,且与向量平行,求实数k的值.【答案】解:由题意得,垂直,,解得;由题意得,平行,,解得.【解析】本题考查了向量垂直与共线、向量共线定理,涉及向量的坐标运算,考查了推理能力与计算能力,属于基础题.由与向量垂直,再运用数量积公式化简即可求解;利用向量共线定理即可得出.25.已知向量a,b,c a b,求与c平行的单位向量的坐标.【答案】解:向量,,,与平行的单位向量的坐标为,即为或.【解析】本题考查了平面向量的坐标运算和平面向量共线的充要条件,还考查了向量的模和单位向量,由题意得,所以,所以与平行的单位向量的坐标为,即可得出结果.26.已知平面向量,.Ⅰ求与的夹角的余弦值;Ⅱ若向量与互相垂直,求实数k的值.【答案】解:Ⅰ,,,Ⅱ向量与互相垂直,,,,.【解析】本题主要考查了向量数量积的性质:向量夹角公式及向量垂直的性质的简单应用,属于基础题.Ⅰ由向量夹角公式,代入即可求解;Ⅱ由已知可得,,结合已知条件可求k.27.在中,角A,B,C的对边分别为a,b,c,且.求角A的大小;若点D是BC的中点,且,求的面积的最大值.【答案】解:由题意,可得,,,又,.,当且仅当时等号成立,,,故面积的最大值为【解析】本题考查正弦定理和余弦定理的应用,考查三角形面积公式,求三角函数最值,考查基本不等式求最值,是基础题利用正弦定理将边角关系统一,结合余弦定理求解;首先利用正弦定理可得可得得出,,然后利用余弦定理可求解;由题可得,将其平分,再结合基本不等式解出,当且仅当时等号成立,进而得出,故面积的最大值为28.的内角A,B,C的对边分别为a,b,c,设.Ⅰ求sin B;Ⅱ若的周长为8,求的面积的取值范围.【答案】解:且,又,,,,.由题意知:,故,,,,或舍,即当时等号成立综上,的面积的取值范围为.【解析】直接利用三角函数关系式的变换的应用和倍角公式的应用求出结果.利用余弦定理和不等式的应用和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.29.已知向量,,且函数.若,求的值;在中,且,求面积的最大值.【答案】解:因为,,,且,所以,即,所以,所以.由题可得,因为,所以,又,所以.在中,由余弦定理可得,即.所以,当且仅当时等号成立,故面积的最大值为.【解析】本题考查向量的数量积,向量垂直的判定,二倍角公式,同角三角函数的基本关系,两角差的三角函数公式,三角形面积公式,余弦公式以及基本不等式的应用,属于中档题.因为,且,可得,即可得到,进而求解.由题可得,再根据,得到,结合,即可求出在中由余弦定理可得,即可求出,再根据三角形的面积公式即可得解.30.复平面内有A,B,C三点,点A对应的复数是,向量对应的复数是,向量对应的复数是,求点C在复平面内的坐标.【答案】解:,对应的复数为.设,则,,,,点C在复平面内的坐标为.【解析】本题考查复数的运算,以及向量的加减运算,首先,根据三角形法则用表示出,对应的复数相减,得出对应的复数,接下来,设出C点坐标为,用A点对应的复数以及C点对应的复数表示出,据此求出x和y的值,找到对应的点,即可得到答案.。
平面向量习题及答案【篇一:平面向量练习题集答案】>典例精析题型一向量的有关概念【例1】下列命题:①向量ab的长度与ba的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量ab与向量cd是共线向量,则a、b、c、d必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;ab与cd是共线向量,则a、b、c、d可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:①|a|=a?a;②(a?b) ?c=a? (b?c);③oa-ob=ba;④在任意四边形abcd中,m为ad的中点,n为bc的中点,则ab +=2;其中正确的个数为( )a.1b.2c.3d.4【解析】选d.| a|=a?a正确;(a?b) ?c≠a? (b?c); oa-ob=ba 正确;如下图所示,mn=++且mn=++,两式相加可得2mn=ab+dc,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线,即得(a+b)⊥(a-b).所以命题①③④⑤正确.题型二与向量线性运算有关的问题【例2】如图,abcd是平行四边形,ac、bd交于点o,点m在线段do上,且=,点n在线段oc上,且=,设=a, =b,试用a、b表示,,1313.【解析】在?abcd中,ac,bd交于点o,111所以==(-)a-b),222=2=2(+)=2(a+b).11又=,=, 331所以=ad+=b+ 31115=b(a-b)=a, 3266111=+=+3 4412==(a+b)a+b). 3323所以=- 21511=(a+b)-+)=a. 36626【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.所以? (+)=?0=0,故填0.题型三向量共线问题【例3】设两个非零向量a与b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:a,b,d三点共线;(2)试确定实数k,使ka+b和a+kb共线. 1【解析】(1)证明:因为=a+b,=2a+8b,=3(a-b),所以bd=bc+cd=2a+8b+3(a-b)=5(a+b)=5ab,所以ab, bd共线.又因为它们有公共点b,所以a,b,d三点共线.(2)因为ka+b和a+kb共线,因为a与b是不共线的两个非零向量,【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练3】已知o是正三角形bac内部一点,+2+3=0,则△oac的面积与△oab的面积之比是(3a. 2c.2 2b. 31d. 3 )【解析】如图,在三角形abc中, oa+2ob+3oc=0,整理可得oa+oc+2(ob+oc)=0.1令三角形abc中ac边的中点为e,bc边的中点为f,则点o在点f与点e连线的处,即oe=2of. 32由于ab=2ef,oe=,所以ab=3oe, 31s△oacoe?h2==.故选b. 3s△oabab?h4总结提高1.向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a与b共线同向时,|a+b|=|a|+|b|;当向量a与b共线反向时,|a+b|=||a|-|b||;当向量a与b不共线时,|a+b|<|a|+|b|.典例精析题型一平面向量基本定理的应用【例1】如图?abcd中,m,n分别是dc,bc中点.已知am=a,=b,试用a,b表示,ad与ac【解析】易知am=ad+dm 1=+, 21an=ab+bn=ab2ad, 1???a,??2即? ??1?b.?2?22所以=b-a),=2a-b). 332所以=+=a+b). 3【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知d为△abc的边bc上的中点,△abc所在平面内有一点p,满足++=0等于( ) 1b. 2c.1 d.2 1a. 3【解析】由于d为bc边上的中点,因此由向量加法的平行四边形法则,易知pb+pc=2pd,因此结合pa+bp+cp=0即得pa=2pd,因此易得p,a,d三点共线且d是pa=1,即选c.题型二向量的坐标运算【例2】已知a=(1,1),b=(x,1),u=a+2b,v=2a-b.(1)若u=3v,求x;(2)若u∥v,求x.【解析】因为a=(1,1),b=(x,1),所以u=(1,1)+2(x,1)=(1,1)+(2x,2)=(2x+1,3),v=2(1,1)-(x,1)=(2-x,1).(1)u=3v?(2x+1,3)=3(2-x,1)?(2x+1,3)=(6-3x,3),所以2x+1=6-3x,解得x=1.?2x?1??(2?x),?? 3????(2x+1)-3(2-x)=0?x=1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视.+|a141+b|2的最大值为.值为284.题型三平行(共线)向量的坐标运算【例3】已知△abc的角a,b,c所对的边分别是a,b,c,设向量m=(a,b),n=(sin b,sin a),p=(b-2,a-2).(1)若m∥n,求证:△abc为等腰三角形;【解析】(1)证明:因为m∥n,所以asin a=bsin b.由正弦定理,得a2=b2,即a=b.所以△abc为等腰三角形.a(b-2)+b(a-2)=0,所以a+b=ab.由余弦定理,得4=a2+b2-ab=(a+b)2-3ab,所以(ab)2-3ab-4=0.所以ab=4或ab=-1(舍去).113所以s△abc=absin c3. 222【点拨】设m=(x1,y1),n=(x2,y2),则①m∥n?x1y2=x2y1;②m⊥n?x1x2+y1y2=0.【变式训练3】已知a,b,c分别为△abc的三个内角a,b,c的对边,向量m=(2cosc-1,-2),n=(cos c,cos c+1).若m⊥n,且a+b=10,则△abc周长的最小值为( )a.10-3c.10-23b.10+53d.10+231【解析】由m⊥n得2cos2c-3cos c-2=0,解得cos c=-cos c=2(舍去),所以c2=a2+b2-2abcos 2【篇二:高中数学平面向量测试题及答案】选择题:1。
第13讲平面向量十大题型总结【题型目录】题型一:平面向量线性运算题型二:平面向量共线问题题型三:平面向量垂直问题题型四:平面向量的夹角问题题型五:平面向量数量积的计算题型六:平面向量的模问题题型七:平面向量的投影问题题型八:万能建系法解决向量问题题型九:平面向量中的最值范围问题题型十:平面向量中多选题【典型例题】题型一:平面向量线性运算【例1】在ABC △中,D 是AB 边上的中点,则CB =()A .2CD CA+ B .2CD CA- C .2CD CA- D .2CD CA+ 【答案】C【解析】:CA CD AC CD CD AC CD AD CD DB CD CB -=+=++=+=+=22【例2】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC-B .1344AB AC-C .3144+AB AC D .1344+AB AC 【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++ 1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【例3】在ABC 中,点P 为AC 中点,点D 在BC 上,且3BD DC = ,则DP =()A .1144AB AC+B .1144AB AC--C .1144AB AC-D .1144AB AC-+【答案】B【解析】∵点P 为AC 中点,∴12AP AC = ,∵3BD DC =,()3AD AB AC AD ∴-=- ,∴1344AD AB AC =+ ,∴113244DP AP AD AC AB AC =-=-- =1144AB AC --,故选:B.【例4】在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且EB AB AC λμ=+,则λ=________,μ=_________.【答案】3414-【解析】如下图所示:D Q 为BC 的中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,E 为AD 的中点,所以,()1124AE AD AB AC ==+,因此,()131444EB AB AE AB AB AC AB AC =-=-+=- ,即34λ=,14μ=-.故答案为:34;14-.【例5】如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 中点,点F 为线段BC 的中点,则FE =()A .2136AB AC+B .2136AB AC-+C .1263AB AC+D .1263AB AC-+点F 为线段BC 的中点,13BD BA AD BA BC BA =+=+=+ 又2BD FE = ,2136FE AB AC ∴=-+.【题型专练】1.设,,D E F 分别为ABC 的三边BC,CA,AB 的中点,则EB FC +=()A .ADB .12ADC .12BCD .BC【答案】A【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=,故选:A2.设D为△ABC所在平面内的一点,若3,AD BD CD CA CBλμ==+,则μλ=_____.【答案】3-【解析】如图所示:3CD CA AD CA BD=+=+,CA=+3(CD CB-),即有CD=﹣1322CA CB+,因为CD CA CBλμ=+,所以λ=﹣12,μ=32,则μλ=﹣3,故答案为:﹣3.3.在ABC中,4AC AD=,P为BD上一点,若13AP AB ACλ=+,则实数λ的值()A.18B.316C.16D.38【答案】C【解析】4AC AD=,14AD AC∴=,则14BD AD AB AC AB=-=-,1233BP AP AB AB AC AB AC ABλλ⎛⎫=-=+-=-⎪⎝⎭,由于P为BD上一点,则//BP BD,设BP k BD=,则21344kAC AB k AC AB AC k ABλ⎛⎫-=-=-⎪⎝⎭,所以423kkλ⎧=⎪⎪⎨⎪=⎪⎩,解得16λ=.4.在ABC 中,2AB =,4BC =,60ABC ∠=︒,AD 为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,则λμ+=()A .13B .23C .38D .58【答案】D【解析】AD 是BC 边上的高,∴90ADB ∠=︒,在ADB △中,1cos 22BD BD ABD AB ∠===,解得1BD =, 4BC =,∴14BD BC =,∴14AD AB BD AB BC =+=+, O 为AD 中点,∴1111122428AO AD AB BC AB BC ⎛⎫==+=+ ⎪⎝⎭ , AO AB BC λμ=+ ,∴1128AB BC AB BC λμ+=+ ,∴12λ=,18μ=,∴115288λμ+=+=.5.已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么()A .AO OD =B .2AO OD=C .3AO OD=D .4AO OD =【答案】A【解析】D 为BC 边中点,∴2OB OC OD +=,∵20OA OB OC ++=,∴0OA OD =+,即AO OD =.6.设D 为ABC 所在平面内一点,且满足3CD BD =,则()A .3122AD AB AC =-B .3122=+AD AB ACC .4133AD AB AC =-D .4133AD AB AC=+ ∴2CB BD =,即12BD CB = .()12123122AD AB BD ABCBAB AB ACAB AC ∴=+=+=+-=- 故选:A.题型二:平面向量共线问题【例1】已知向量()1,2a =- ,()sin ,cos b αα= ,若//a b,则tan α=()A .12-B .2-C .12D .2【例2】与模长为13的向量()12,5d =平行的单位向量为()A .1251313⎛⎫ ⎪⎝⎭,B .1251313⎛⎫-- ⎪⎝⎭,C .1251313⎛⎫ ⎪,或1251313⎛⎫-- ⎪,D .1251313⎛⎫- ⎪,或1251313⎛⎫- ⎪,【例3】已知向量()1,2AB =,(),7BC m =,()3,1CD =-,若A ,B ,D 三点共线,则m =________.【例4】设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ=___.【答案】21【解析】因向量λ+a b 与2+a b 平行,所以()b a b a ba μμμλ22+=+=+,所以⎩⎨⎧==μμλ21,解得⎪⎩⎪⎨⎧==2121μλ【例5】在ABC ∆中,点P 满足3BP PC = ,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ= ,()0,0AN AC μλμ=>>,则λμ+的最小值为()A .212+B .12+C .32D .52【答案】B【解析】如下图所示:3BP PC = ,即()3AP AB AC AP -=- ,1344AP AB AC∴=+ ,AM AB λ= ,()0,0AN AC μλμ=>> ,1AB AM λ∴=,1AC ANμ= ,1344AP AM ANλμ∴=+ ,M 、P 、N 三点共线,则13144λμ+=.()133********λμλμλμλμμλ⎛⎫∴+=++=++≥=+ ⎪⎝⎭,当且仅当μ=时,等号成立,因此,λμ+的最小值为312+,故选:B.【题型专练】1.已知非零向量a ,b ,c ,若(1)a x = ,,(41)b =- ,,且//a c ,//b c则x =()A .4B .4-C .14D .14-【答案】D【解析】:因非零向量c b a ,,,且//a c ,//b c ,所以a 与b 共线,所以()x 411=-⨯,所以41-=x 2.已知向量的(7,6)AB =,(3,)BC m =- ,(1,2)AD m =- ,若A ,C ,D 三点共线,则m =______.3.已知向量a ,b 是两个不共线的向量,且35OA a b =+,47OB a b =+,OC a mb =+,若A ,B ,C 三点共线,则m =()A .1B .1-C .2D .2-【答案】A【解析】法一:b a b a b a OB AO AB 27453+=++--=+=,()b m a b m a b a OC BO BC 7374-+-=++--=+=,因A ,B ,C 三点共线,所以AB 与BC 共线,所以()[]()b m a b m a b a 73732-+-=-+-=+λλλ,所以()⎩⎨⎧-=-=7231m λλ,解得⎪⎩⎪⎨⎧=-=131m λ法二:由,,A B C 三点共线,得(1)(4)(72)OC xOA x OB x a x b =+-=-+-,故41,72,x x m -=⎧⎨-=⎩解得1m =.4.设12e e,是两个不共线的向量,若向量12m e ke =-+(k ∈R )与向量212n e e =-共线,则A .0k =B .1k =C .2k =D .12k =【答案】D【解析】因为向量12=-+ m e ke (k ∈R )与向量212=-n e e 共线,所以存在实数λ,使得λ=m n ,所以有2211(2)λ-+=- e ke e e ,因此12k λλ=⎧⎨-=-⎩,解得12k =.5.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM = ,AC nAN =,则m n +=()A .1B .32C .2D .3【答案】C【解析】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+,M 、O 、N 三点共线,122m n∴+=,2m n ∴+=.故选:C.6.已知M 为ABC 的边AB 的中点,N 为ABC 内一点,且13AN AM BC =+ ,则AMNBCNS S =△△()A .16B .13C .12D .23【答案】B【解析】因为13AN AM BC =+,所以13MN BC = ,所以MN ∥BC ,又因为M 为边AB 的中点,所以点A 到MN 的距离等于点N 到BC 的距离,所以13AMNBCNMN S S BC== △△,题型三:平面向量垂直问题【例1】已知向量(1)(32)m =-,,=,a b ,且()+⊥a b b ,则m =()A .8-B .6-C .6D .8【答案】D【解析】:()()()2,42,3,1-=-+=+m m b a ,因()b b a ⊥+,所以()0=⋅+b b a ,即()()()022122,32,4=--=--m m ,所以8=m 【例2】已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:22k =.【例3】已知单位向量,a b 的夹角为60°,则在下列向量中,与b 垂直的是()A .b a 2+B .ba +2C .ba 2-D .ba -2【答案】D【思路导引】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【解析】由已知可得:11cos 601122⋅=︒=⨯⨯=a b a b .A :∵215(2)221022+⋅=⋅+=+⨯=≠a b b a b b ,∴本选项不符合题意;B :∵21(2)221202+⋅=⋅+=⨯+=≠a b b a b b ,∴本选项不符合题意;C :∵213(2)221022-⋅=⋅-=-⨯=-≠a b b a b b ,∴本选项不符合题意;D :∵21(2)22102-⋅=⋅-=⨯-=b b b a b b ,∴本选项符合题意.故选D .【例4】已知向量(2,1),(3,)a b m →→=-=,且()a b a →→→+⊥,则实数m =___________.【答案】1【分析】先求出+=(1,1)a b m →→+,再解方程1(2)1(1)0m ⨯-+⨯+=即得解.【详解】解:由题得+=(1,1)a b m →→+,因为()a b a →→→+⊥,所以()=0a b a →→→+g ,所以1(2)1(1)0,1m m ⨯-+⨯+=∴=.故答案为:1【例5】已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为()A .4B .–4C .94D .–94【答案】B 【解析】由()t ⊥+n m n 可得()0t ⋅+=n m n ,即20t ⋅+=m n n ,所以2221|cos |3||t |||<,>|||=-=-=-⋅⋅⨯⨯n n n m n m n m n m n ||4334||3=-=-⨯=-n m .故选B .【例6】已知向量AB 与AC 的夹角120,且|AB |=3,|AC |=2,若AP AB AC λ=+ ,且AP BC ⊥ ,则实数λ的值为_____.【答案】712【解析】向量与的夹角为,且所以.由得,,即,所以,即,解得.【题型专练】1.ΑΒC ∆是边长为2的等边三角形,已知向量a ,b 满足2ΑΒ= a ,2ΑC =+a b ,则下列结论正确的是()A .1=b B .⊥a bC .1⋅=a b D .()4ΒC-⊥a b 【答案】D【解析】如图由题意,(2)2BC AC AB a b a b =-=+-= ,故||2b = ,故A 错误;|2|2||2a a ==,所以||1a = ,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=- ,故,B C 错误;设,B C 中点为D ,则2AB AC AD += ,且AD BC ⊥ ,所以()4C a b +⊥B ,故选D .2.已知1e ,2e 12-e 与12λ+e e 的夹角为60 ,则实数λ的值是.【答案】33【解析】解法一:因1e ,2e 11==,021=⋅e e所以221212112122)()λλλ-⋅+=+⋅-⋅-=-e e e e e e e e ,12|2-=e ,12||λ+===e e ,2cos60λ==,解得:33λ=.解法二:建立坐标系,设()()1,0,0,121==e e ()()λλ,1,1,3212=+-=-e e e ,所以()()2221213λ+=+=-+=)()λλ-=+-3212e e e所以由数量积的定义得︒⨯+⨯=-60cos 1232λλ,解得:33λ=.3.已知向量()(),2,1,1a m b ==,若()a b b +⊥ ,则m =__________.【答案】4-【分析】根据向量的坐标运算即可求解.【详解】由题意可得()1,3a b m +=+,则130m ++=,解得4m =-.故答案为:4-4.已知向量(,2),(2,4)m a a n a =+=- ,且()n m n ⊥-,则实数=a _____________.【答案】2【分析】根据向量坐标运算及向量垂直的坐标表示即得.【详解】因为(,2)(2,4)(2,2)m n a a a a -=+--=-,又()n m n ⊥- ,所以2(2)(2)40a a ⨯-+-⨯=,解得2a =.故答案为:2.5.在ABC 中,()1,2,3A k -,()2,1,0B -,()2,3,1C -,若ABC 为直角三角形,则k 的值为()A .23B .83C .-1D .325-题型四:平面向量的夹角问题【例1】已知平面向量a ,b满足||4,||1== a b ,()a b b -⊥ ,则cos ,a b 〈〉= ()A .14B .4C.4D .4【例2】已知(2,0)a = ,1,22b ⎛= ⎝⎭r ,则a b - 与12a b + 的夹角等于()A .150°B .90°C .60°D .30°【例3】已知向量a=(2,1),()3,1b =- ,则()A.若c =-⎝⎭ ,则a c ⊥B .向量a 在向量b 上的投影向量为12b-C .a 与a b -D .()//a b a+【例4】若向量a ,b 满足||a = ,(2,1)b =-,5a b ⋅=- ,则a 与b 的夹角为_________.【例5】已知向量a b ,满足566a b a b ==⋅=-,,,则cos ,a a b +=()A .3135-B .1935-C .1735D .1935【例6】若非零向量,a b 满足32a b a b ==+,则a 与b 夹角的余弦值为________.【例7】设向量(68)=-,a ,(34)=,b ,t =+c a b,t ∈R ,若c 平分a与b 的夹角,则t 的值为.【答案】2【解析】解法一:()t t b t a c 48,36++-=+=,所以()()t t t c a 14100488366+=+++--=⋅;()()1425484363+=+++-=⋅t t t c b 510==因c 平分a 与b 的夹角,所以=c b c a ==,所以()1425214100+=+t t ,解得2=t解法二:因c 平分a 与b的夹角,所以()()⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-=⎫⎛=58,054,3108,6λλλb a c ,又因()t t b t a c 48,36++-=+=,所以()()t t 3658480+-=+⨯,解得2=t 【例8】已知A B C △的三个顶点分别为(3(60)(5A B C ,,,,,求ACB ∠的大小.【答案】C【解析】()()3,1,0,2=-=CB CA()()()2312022222=+==+-=所以21223012cos -=⨯⨯+⨯-==∠CB CA ACB ,所以︒=∠120ACB 【题型专练】1.设非零向量、ab满足||2||,||||a b a b b =+= ,则向量a 与b的夹角为()A .30°B .60︒C .120︒D .150︒2.已知(2,1)a =-,||b =,且()10a b a +⋅= ,则,a b 〈〉= ___________.3.已知向量,a b 满足||1a =,||a b =+1)b =- ,则,a b 的夹角等于___________.4.若两个非零向量a 、b 满足2a b a b a +=-=,则a b - 与b 的夹角___________.5.已知单位向量a ,b 满足0a b ⋅=,若向量c =+,则sin ,a c =()A B C D6.已知向量,a b 满足()()3,4,·28a b a b a b ==+-=,则向量a 与b 所成的夹角为()A .π6B .π3C .π2D .2π37.已知向量a ,b 满足||2||2b a == ,|2|2a b -= ,则向量a ,b 的夹角为()A .30°B .45︒C .60︒D .90︒8.已知向量()PA =,(1,PB =,则APB ∠=A .30︒B .60︒C .120︒D .150︒【答案】D【解析】根据题意,可以求得2,2PA PB ===,所以333cos 222PA PB APB PA PB⋅∠===-⋅,结合向量所成角的范围,可以求得150APB ∠=︒,故选D .9.非零向量a ,b 满足:-=a b a ,()0⋅-=a a b ,则-a b 与b 夹角的大小为A .135︒B .120︒C .60︒D .45︒【答案】A【解析】 非零向量a ,b 满足()0⋅-=a a b ,∴2=⋅a a b,由-=a b a 可得2222-⋅+=a a b b a,解得=b ,()22cos 2θ-⋅⋅-∴===--a b ba b b a b ba b,θ为-a b 与b 的夹角,135θ∴= ,故选A .10.已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos,=a c ___________.【答案】23【解析】因为2=c a,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .11.已知向量(4,3),(1,2)a b =-=-,,a b的夹角为θ,则sin θ=__________.【答案】55【解析】依题意[]0,πθ∈,所以255cos ,sin 55||||a b a b θθ⋅===-== .故答案为.12.已知向量,a b 满足5,6,6==⋅=-a b a b ,则cos ,+=a a b ()A .3531-B .3519-C .3517D .3519【答案】D【思路导引】计算出()a ab ⋅+ 、a b + 的值,利用平面向量数量积可计算出cos ,a a b <+>的值.【解析】5a = ,6b = ,6a b ⋅=- ,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选D .题型五:平面向量数量积的计算【例1】(2021新高考2卷)已知向量0,||1,||||2,a b c a b c a b b c c a ++====⋅+⋅+⋅=_______.【答案】29-【解析】方法一:因为0=++c b a ,所以()02=++cb a ,即0222222=+++++c b c a b a c b a所以0222441=+++++c b c a b a ,所以9222-=++c b c a b a ,所以29-=++c b c a b a 方法二:因为0=++c b a ,所以c b a -=+,所以()()22c b a -=+,即2222cb a b a=++所以4241=++b a ,所以21-=b a ,同理b c a -=+,所以()()22b ca -=+,即2222b c a c a =++,所以4241=++c a ,所以21-=c a ,同理a c b -=+,所以()()22a c b -=+,即2222a c b c b =++,所以1244=++c b ,所以27-=⋅c b ,所以29-=++c b c a b a 【例2】在△ABC 中,6,AB O =为△ABC 的外心,则AO AB ⋅等于A B .6C .12D .18【答案】D【解析】试题分析:如图,过点O 作OD AB ⊥于D ,则()36018AO AB AD DO AB AD AB DO AB ⋅=+⋅=⋅+⋅=⨯+=,应选D.【例3】已知边长为3的正2ABC BD DC = ,,则AB AD ⋅=()A .3B .9C .152D .6【例4】已知ABC 为等边三角形,AB =2,设点P ,Q 满足AP AB λ=,(1)AQ AC λ=-,R λ∈,若2BQ CP ⋅=-,则λ=()A .12B .12C .12±D故选:A.【例5】在ABC 中,6A π=,||AB =||4AC =,3BD BC =,则AB AD ⋅=______.【答案】24-【分析】利用基底,AB AC 3AD AB BD AB BC =+=+ ,BC AC = 23AD AB AC ∴=-+ ,∴()232AB A AB AD AB AB C =⋅-+=-⋅ 【题型专练】1.如图,在△ABC 中,AD ⊥AB ,BC =,1AD = ,则AC AD ⋅=()A .B CD .3-2.在ABC 中,3AB AC ==,DC BD 2=﹒若4AD BC ⋅=,则AB AC ⋅=______.3.ABC 中,90C ∠=︒,2AC =,P 为线段BC 上任一点,则AP AC ⋅=()A .8B .4C .2D .64.已知ABC 为等边三角形,D 为BC 的中点,3AB AD ⋅=,则BC =()A BC .2D .45.如图,在ABC 中,3BAC ∠=,2AD DB =,P 为CD 上一点,且满足2AP mAC AB =+,若||3AC =,||4AB =,则AP CD ⋅的值为()A .-3B .1312-C .1312D .1126.在平行四边形ABCD 中,AC =6,AB AD ⋅=5,则BD =____________.【详解】AC AB BC AB AD =+=+ ,则2AC AB = 236226AD AB AD +=-⋅=,AD AB - ,则222BD AD AB AD =-⋅+ 7.已知在ABC 中,90C ∠=︒,4CA =,3CB =,D 为BC 的中点,2AE EB =,CE 交AD 于F ,则CE AD ⋅=_______【答案】73-##123-题型六:平面向量的模问题【例1】已知(1)t =,a ,(6)t =-,b ,则|2|+a b 的最小值为________.【答案】52【解析】:()()()40205362444462262,2222222+-=+-+++=-++=-+=+t t t t t t t t t t a对称轴2=t ,所以当2=t 时,524040202=+-=a 【例2】(2021新高考1卷)已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin )P ββ-,3(cos(),sin())P αβαβ++,(1,0)A ,则:A .12||||OP OP = B .12||||AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α===== ,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯= ,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC【例3】已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b =.【答案】324211244+⨯⨯⨯+====+3212==【例4】已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π)2p :||1+>a b ⇔θ∈(23π,π]3p :||1->a b ⇔θ∈[0,3π)4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B)1p ,3p (C)2p ,3p (D)3p ,4p 【答案】A【解析】由||1+>a b 得,221∙>a +2a b +b ,即∙a b >12-,即cos θ=||||∙a b a b >12-,∵θ∈[0,π],∴θ∈[0,23π),由||1->a b 得,22-1∙>a 2a b +b ,即∙a b <12,即cos θ=||||∙a b a b <12,∵θ∈[0,π],∴θ∈(3π,π],故选A .【例5】设a ,b 是两个非零向量A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a b C .若||||||+=-a b a b ,则存在实数λ,使得λ=b a D .若存在实数λ,使得λ=b a ,则||||||+=-a b a b 【答案】C【解析】对于A b b a a2222-=⇒+-=+⋅+⇒=θ,所以1cos -=θ,所以︒=180θ,所以A 错,B 错;C 对,D 有可能为︒0【题型专练】1.设向量(10),a =,22()22=-b ,若t =+c a b (t ∈R),则||c 的最小值为A B .1C .2D .12【答案】C【解析】()⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=+=t t t b t a c 22,22122,220,12222221⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=t t 222122122121212222≥+⎪⎪⎭⎫ ⎝⎛+=++=+++=t t t t t t 2.已知向量(1,2)a =- ,(21,1)b m =- ,且a b ⊥,则|2|a b -= ()A .5B .4C .3D .23.已知向量a ,b满足1a =,2b =,a b -=,则2a b +=()A .B .C D4.已知[02π)αβ∈、,,(cos ,sin )a αα=r,(cos(),sin())b αβαβ=++,且23a b -=,则β可能为()A .π3B .2π3C .πD .4π3【答案】BD【分析】根据向量模的运算列方程,化简求得cos β的值,进而求得正确答案.5.平面向量a 与b 的夹角为60︒,(3,4),||1==a b ,则|2|a b += _____________.6.已知向量,a b 满足||2,(2,2)a b == ,且|2|6a b += ,则||a b += __________.7.设,a b 为单位向量,且||1+=a b ,则||a b -=______________.【解析】因为,a b为单位向量,所以1a b ==r r所以1a b +==,解得:21a b ⋅=-所以a b -==8.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵33-=+a b a b ,∴22(3)(3)-=+a b a b ,∴2269-⋅+=a ab b 2296+⋅+a a b b ,又||||1==a b ,∴0⋅=a b ,∴⊥a b ;反之也成立,故选C .9.已知向量a ,b 夹角为045,且|a |=1,|2-a b |b |=.【答案】.【解析】∵|2-a b |=平方得224410-= a a b +b ,即260--=|b |b |,解得|b |=(舍)题型七:平面向量的投影问题【例1】已知向量(2,1),(1,1)a b =-= ,则a 在b上的投影向量的模为()A B .12C .2D .1【例2】已知6a =,3b =,向量a 在b 方向上投影向量是4e ,则a b ⋅ 为()A .12B .8C .-8D .2【例3】已知平面向量a ,b ,满足2a =,1b =,a 与b 的夹角为23π,2b 在a 方向上的投影向量为()A .1-B .12aC .12a - D .1【例4】已知平面向量a ,b 满足2=a ,()1,1b =,a b +=r r a 在b 上的投影向量的坐标为()A .22⎛ ⎝⎭B .()1,1C .()1,1--D .⎛ ⎝⎭【例5】已知O 为正三角形ABC 的中心,则向量OA 在向量AB 上的投影向量为()A .ABB C .12AB-D .12AB故选:C【例6】设向量a 在向量b 上的投影向量为m ,则下列等式一定成立的是()A .||a b m bb ⋅=⋅ B .2||a b m bb ⋅=⋅ C .m b a b⋅=⋅ D .ma b a⋅=⋅【题型专练】1.已知()1,2a = ,()1,2b =- ,则a 在b上的投影向量为()A .36,55⎛⎫- ⎪B .36,55⎛⎫- ⎪C .36,55⎛⎫-- ⎪D .36,55⎛⎫ ⎪2.如图,在平面四边形ABCD 中,120ABC BCD ∠=∠= ,AB CD =,则向量CD 在向量AB 上的投影向量为()A .2AB -B .12AB -C .12AB D .2AB 【答案】B【分析】根据图形求出向量AB 与CD的夹角,再根据投影向量的公式进行求解即可.【详解】延长AB ,DC 交于点E ,如图所示,3.已知向量()1,3a =,()2,4b =-,则下列结论正确的是()A .()a b a+⊥r r r B .2a b +=C .向量a 与向量b 的夹角为34πD .b 在a的投影向量是()1,34.已知()3,1a =-,()1,2b =,下列结论正确的是()A .与b同向共线的单位向量是⎝⎭B .a 与bC .向量a在向量b 上的投影向量为12,55⎛⎫ ⎪⎝⎭D .15a b b⎛⎫-⊥ ⎪ 5.关于平面向量,有下列四个命题,其中说法正确的是()A .若1,,120a b a b ===︒,则()2a b a+⊥r r r B .点()()1,1,3,2M N --,与向量MN同方向的单位向量为43,55⎛⎫- ⎪⎝⎭C .若20a b a b a +=-=≠ ,则+r r a b 与a b - 的夹角为60°D .若向量()()2,1,6,2a b =-= ,则向量b 在向量a 上的投影向量为2a-同方向的单位向量为6.己知空间向量||3,||2a b ==,且2a b ⋅=,则b 在a 上的投影向量为________.【答案】29a ##29a7.已知1a =,2b =,且()a ab ⊥+,则a 在b 上的投影向量为()A .b -B .bC .14b- D .14b【答案】C 【详解】因为()a a b ⊥+ ,所以()0a a b ⋅+= ,即220,0a a b a a b +⋅=+⋅= ,又因为1a = ,设,a b 的夹角为θ,所以1a b ⋅=-,a 在b 上的投影为:cos b a b a θ⋅=⋅ ,所以a 在b 上的投影向量为214cos b a b b b ba b θ⋅⋅=⋅=⋅- .故选:C8.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为ABC.D.【答案】A【解析】AB =(2,1),CD =(5,5),则向量AB 在向量CD方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==CD AB AB θ9.若向量,a b满足22a a b =+= ,则a 在b 方向上投影的最大值是AB.CD.【答案】B【详解】由题意2,22a a b =+= ,所以2||4164b a b +⋅+=,设,a b 的夹角为θ,则2||8cos 120b b θ++= ,所以212cos 8b bθ+=- ,所以a 在b 方向上投影为2123cos 2()(48b b a bb θ+=⨯-=-+,因为3b b +≥cos a θ≤ ,故选B.题型八:万能建系法解决向量问题边长为a 的等边三角形已知夹角的任意三角形正方形矩形平行四边形直角梯形等腰梯形圆建系必备(1)三角函数知识cos ,sin x r y r q q ==;(2)向量三点共线知识(1)OC OB OAl l =+-(对面女孩看过来).【例1】如图,在等腰梯形ABCD 中,2,3,4AB BC CD BC BE ==== ,则CA DE ⋅=()A .43B .154-C .558-D .6516-3315,0,,0,1,D C A ⎛⎛⎫⎛⎫【例2】如图,正八边形ABCDEFGH 中,若AE AC AF λμ=+()R λμ∈,,则λμ+的值为________.正八边形的中心【详解】、HD BF 所在的直线分别为x y 、轴建立平面直角坐标系,正八边形的中心M 点,3608⎛∠=∠=∠=∠= ⎝AOB COB AOH EOD 18045135-= ,所以22.5∠= BAC ,13522.5112.5∠-∠=-= HAB CAB ,所以∠HAC y 轴,、AOM MOC 为等腰直角三角形,2,则2=====OD OF OE OA OC ,()0,2F ,2===OM MC ,所以()2,2--A ,(2,-C【点睛】本题主要考查了平面向量坐标法解决几何问题,建立坐标系是解题的关键,还考查了向量的加法运算,考查方程思想及转化思想,属于中档题.【题型专练】1.如图,在梯形ABCD 中,//AB DC ,10AB =,7BC =,2CD =,5AD =,则AC BD ⋅=___________.则5,02A ⎛⎫- ⎪⎝⎭,532,2C ⎛⎫ ⎪ ⎪⎝⎭,15,02B ⎛⎫ ⎪⎝⎭,530,2D ⎛ ⎝953,22AC ⎛⎫∴= ⎪ ⎪⎝⎭ ,1553,22BD ⎛⎫=- ⎪ ⎪⎝⎭,AC BD ∴⋅ 故答案为:15-.2.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD = _________;PB PD ⋅=_________.【答案】(1).(2).1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.题型九:平面向量中的最值范围问题【例1】如下图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,3BCD π∠=,CB CD ==M 为边BC 上的动点,则AM DM ⋅的最小值为()A .83B .214C .114-D .133-【例2】ABC 是边长为4的等边三角形,点D 、E 分别在边AC 、BC 上,且DE BC ⊥,则DA DE ⋅的最小值为()AB .C .3D .-3则(0,0),(2,23),(4,0)C A B【例3】四边形ABCD 中,4AB =,60A B ∠=∠=︒,150D ∠=︒,则DA DC ⋅的最小值为()AB .C .3D .-3∴90,60DCB E ∠=︒∠= ,设CE x =,则3,DC x DA =∴()423cos150DA DC x x ⋅=-⋅⋅ 所以当1x =时,DA DC ⋅的最小值为【例4】如图,在梯形ABCD 中,//AD BC ,2AD =,9BC =,5AB =,cos 5B =,若M ,N 是线段BC上的动点,且1MN = ,则DM DN ⋅的最小值为()A .134B .132C .634D .352//AD BC ,32AD =,9BC =,5AB =(9,0)C ∴,∴3cos 5A xB AB ==,3,4A A x y ==9(3,4),(,4)2A D ∴,【例5】已知边长为2的菱形ABCD 中,点F 为BD 上一动点,点E 满足2BE EC =,3AE BD ⋅=-,则AF BE⋅的最小值为()A .0B .23C .43D .2【例6】已知向量a,b,c共面,且均为单位向量,0a b⋅=,则ab c++的最大值是()A B C1D1【例7】骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆A (前轮),圆DABE △,BEC △,ECD 均是边长为4的等边三角形.设点P 为后轮上的一点,则在骑动该自行车的过程中,AC BP ⋅的最小值为()A .12B .24C .36D .18故选:A【例8】已知AB AC ⊥ ,1AB t = ,AC t = ,若点P 是ABC ∆所在平面内一点,且4AB AC AP AB AC=+ ,则PB PC ⋅的最大值等于()A .13B .15C .19D .21【答案】A【解析】以题意,以点A 为坐标原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立如图所示的平面直角坐标系,所以点(1,4)P ,1(,0)B t,(0,)C t ,所以11(1,4)(1,4)(1)(1)4(4)PB PC t t t t ⋅=----=-⨯--⨯- =1174t t --17-≤=13(当且仅当14t t =,即12t =时取等号),所以PB PC ⋅ 的最大值为13.故选A .【题型专练】1.已知梯形ABCD 中,3B π∠=,2AB =,4BC =,1AD =,点P ,Q 在线段BC 上移动,且1PQ =,则DP DQ ⋅的最小值为()A .1B .112C .132D .1142.在ABC 中,902A AB AC ∠=== ,,点M 为边AB 的中点,点P 在边BC 上运动,则AP MP ⋅的最小值为___________.【答案】78【分析】建立平面直角坐标系,利用数量积的坐标运算求出3.ABC 为等边三角形,且边长为2,则AB 与BC 的夹角大小为120,若1BD =,CE EA =,则AD BE ⋅的。
2022年上海市15区中考数学一模考点分类汇编专题08 平面向量的线性运算一.选择题(共12小题)1.(青浦区)如果(、均为非零向量),那么下列结论错误的是()A.B.∥C.D.与方向相同【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵,∴||=2||;;=;与的方向相反,故A,B,C正确,D错误,故选:D.【点评】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解题的关键.2.(金山区)点G是△ABC的重心,设=,=,那么关于和的分解式是()A.+B.﹣C.+D.﹣【分析】根据向量加法的平行四边形法则得出=(+),再根据重心的性质得出=,即可求解.【解答】解:∵=,=,∴=(+)=(+),∵点G是△ABC的重心,∴==×(+)=(+).故选:C.【点评】本题考查三角形的重心,平面向量,平行四边形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(崇明区)如果向量与向量方向相反,且3||=||,那么向量用向量表示为()A.B.C.D.【分析】由向量与向量方向相反,且3||=||,可得,继而求得答案.【解答】解:∵向量与向量方向相反,且3||=||,∴3=﹣,∴.故选:D.【点评】此题考查了平面向量的知识.注意根据题意得到3=﹣是解此题的关键.4.(徐汇区)已知点C是线段AB的中点,下列结论中正确的是()A.=B.+=0C.=D.||=||【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵点C是线段AB的中点,∴;;;||=||,∴A,B,C错误,D正确,故选:D.【点评】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解题的关键.5.(黄浦区)已知,,是非零问量,下列条件中不能判定∥的是()A.∥,∥B.=3C.||=||D.=,=﹣2【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵,,∴,故A能;∵,∴,故B能;∵||=||,不能判断与方向是否相同,故C不能;∵,,∴=﹣,∴,故D能,故选:C.【点评】本题考查了平面向量,熟练掌握平面向量的定义与性质是解题的关键.6.(嘉定区)已知一个单位向量,设、是非零向量,那么下列等式中一定正确的是()A.B.C.D.【分析】根据单位向量的性质逐一判断即可.【解答】解:∵是单位向量,∴||=1,∴||=,∴A正确;∵||与的大小相同,但方向不一定相同,∴B错误;∵与大小相同,但方向不一定相同,∴C错误;∵与方向不一定相同,∴不一定等于,∴D错误,故选:A.【点评】本题考查了平面向量,熟练掌握单位向量的性质是解题的关键.7.(宝山区)已知为非零向量,=2,=﹣3,那么下列结论中,不正确的是()A.||=||B.C.D.∥【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵=2,=﹣3,∴||=||,=﹣,故A正确,B错误;∵=2,=﹣3,∴3=6﹣6=,故C正确;∵=2,=﹣3,∴=﹣,∴,故D正确,故选:B.【点评】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解题的关键.8.(杨浦区)已知和都是单位向量,下列结论中,正确的是()A.=B.﹣=C.||+||=2D.+=2【分析】根据单位向量的定义逐一判断即可.【解答】解:根据单位向量的定义可知:和都是单位向量,但是这两个向量并没有明确方向,∴A,B,D错误,C正确,故选:C.【点评】本题考查了平面向量中的单位向量知识,熟练掌握单位向量的定义是解题的关键.9.(虹口区)已知=7,下列说法中不正确的是()A.﹣7=0B.与方向相同C.∥D.||=7||【分析】根据平面向量的定理逐一判断即可.【解答】解:∵=7,∴=;与方向相同;;||=7||,故A不正确;B、C、D正确,故选:A.【点评】本题考查了平面向量的定理,熟练掌握平面向量的基本定理是解题的关键.10.(浦东新区)已知||=3,||=2,且和的方向相反,那么下列结论中正确的是()A.3=2B.2=3C.3=﹣2D.2=﹣3【分析】根据平行向量的性质即可解决问题.【解答】解:∵||=3,||=2,且和的方向相反,∴=﹣,∴2=﹣3,故选:D.【点评】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.11.(普陀区)已知与是非零向量,且||=|3|,那么下列说法中正确的是()A.B.C.D.||=3【分析】根据平行向量以及模的定义的知识求解即可求得答案【解答】解:A、由与是非零向量,且||=|3|知,与3只是模相等,方向不一定相同,不一定成立,故不符合题意;B、由与是非零向量,且||=|3|知,与3只是模相等,方向不一定相反,即不一定成立,故不符合题意;C、由与是非零向量,且||=|3|知,与3只是模相等,不一定共线,故不符合题意;D、由与是非零向量,且||=|3|知,||=3,符合题意.故选:D.【点评】本题考查了平面向量,注意,平面向量既有大小,又有方向.12.(松江区)已知=2,那么下列判断错误的是()A.﹣2=0B.C.||=2||D.∥【分析】根据平行向量以及模的定义的知识求解即可求得答案.【解答】解:A、由=2知,﹣2=,符合题意;B、由=2知,,不符合题意;C、由=2知,||=2||,不符合题意;D、由=2知,∥,不符合题意.故选:A.【点评】本题考查了平面向量,注意,平面向量既有大小,又有方向.二.填空题(共14小题)13.(崇明区)计算:2(3+2)﹣5=.【分析】根据平面向量的加减运算法则即可求解.【解答】解:原式=6=,故答案为:,【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.14.(杨浦区)已知的长度为2,的长度为4,且和方向相反,用向量表示向量=﹣2.【分析】根据与的长度与方向即可得出结果.【解答】解:∵的长度为2,的长度为4,且和方向相反,∴,故答案为:﹣2【点评】本题考查了平面向量的基本知识,熟练掌握平面向量的定义和性质是解题的关键.15.(虹口区)如果向量、、满足(+)=﹣,那么=(用向量、表示).【分析】根据平面向量的加减运算法则计算即可.【解答】解:∵(+)=﹣,∴,∴,故答案为:.【点评】本题考查了平面向量,熟练掌握平面向量的加减运算法则是解题的关键.16.(浦东新区)计算:3(2﹣)﹣2(2﹣3)=2+3.【分析】根据平面向量的加减运算法则即可求解.【解答】解:3(2﹣)﹣2(2﹣3)=6﹣3﹣4+6=2+3,故答案为:2+3.【点评】本题考查了平面向量的基本知识,熟练掌握平面向量的加减运算法则是解题的关键.17.(浦东新区)如图,已知平行四边形ABCD的对角线AC与BD交于点O.设=,=,那么向量关于向量、的分解式是﹣+.【分析】根据向量的加减计算法则即可得出结果.【解答】解:∵=,=,∴==﹣+,故答案为:﹣+.【点评】本题考查了向量的加减计算法则,熟练掌握向量的加减计算法则是解题的关键.18.(普陀区)已知是单位向量,与方向相反,且长度为6,那么=﹣6.(用向量表示)【分析】根据平面向量的性质解决问题即可.【解答】解:∵是单位向量,与方向相反,且长度为6,∴=﹣6,故答案为:﹣6.【点评】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(徐汇区)计算:2﹣(﹣4)=+2.【分析】根据平面向量的加减运算法则求解即可.【解答】解:2=2﹣+2=+2,故答案为:+2,【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.20.(徐汇区)如图,已知点G是△ABC的重心,记向量=,=,则向量=+..(用向量x+y的形式表示,其中x,y为实数)【分析】如图,延长AE到H,使得EH=AE,连接BH,CH.求出,证明AG=AH即可解决问题.【解答】解:如图,延长AE到H,使得EH=AE,连接BH,CH.∵AE=EH,BE=EC,∴四边形ABHC是平行四边形,∴AC=BH,AC∥BH,∵=+=+,∵G是重心,∴AG=AE,∵AE=EH,∴AG=AH,∴=(+)=+.故答案为:+.【点评】本题考查三角形的重心,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(嘉定区)已知向量、、满足,试用向量、表示向量,那么=.【分析】根据平面向量的加减运算法则求解即可.【解答】解:∵,∴2﹣2=3﹣3,∴=3﹣2,故答案为:3.【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.22.(静安区)如图,在△ABC中,中线AD、BE相交于点G,如果=,=,那么=+.(用含向量、的式子表示)【分析】由重心的性质可得,,利用三角形法则,即可求得的长,又由中线的性质,即可求得答案.【解答】解:在△ABC中,中线AD、BE相交于点G,∴点G为△ABC的重心,∴==,==,∴=+=+,∴=2=+.故答案为:+.【点评】此题考查了三角形重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了平面向量的知识.此题难度适中,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.23.(崇明区)如图,在平行四边形ABCD中,点M是边CD中点,点N是边BC的中点,设=,=,那么可用、表示为.【分析】先根据中位线定理求出,再根据平面向量的加减运算法则求出即可求解.【解答】解:如图,连接BD,∵点M是边CD中点,点N是边BC的中点,∴MN是△BDC的中位线,∴MN∥BD,且MN=,∴,∵=,=,∴,∴,∴,故答案为:【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.24.(奉贤区)计算:2(﹣2)+3(+)=5﹣.【分析】根据平面向量的加法法则计算即可.【解答】解:2(﹣2)+3(+)=2﹣4+3+3=5﹣,故答案为5﹣.【点评】本题考查平面向量,平面向量的加法法则,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(金山区)计算:(﹣2)+2=+.【分析】根据平面向量的加法法则计算即可.【解答】解:(﹣2)+2=﹣+2=+.故答案为:+.【点评】本题考查平面向量的加法法则,解题的关键是掌握平面向量的加法法则,属于中考常考题型.26.(青浦区)计算:3﹣2(﹣2)=.【分析】根据平面向量的加法法则计算即可.【解答】解:3﹣2(﹣2)=3﹣2+4=+4,故答案为:+4.【点评】本题考查平面向量,解题的关键是掌握平面向量的加法法则,属于中考常考题型.三.解答题(共9小题)27.(浦东新区)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,求向量(用向量、表示).【分析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答.【解答】解:(1)如图,∵DE∥BC,且DE=BC,∴==.又AC=6,∴AE=4.(2)∵=,=,∴=﹣=﹣.又DE∥BC,DE=BC,∴==(﹣).【点评】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.28.(杨浦区)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,试用、的线性组合表示向量.【分析】(1)根据相似三角形的性质得出等式求解即可;(2)根据平面向量的加减运算法则即可求解.【解答】解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∵DE=,∴AE=4;(2)由(1)知,,∴DE=,∵,∴=.【点评】本题考查了平面向量,相似三角形的性质等知识,熟练掌握平面向量的加减运算法则是解题的关键.29.(宝山区)如图,已知在四边形ABCD中,F是边AD上一点,AF=2DF,BF交AC于点E,又=.(1)设=,=,用向量、表示向量=,=.(2)如果∠ABC=90°,AD=3,AB=4,求BE的长.【分析】(1)根据平面向量的加减运算法则即可求解;(2)先证明△ABF∽△BCA,得∠ABF=∠BCA,从而得出△ABF∽△ECB,再根据相似三角形对应边成比例得出比例式求解即可.【解答】解:(1)∵AF=2DF,∴AF=,∵,∴,∴=,∵=,∴,∴=,故答案为:,;(2)∵=,∴AF∥BC,AF=,∴∠BAF=∠ABC=90°,∠AFB=∠CBE,∵AD=3,AF=2DF,∴AF=2,∴BC=8,在Rt△ABF中,BF==2,又∵,∴△ABF∽△BCA,∴∠ABF=∠BCA,∴△ABF∽△ECB,∴,∴,∴BE=.【点评】本题考查了平面向量,相似三角形的判定与性质,证明△ABF∽△ECB是解第(2)问的关键.30.(虹口区)如图,在平行四边形ABCD中,延长BC到点E,使CE=BC,联结AE交DC于点F,设=,=.(1)用向量、表示;(2)求作:向量分别在、方向上的分向量.(不要求写作法,但要写明结论)【分析】(1)利用三角形法则解决问题即可;(2)利用平行四边形法则解决问题即可.【解答】解:(1)∵四边形ABCD时平行四边形,∴AD=BC,AB=CD,AD∥BC,AB∥CD,∴==,==,∵CE=BC,∴=,∴=+=+;(2)如图,过点F作FM∥AD交AB于点M,,即为向量分别在、方向上的分向量.【点评】本题考查作图﹣复杂作图,全等三角形的判定和性质,平行四边形的性质,平面向量等知识,解题的关键是掌握三角形法则,平行四边形法则解决问题.31.(奉贤区)如图,在△ABC中,AC=5,cot A=2,cot B=3,D是AB边上的一点,∠BDC =45°.(1)求线段BD的长;(2)如果设=,=,那么=,=,=(含、的式子表示).【分析】(1)作CE⊥AB于E,设CE=x,AE=2x,在Rt△ACE中,由勾股定理得,x2+(2x)2=52,解方程即可解决问题;(2)先求出AD的长,再求出AD与AB的数量关系,根据平面向量的加减运算法则即可求解.【解答】解:(1)作CE⊥AB于E,设CE=x,∵cot A=,∴AE=2x,在Rt△ACE中,由勾股定理得,x2+(2x)2=52,解得x=±,∵x>0,∴x=,∴CE=,∵∠CDE=45°,∴CE=DE=,∵cot B=3,∴BE=3CE=3,∴BD=BE+DE=3+=4;(2)∵DE=,AE=2,∴AD=,∵BD=4,∴,即AD=,∵=,=,∴=,∴,∴==,故答案为:;;.【点评】本题考查了平面向量,三角函数的定义勾股定理等知识,熟练掌握三角函数的定义,平面向量的加减运算法则是解题的关键.32.(长宁区)如图,在梯形ABCD中,AB∥CD,且AB:CD=3:2,点E是边CD的中点,联结BE交对角线AC于点F,若=,=.(1)用、表示、;(2)求作在、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)【分析】(1)利用三角形法则,平行线分线段成比例定理求解即可.(2)利用平行四边形法则作出图形即可.【解答】解:(1)∵AB:CD=3:2,∴CD=AB,∴=,∴=+=+,∴DE=EC,CE∥AB,∴==,∴AF=AC,∴=(+)=+.(2)如图,在、方向上的分向量分别为,.【点评】本题考查平面向量,梯形的性质等知识,解题的关键是掌握三角形法则,平行四边形法则,属于中考常考题型.33.(金山区)如图,已知:四边形ABCD中,点M、N分别在边BC、CD上,==2,设=,=.求向量关于、的分解式.【分析】连接BD,先由得到MN∥BD、MN:BD=2:3,然后得到3=2,再结合平面向量的减法运算得到与和的关系,最后即可用含有和的式子表示.【解答】解:连接BD,∵,∴MN∥BD,,∴,∵,,∴,∴.【点评】本题考查了平行线的判定、平面向量的减法运算,熟练应用三角形法则是解题的关键.34.(普陀区)如图,已知AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,AB:CD=1:3.(1)求的值;(2)设=,=,那么=,=+(用向量,表示)【分析】(1)根据平行线的性质和相似三角形的判定证明△ABE∽△DCE和△BEF∽△BCD即可得出结论;(2)根据(1)中结论和平面向量的加、减运算即可得出结论.【解答】解:(1)∵AB∥CD,∴∠EAB=∠EDC,∠ABE=∠DCE,∴△ABE∽△DCE,∴==,∴CE=3BE,∵EF∥CD,∴∠BEF=∠BCD,∵∠B=∠B,∴△BEF∽△BCD,∴=,∵BC=BE+CE=BE+3BE=4BE,∴=;(2)由(1)知:EF=CD,∴==,∵+=,∴=﹣,∵=,∴,∵AB:CD=1:3,∴AB=CD,∴=,=+﹣=.故答案为:,.【点评】本题考查相似三角形的判定和性质以及平面向量,熟练掌握平行线的性质和平面向量的加、减运算是解题的关键.35.(青浦区)如图,在平行四边形ABCD中,点E在边AD上,CE、BD相交于点F,BF=3DF.(1)求AE:ED的值;(2)如果,,试用、表示向量.【分析】(1)由平行四边形的性质得AD∥BC,从而△BCF∽△DEF,利用相似三角形的性质得比例式,从而解得AE:ED的值;(2)先求出.再利用向量的加法可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BCF∽△DEF,∴,∵BF=3DF,∴.∴,∴.∴AE:ED=2;(2)∵AE:ED=2:1,∴.∵,∴,∵,∴,∵AD∥BC,∴,∵BF=3DF,∴.∴.∴,∴.【点评】本题考查了相似三角形的判定与性质,平行四边形的性质,平面向量,解决本题的关键是理解平面向量.。
平面向量题型1.基本概念判断正误:例2uuu uuu unr(1 )化简:① AB BC CDuuu uur uuir uur uuir uuu uur:② AB AD DC③(AB CD)(AC BD)uuu r uuur r uuur r r r rAB a, BC b, AC c,则|a b c|匚=.uuu uur uuu uuur uu且满足OB OC OB OC2OA则VABC的形状为(2)若正方形ABCD的边长为1,(3)若0是VABC所在平面内一点,()9 .与向量a =(12, 5) 平行的单位向量为12A. -131213 13 13C.空132或1312 1213 13 13A或131213,13unr①FDuurDAuurAF0uuu②FDunrDEunrEF0unr unr unrunr unr uujr③DE DA BE④AD BE AFuuu uuu uuu11.设P是厶ABC所在平面内的一点,BC BA2BPuuu A.PAuuuPBr0 B.uurPC uur PAr0 C.uuuPBuuuPCABC边ABBC CA上的则(12.已知点•设0 D.10 .如图,D E、F分别是中点,则下列等式中成立的有uur uuu uurPA PB PCA.2A( 3,1),B.13.设向量则向量d为()A.(2,6)B.(B(0,0),C( ..3,0) BAC的平分线uuuAE与BC相交于E,那么有BCuuuCE,其中等于C.-3D.2a=(1, —3), b=( —2,4), c=( —1, —2),若表示向量34a,4b —2c,2( a—c), d的有向线段首尾相接能构成四边形,—2,6) C.(2, —6)uurADD.( uuuxAB—2, —6)uuuyAC,贝U x _14.如图2,两块斜边长相等的直角三角板拼在一起,若图2uur15、已知O是厶ABC所在平面内一点・D为BC边中点.且2OAuur uur uur uurA. AO ODB. AO 2ODuuurOBC.UUITAOuiur rOC 0.那么(uuur3OD)unr D.2AOuuur0D题型3平面向量基本定理2.设平面向量a 3,5 ,b 2,1,则a 2b ()(A) 7,3(B) 7,7(C)1,7(D)1,uuuuuuuuur3.若向量AB (1,2), BC (3,4) ,则 ACA. (4,6)B.(4, 6)C.(2, 2)D.(2,2)平面向量的基本定理:如果e i 和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数i、 2,使a = 1e i + 2 e 2。
专题平面向量常见题型与解题指导Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#平面向量常见题型与解题指导一、考点回顾1、本章框图2、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法的运算法则及运算律。
3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。
4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
7、掌握正、余弦定理,并能初步运用它们解斜三角形。
8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
3、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。
对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。
本章的另一部分是解斜三角形,它是考查的重点。
总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。
考查的重点是基础知识和基本技能。
4、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。
2.1平面向量的实际背景及基本概念一、选择题1.【题文】下列各量中不是向量的是( ) A .浮力 B .风速 C .位移D .密度2.【题文】在下列判断中,正确的是( )①长度为的向量都是零向量;②零向量的方向都是相同的;③单位向量的长度都相等; ④单位向量都是同方向;⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤ D .①③⑤3.【题文】若AB AD =且BA CD =,则四边形ABCD 的形状为( ) A .平行四边形 B .矩形 C .菱形 D .等腰梯形4.【题文】已知:如图,D ,E ,F 依次是等边三角形ABC 的边AB ,BC ,CA 的中点,在以A ,B ,C ,D ,E ,F 为起点或终点的向量中,与向量AD 共线的向量有()A .个B .个C .个D .个5.【题文】下列说法正确的有( )①方向相同的向量叫相等向量;②零向量的长度为;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同. A .个 B .个 C .个 D .个6.【题文】给出下列说法:①AB 和BA 的模相等;②方向不同的两个向量一定不平行;③向量就是有向线段;④0=0;⑤AB CD >,其中正确说法的个数是( )A. B. C. D.7.【题文】若四边形ABCD 是矩形,则下列说法中不正确的是 ( ) A .AB 与CD 共线B .AC 与BD 共线C .AD 与CB 是相反向量 D .AB 与CD 的模相等8.【题文】下列说法正确的是( )A .有向线段AB 与BA 表示同一向量 B .两个有公共终点的向量是平行向量C .零向量与单位向量是平行向量D .对任一向量,aa是一个单位向量 二、填空题9.【题文】如图,正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有个(含AB ).10.【题文】给出下列四个条件:①=a b ;②=a b ;③与的方向相反;④0=a 或0=b ,其中能使a b 成立的条件有________.11.【题文】下列说法中,正确的是 . ①向量AB 的长度与BA 的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是相等向量,则A、B、C、D能构成平行四边形.三、解答题12.【题文】如图,D,E,F分别是△ABC的边AB,BC,CA的中点,在以A,B,C,D,E,F为起点和终点的向量中:(1)找出与向量EF相等的向量;(2)找出与向量DF相等的向量.13.【题文】如图,在△ABC中,D,E分别是边AB,AC的中点,F,G分别是DB,EC 的中点,求证:向量DE与FG共线.14.【题文】如图,EF是△ABC的中位线,AD是BC边上的中线,在以A,B,C,D,E,F为端点的有向线段表示的向量中请分别写出:(1)与向量CD共线的向量;(2)与向量DF的模相等的向量;(3)与向量DE相等的向量.2.1平面向量的实际背景及基本概念参考答案与解析一、选择题1.【答案】D【解析】根据向量的定义,从大小和方向两个方面考虑,可知密度不是向量.考点:平面向量的概念.【题型】选择题【难度】较易2.【答案】D【解析】由零向量与单位向量的概念知①③⑤正确.考点:零向量与单位向量.【题型】选择题【难度】较易3.【答案】C【解析】四边形ABCD中,∵BA CD=,∴BA CD,且BA CD=,∴四边形ABCD是平行四边形.又AB AD=,∴平行四边形ABCD是菱形.考点:相等向量.【题型】选择题【难度】较易4.【答案】C【解析】∵D,E,F分别为AB,BC,CA的中点,∴AD∥EF ,∴与向量AD共线的向量有AB,FE,EF,DA,BA,BD,DB,共7个.考点:共线向量.【题型】选择题【难度】较易5.【答案】A【解析】长度相等且方向相同的向量叫做相等向量,故①错误;长度为的向量叫零向量,故②正确;通过平移能够移到同一条直线上的向量叫共线向量,故③错误;零向量的方向是任意的,故④错误;共线向量方向相同或相反,⑤正确;平行向量方向相同或相反,故⑥错误,因此②与⑤正确,其余都是错误的,故选C.考点:相等向量,共线向量.【题型】选择题【难度】一般6.【答案】B【解析】①正确,AB与BA是方向相反、模相等的两个向量;②错误,方向不同包括共线反向的向量;③错误,向量用有向线段表示,但二者并不等同;④错误,是一个向量,而为一数量,应为0=0;⑤错误,向量不能比较大小.只有①正确,故选B.考点:向量的有关概念.【题型】选择题【难度】一般7.【答案】B【解析】∵四边形ABCD是矩形,∴AB CD且AB CD=,AD CB,∴AB 与CD共线,且模相等,AD与CB是相反向量,∵AC与BD相交,∴AC与BD不共线,故B错误.考点:共线向量,相等向量.【题型】选择题【难度】一般 8. 【答案】C【解析】向量AB 与BA 方向相反,不是同一向量;有公共终点的向量的方向不一定相同或相反;当=0a 时,aa无意义,故A 、B 、D 错误.零向量与任何向量都是平行向量,C 正确.考点:平行向量;单位向量. 【题型】选择题 【难度】较难二、填空题 9. 【答案】10【解析】正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有,,,,,,,,,AB BA OC CO OF FO CF FC DE ED ,共10个. 考点:平行向量. 【题型】填空题 【难度】较易 10.【答案】①③④【解析】因为与为相等向量,所以a b ,即①能够使a b 成立;=a b 并没有确定与的方向,即②不能够使ab 成立;与方向相反时,a b ,即③能够使a b 成立;因为零向量与任意向量共线,所以0=a 或0=b 时,a b 能够成立.故使a b 成立的条件是①③④.考点:平行向量. 【题型】填空题 【难度】一般11. 【答案】①【解析】对于①,向量AB 与BA 互为相反向量,长度相等,正确;对于②,因为零向量与任何向量平行,但零向量的方向是任意的,不能说方向相同或相反,所以②错误;对于③,两个有共同起点的单位向量,其终点不一定相同,因为方向不一定相同,所以③错误; 对于④,向量AB 与向量CD 是相等向量,则A 、B 、C 、D 可能在同一直线上,则A 、B 、C 、D 四点不一定能构成平行四边形,所以④错误.综上,正确的是①. 考点:平面向量的概念. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1),BD DA (2),BE EC【解析】(1)∵E ,F 分别为BC ,AC 的中点, ∴EFBA ,且12EF BA =,又D 是BA 的中点, ∴EF BD DA ==,∴与向量EF 相等的向量是,BD DA .(2)∵D ,F 分别为BA ,AC 的中点, ∴DFBC ,且12DF BC =, 又E 是BC 的中点,∴DF BE EC ==, ∴与向量DF 相等的向量是,BE EC . 考点:共线向量.【题型】解答题【难度】较易13.【答案】详见解析【解析】证明:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴DE BC,∴四边形DBCE是梯形.又∵F,G分别是DB,EC的中点,∴FG是梯形DBCE的中位线,∴FG DE.∴向量DE与FG共线.考点:向量共线.【题型】解答题【难度】一般14.【答案】(1),,,,,,BD BC EF DB CB FE DC(2),,,,FD AE EA EB BE(3),CF FA【解析】根据三角形中位线的性质及共线向量及相等向量的概念即可得到:(1)与向量CD共线的向量为,,,,,,BD BC EF DB CB FE DC.(2)与向量DF的模相等的向量为,,,,FD AE EA EB BE.(3)与向量DE相等的向量为,CF FA.考点:相等向量,平行向量. 【题型】解答题【难度】一般。
平面向量问题的类型与解法大家知道,平面向量问题是近几年高考的热点问题之一,每年高考必有一个五分小题,有时在大题中也会涉及到平面向量的内容。
从题型上,以选择题或填空题为主,难度系数为低档或中档,但近几年有向高档题目发展的趋势。
纵观近几年高考试题,归结起来平面向量问题主要包括:①平面向量几何运算问题;②平面向量坐标运算问题;③平面向量数量积的问题等几种类型。
各种类型问题结构上具有一定的特征,解答方法也各不相同。
那么在实际解答平面向量问题时,到底应该如何抓住问题的结构特征,快捷,准确地给予解答呢?下面通过典型例题的详细解析,来回答这个问题。
【典例1】解答下列问题:1、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB u u u r =( )A 34AB u u u r - 14AC u u u r B 14AB u u u r - 34AC u u u r C 34AB u u u r + 14AC u u u rD 14AB u u u r +34AC u u u r 【解析】【知识点】①平面向量几何运算的法则与基本方法;②向量共线的充分必要条件;③三角形一边上中线的定义与性质。
【解题思路】运用向量几何运算的基本方法和三角形一边上中线的性质,结合问题条件求出向量EB u u u r 关于向量AB u u u r ,AC u u u r 的式子就可得出选项。
A【详细解答】如图,Q ∆ABC 中,AD 为BC 边上的中线,BC uuu r =AC u u u r -AB u u u r ,∴AD u u u r =AC u u u r -DC u u u r =AC u u u r -12 E BC uuu r =12AC u u u r +12AB u u u r ,Q E 为AD 的中点,∴AE u u u r B D C =12AD u u u r =14AC u u u r +14AB u u u r ,⇒EB u u u r =AB u u u r -AE u u u r =AB u u u r - 14AC u u u r -14AB u u u r =34AB u u u r - 14AC u u u r , ⇒A 正确,∴选A 。
练习11 平面向量的概念一、单选题1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向量的有()A.4个B.5个C.6个D.7个【答案】A【解析】【分析】根据向量的定义即可判断;【详解】解:速度、位移、力、加速度4个物理量是向量,它们都有大小和方向.故选:A【点睛】本题考查向量的定义的理解,属于基础题.2.下列各说法:①有向线段就是向量,向量就是有向线段;②向量的大小与方向有关;③任意两个零向量方向相同;④模相等的两个平行向量是相等向量.其中正确的有( )A.0个B.1个C.2个D.3个【答案】A【分析】根据向量的基本概念分析即可.【详解】有向线段是向量的几何表示,二者并不相同,故①错误;②向量不能比较大小,故②错误;③由零向量方向的任意性知③错误;④向量相等是向量模相等,且方向相同,故④错误.故选:A.【点睛】本题主要考查了向量中的基本概念,属于基础题型.3.如图,在O中,向量,,OB OC AO是()A.有相同起点的向量B.共线向量C.模相等的向量D.相等向量【答案】C【分析】向量是既有大小又有方向的量,通过大小和方向两个方面逐一判断即可.【详解】解:,,OB OC AO起点并不全相同,故A错误;,,OB OC AO的方向均不相同,也不相反,故BD 错误;||||||OB OC AO===圆的半径,故C正确,故选C.【点睛】本题考查向量的概念,是基础题.4.下列说法正确的是( )A.有向线段AB与BA表示同一向量B.两条有公共终点的有向线段表示的向量是平行向量C.零向量与单位向量是平行向量D.对任一向量a,aa是一个单位向量【答案】C【分析】由平面向量的定义、平行向量及单位向量的可依次对选项判断.【详解】对于选项A,向量AB与BA方向相反,不是同一向量,故选项A错误;对于选项B ,有公共终点的有向线段的方向不一定相同或相反,故B 错误;对于选项C ,零向量与任意向量都是平行向量,故C 正确;对于选项D ,当0a =时,a a 无意义,故D 错误. 故选:C 【点睛】本题考查了平面向量的定义与平行向量的应用,属于基础题.二、多选题5.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC = C .AB DC >D .BC AD ∥【答案】BD【分析】 根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.6.下列说法正确的是( )A .长度相等的向量是相等向量B .若a b =,b c =,则a c =C.共线向量是在一条直线上的向量D.向量AB与CD共线是A,B,C,D四点共线的必要不充分条件【答案】BD【分析】根据向量的相关概念判断可得.【详解】解:相等向量不仅要求长度相等,还要求方向相同,故A说法错误;B说法显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故C说法错误;A,B,C,D四点共线⇒向量AB与CD共线,反之不成立,所以向量AB与CD共线是A,B,C,D四点共线的必要不充分条件,故D说法正确.故选:BD【点睛】本题考查向量的相关概念的理解,相等向量、共线向量,属于基础题.三、填空题7.下列结论正确的序号是_______.=;①若a,b都是单位向量,则a b②物理学中作用力与反作用力是一对共线向量;③方向为南偏西60°的向量与北偏东60°的向量是共线向量;④直角坐标平面上的x轴,y轴都是向量.【答案】②③【分析】根据题意,对题目中的命题进行分析、判断正误即可.【详解】解:对于①,a,b都是单位向量,则不一定有a b=,①错误;对于②,物理学中的作用力与反作用力大小相等,方向相反,是一对共线向量,②正确;对于③,如图所示,方向为南偏西60︒的向量与北偏东60︒的向量在一条直线上,是共线向量,③正确;对于④,直角坐标平面上的x 轴、y 轴只有方向,没有大小,不是向量,④错误;综上,正确的命题序号是②③.故答案为:②③.【点睛】本题通过命题真假的判断考查了平面向量的概念与应用问题,属于基础题.8.把同一平面内所有模不小于1,不大于2的向量的起点,移到同一点O ,则这些向量的终点构成的图形的面积等于__________.【答案】3π【解析】【分析】本题首先可以通过题意确定向量的终点构成的图形的形状,然后根据圆的面积公式即可得出结果.【详解】由题意可知,这些向量的终点构成的图形是一个圆环,圆环的小圆半径为1,圆环的大圆半径为2,所以圆环的面积为22213πππ⨯-⨯=,故答案为3π.【点睛】本题考查向量的定义的应用,考查圆的面积公式的使用,向量是有方向和大小的量,考查推理能力与运算能力,是简单题.四、解答题9.如图的方格由若干个边长为1的小正方形组成,方格中有定点A ,点C 为小正方形的顶点,且5AC =,画出所有的向量AC.【答案】见解析【分析】利用向量模长的几何意义,即可画出图形.【详解】AC ,∴C点落在以A为圆心,以5为半径的圆上,又∵点C为小正方形的顶点,∵||5根据该条件不难找出满足条件的点C,解析所有的向量AC,如图所示:【点睛】本题考查了向量模长的几何意义,轨迹问题,属于基础题.10.如图所示,平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集{}S A B C D O =,,,,,向量集合{|,,}T MN M N S M N =∈且,不重合,试求集合T 中元素的个数.【答案】12【分析】本题首先可根据题意明确集合T 中所包含的元素,然后根据平行四边形法则找出其中的相等向量,最后根据集合元素的互异性即可得出结果。
一、选择题1.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )ABC .12D .232.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )AB.C .10D .203.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-14.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .35.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于()A .B.2 CD6.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++= D .ED 在BC 方向上的投影为768.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b +B .3255a b + C .2133a b +D .1233a b +10.已知向量(6,4),(3,),(2,3)a b k c =-==-,若//a b ,则b 与c 的夹角的余弦值为( ) A .1213B .1213-C .45-D .4511.已知ABC ∆为等边三角形,则cos ,AB BC =( ) A .3-B .12-C .12D .3 12.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .0,3⎡⎤⎣⎦B .3,32⎡⎤⎢⎥⎣ C .3,3⎡⎤⎣⎦D .[]0,3二、填空题13.如图,正方形ABCD 的边长为2,E 是以CD 为直径的半圆弧上一点,则AD AE ⋅的最大值为______.14.在梯形ABCD 中,//AB CD ,1CD =,2AB BC ==,120BCD ∠=︒,动点P 和Q 分别在线段BC 和CD 上,且BP BC λ=,14DQ DC λ=,则AP BQ ⋅的最大值为______.15.已知向量(2,1)a =,(,1)b x y =-,且a b ⊥,若x ,y 均为正数,则21x y+的最小值是__________. 16.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 17.向量a ,b ,c 在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量a b λ+与c 共线,则||a b λ-=________.18.已知向量()()2,3,1,2==-a b ,若ma b +与2a b -平行,则实数m 等于______. 19.如图,在四边形ABCD 中,60B ∠=︒,2AB =,6BC =,1AD =,若M ,N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的取值范围为_________.20.已知平面向量a ,b 满足1a =,2a b -与2b a -的夹角为120°,则2b 的最大值是_______.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值.22.已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求向量a b +与a b -所成的夹角; (2)若k a b +与a k b -的模相等,求2αβ-的值(k 为非零的常数).23.设()2,0a →=,(3b →=.(1)若a b b λ→→→⎛⎫-⊥ ⎪⎝⎭,求实数λ的值;(2)若(),m x a y b x y R →→→=+∈,且23m =,m →与b →的夹角为6π,求x ,y 的值.24.如图,在正ABC ∆中,2AB =,P ,E 分别是BC 、CA 边上一点,并且3CA EA =,设BP tBC =,AP 与BE 相交于F .(1)试用AB ,AC 表示AP ; (2)求·AP BE 的取值范围.25.已知,,a b c 是同一平面内的三个向量,其中()1,2a =. (1)若35b =,且//a b ,求b 的坐标;(2)若2c =,且()()2a c a c +⊥-,求a 与c 的夹角θ的余弦值. 26.ABC 中,点()2,1A 、()1,3B 、()5,5C . (1)若D 为BC 中点,求直线AD 所在直线方程; (2)若D 在线段BC 上,且2ABDACDSS=,求AD .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果. 【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B AC y A =+-≥-=+=,即23AG ≥,当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.2.D解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.3.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。