1加减法的巧算
- 格式:doc
- 大小:18.00 KB
- 文档页数:2
⼀年级上册数学加减法速算与巧算 给孩⼦总结⼀些学习的技巧,也能够有效提⾼孩⼦的学习成绩与学习兴趣,对于数学学习也是如此,为了帮助孩⼦们更好的学习数学⼩编整理了⼀年级上册数学加减法算法,希望能帮助到您。
加法的神奇速算法 ⼀、加⼤减差法 1、⼝诀 前⾯加数加上后⾯加数的整数,减去后⾯加数与整数的差等于和。
2、例题 1376+98=1474 计算⽅法:1376+100-2 3586+898=4484 计算⽅法:3586+1000-102 5768+9897=15665 计算⽅法:5768+10000-103 ⼆、求只是数字位置颠倒两个两位数的和 1、⼝诀 ⼀个数的⼗位数加上它的个位数乘以11等于和 2、例题 47+74=121 计算⽅法:(4+7)x 11=121 68+86=154 计算⽅法:(6+8)x 11=154 58+85=143 计算⽅法:(5+8)x 11=143 三、⼀⽬三⾏加法 1、⼝诀 提前虚进⼀,中间弃9,末位弃10 2、例题 365427158 644785963 +742334452 ——————— 1752547573 ⽅法:从左到右,提前虚进1;第1列:中间弃9(3和6)直接写7;第2列:6+4-9+4=5 以此类推...最后1列:末位弃10(8和2)直接写3 注意:中间不够9的⽤分段法,直接相加,并要提前虚进1;中间数字和⼤于19的,弃19,前边多进1,末位数字和⼤于19的,弃20,前边多进1 减法的神奇速算法 ⼀、减⼤加差法 1、例题 321-98=223 计算⽅法:减100,加2 8135-878=7257 计算⽅法:减1000,加122 91321-8987= 82334 计算⽅法:减10000,加1013 2、总结 被减数减去减数的整数,再加上减数与整数的差,等于差。
⼆、求只是数字位置颠倒两个两位数的差 1、例题 74-47=27 计算⽅法:(7-4)x9=27 83-38=45 计算⽅法:(8-3)x9=45 92-29=63 计算⽅法:(9-2)x9=63 2、总结 被减数的⼗位数减去它的个位数乘以9,等于差。
专题1-加减法中的巧算小升初数学思维拓展计算问题专项训练(知识梳理+典题精讲+专项训练)一、常规运算。
1、加法交换律:两个数相加交换两个加数的位置,和不变.形如:a+b=b+a2、加法结合律:三个数相加,先把前面两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变.形如:(a+b)+c=a+(b+c)3、减法的运算性质:在减法中,被减数减去若干个减数,可以减去这些减数的和,差不变.形如:a-b-c=a-(b+c)4、以上运算定律、性质同样适用于多个加数或减数的计算中5、添去括号原则:在加减法运算中,如果给加号后面的算式添上或去掉括号,原运算符号不变;如果给减号后面的算式添上或去掉括号,其添上或去掉括号部分的运算符号要改变.即“+”变“-”,“-”变“+”二、加减法的巧算方法。
1、几个数相加,利用加法的交换律和结合律,将加数中能凑成整十、整百、整千等的一些加数交换左右顺序,先进行结合,然后再与其他的一些加数相加,得出结果.2、在加减法混合算式与连减算式中.运用“减法的运算性质”进行简算,在简算过程中一定要注意,“+”号和“-”号的使用.3、几个相近的数相加,可以选择其中一个数,最好是整十、整百的数为“基准数”,再把大于基准数的数写成基准数与一个数的和,小于基准数的数,写成基准数与一个数的差,将加法改为乘法计算.4、几个数相加减时,如不能直接“凑整”,我们可以利用加整减零,减整加零变更被减数用减数来间接“凑整”.【典例一】简算1000+999-998-997+996+…+104+103-102-101=()A、225B、900C、1000D、4000【分析【】将算式四个分为一组,然后找一下共有几组这样的数,然后根据规律解答.【解答】解:1000+999-998-997+996+…+104+103-102-101,=(1000+999-998-997)+(996+995-994-993)+…+(104+103-102-101),=4×225,=900.故选:B.【点评】此题也可这样理解:此算式除了1000和后三项103-102-101,其它每四个数字为一组,结果为0,因此此算式的结果为1000+103-102-101=1000+(103-102)-101=1000+1-101=900.【典例二】简算:899999+89999+8999+899+89【分析】四个加数都加1减1,化成整百、整千、整万、…的数,然后再计算;解:①899999+89999+8999+899+89,=(900000-1)+(90000-1)+(9000-1)+(900-1)+(90-1),=999990-5,=999985;【点评】考查了简便运算,灵活运用所学的运算律简便计算.一.选择题(共8小题)1.请用简便算法算出24683840++++⋯++的和是()A.210B.840C.420D.6302.333435363738394041(++++++++=)A.389⨯B.369⨯C.379⨯D.359⨯3.下列()组算式表示210.A.12345678910+++++++++B.1359111315171921+++++++++C.3579111315171921+++++++++D.135791113151719+++++++++4.下列与135********+++++++++结果相等的算式是()A.2264+B.25C.210D.2264-5.计算307294301297295304302296+++++++,可以先把每个加数都看作()计算.A.290B.300C.3106.和135791113151715131197531++++++++++++++++的结果相同的一项是()A.29B.2(98)+C.2298-D.2298+7.13579991357979(+++++⋯⋯+------⋯⋯-=)A.900B.400C.500D.3008.计算,10098969492908642-+-+-+⋯+-+-的结果是()A.0B.50C.99D.100二.填空题(共8小题)9.99999899799610001004100310021001++++++++=⨯.或91000⨯.10.求算式23456789+++++++的和,可以看成求一个梯形的面积,这个梯形的上底是,下底是,高是,计算梯形面积的算式是.11.13571315137531++++⋯⋯++++⋯⋯++++=12.计算2468101416182022+++++++++时,可以把这些加数分成组,每组的和是,计算结果是。
第1讲加减法的巧算在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
先讲加法的巧算。
加法具有以下两个运算律:加法交换律:两个数相加,交换加数的位置,它们的和不变。
即a+b=b+a,其中a,b各表示任意一数。
例如,5+6=6+5。
一般地,多个数相加,任意改变相加的次序,其和不变。
例如,a+b+c+d=d+b+a+c=…其中a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。
例如,4+9+7=(4+9)+7=4+(9+7)。
一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。
我们在进行计算时,要根据题目的具体情况灵活进行,选择合理的方法。
1.计算:(1)289+96 (2)64+2005(3)925-199 (4)487-302我们观察上面的算式可以发现:这几题参与运算的数中都有一个数接近整十、整百或整千,那么计算时,我们就可以根据这一特征,运用加减法的运算性质进行计算。
(1)中的96接近100,把96看作100来计算,这样就多加了4,最后再减去4,就得到正确的结果。
即:多加的要减去。
(2)中的接近,把看作来计算,这样就,最后再就得到正确的结果。
即:。
(3)中的接近,把看作来计算,这样就,最后再就得到正确的结果。
即:。
(4)中的接近,把看作来计算,这样就,最后再就得到正确的结果。
即:。
1计算:(1)276+1002接近,把看作来计算,这样就,最后再就得到正确的结果。
(2)985-398接近,把看作来计算,这样就,最后再就得到正确的结果。
第1讲加减法巧算【知识点汇总】加减法巧算原理:制造好算的数一、凑整:(1)如果两个数前面的符号相同,则将末位和为10的两个数放在一起算。
例如:−36和−164;36和164(2)如果两个数前面的符号不同,则将末位相同的两个数放在一起算。
例如:−36和136二、脱括号、添括号的原则:(1)括号前面是加号,脱去或添上括号不变号。
例如:36+(125+164)=36+125+164;136+(125−36)=136+125−36(2)括号前面是减号,脱去或添上括号变符号。
例如:136−(125+36)=136−125−36;164−(125−36)=164−125+36三、基准数法:(1)对于靠近整十整百整千的数,可以把这个数写成整十、整百、整千加上或者减去一个较小的数的形式。
例如:99+999+9999=(100−1)+(1000−1)+(10000−1)四、位置原理:例如:123+312+231−222=(1+3+2−2)×100+(2+1+3−2)×10+(3+2+1−2)×1【例1】(1)计算:73+119+231+69+381+17(2)计算:375−138+247−175+139−237【练习1】(1)计算:36+97+32+64+168+103(2)计算:2468−192+532+392−224+1234【例2】(1)计算:162−(162−135)−(35−19)(2)计算:163−(50−18)−(153−76)+(124−18)【练习2】(1)计算:123−(23−45)−(45−67)(2)计算:437−(200−83)+(63−53)【例3】(1)计算:280−24−76−65−35(2)计算:267−162+84−38−147+116【练习3】(1)计算:379−13−158−87−42(2)计算:981+145−181−323+55−77【例4】(1)计算:999+599+199(2)计算:1206−199−297−398【练习4】(1)计算:99+999+9999(2)计算:2345−299+398−1198【例5】计算:246+462+624−888【作业】1.计算:345+779+6552.计算:25−89+127+175+373+2893.计算:622−(357−78)−(600−457)4.计算:1001−97−396−2985.计算:3579−862−138−734+2346.计算:334+343+433−111。
加减法的巧算1、加法交换律:a+b=b+a2、加法结合律:a+b+c=(a+b)+c=a+(b+c)3、在连减或加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
如,a-b-c=a-c-b, a-b+c=a+c-b4、有小括号的,我们一起来研究:5+(8-2)=? 5+8-2=?所以:a+(b-c)=a+b-c10-(5+2) =? 10-5+2 =?,为什么得数不一样?怎样算才相等?10-(5+2) =,用字母表示这个规律。
10-(5-2)=? 10-5-2=?,为什么得数不一样?怎样算才相等?10-(5-2)=,用字母表示这个规律。
我们来总结:在加、减混合运算中,去括号时:如果括号前面是“+”,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”。
a+(b-c)=a+b-c a-(b+c)=a-b-c a-(b-c)=a-b+c 在加、减混合运算中,添括号道理一样:a+b-c=a+(b-c) a-b+c=a-(b-c) a-b-c=a-(b+c)例 875-364-236 1847-1928+628-136-641348-234-76+2234-48-24例512-382=(500+12)-(400-18)=500+12-400+186854-876-97= 6854-(1000-124)-(100-3)= 6854-1000+124-100+3练习:1、 42+71+24+29+582、 43+(38+45)+(55+62+57)3、 698+784+1584、3993+2996+7994+1355、 4356+1287-3566、 526-73-27-267、 4253-(253-158) 8、 1457-(185+457)9、 389-497+234 10、 698-154+269+78711、 699999+69999+6999+699+69+612、 200-(15-16)-(14-15)-(13-14)-(12-13)乘除法的巧算乘法交换律:a×b =b×a乘法结合律:a×b×c =(a×b)×c =a×(b×c)乘法分配律:(a +b)×c =a×c +b×c (a-b)×c =a×c-b×c商不变性质:a÷b =(a×n)÷(b÷n) (n≠0)=(a÷m)÷(b÷m) (m≠0)类似于乘法分配律:(a +b)÷c =a÷c +b÷c (a-b)÷c =a÷c-b÷c 类似于乘法交换律:a÷b÷c =a÷c÷b乘除法混合运算与加减混合运算道理相通:(1)无括号:a×b÷c =a÷c×b =b÷c×a(2)去括号:a×(b×c) =a×b×c a×(b÷c) =a×b÷ca÷(b×c) =a÷b÷c a÷(b÷c) =a÷b×c (3)添括号:a×b×c =a×(b×c) a×b÷c =a×(b÷c)a÷b÷c =a÷(b×c) a÷b×c =a÷(b÷c)两个数之积除以两个数之积,可以分别相除后再相乘。
貝御怔教学目标本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
知识点拨一、基本运算律及公式㈠加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a, b各表示任意一数.例如,7+8=8 + 7 = 15.总结:多个数相加,任意交换相加的次序,其和不变.%加法结合律:三个数相加,先把前两个数相加,再加上第三个数:或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c= (a+b) +c=a+ (b+c)JI1!1Oi b, c 各表不任意一数.例如,5 + 6 + 8= (5 + 6) +8 = 5 + (6+8)・总结:多个数相加,也可以把英中的任意两个数或者多个数相加,英和不变。
㈡减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前而的运算符号“搬家”. 例如:a—b_c=a_c_b, a—b+c=a+c—b,其中a, b, c 各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前而是"一”号,那么去掉括号后,括号内的数的运算符号“+”变为“一”,“一”变为如:a+ (b—c) =a+b — ca— (b+c) =a~b—ca— (b — c) =a—b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变:如果添加的括号前面是“一”,那么括号内的数的原运算符号“+”变为“一”,“一”变为“+”。
如:a+b—c=a+ (b—c)a—b+c=a— (b—c)a—b~c=a— (b+c)二、加减法中的速算与巧算㈠凑整法凑整法就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数i 再将各组的结果相加.① 借数凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.② 分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有 相同尾数的减数•"补数”就是两个数相加,如果恰好凑成整十、整百、整千••••••,就把其中的一个数叫做 另一个数的“补数”.㈡找“基准数”法当几个数比较接近于某一整数的数相加时,选这个整数为"基准数”(要注意把多加的数减去,把少 加的数加上)㈢数字拆分法根据位值原理将数字进行拆分,然后在凑整或者简单的提取公因数法进行计算。
加减法中的巧算【知识要点】1.加法交换律:两个数相加交换两个加数的位置,和不变 形如a b b a +=+2.加法结合律:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变 形如()()a b c a b c ++=++3.减法的运算性质:在减法中,被减数减去若干个减数,可以减去这些减数的和,差不变形如()a b c a b c --=-+4.以上运算定律、性质同样适用于多个加数或减数的计算中5.添去括号原则:在加减法运算中,如果给加号后面的算式添上或去掉括号,原运算符号不变;如果给减号后面的算式添上或去掉括号,其添上或去掉括号部分的运算符号要改变。
即“+”变“-”,“-”变“+” 【典型例题】例1.计算:39899899982+++分析:前三个加数分别比100、1000、10000少2,第四个加数恰好是3个2的和,所以,这题可把3个2分别与前三个加数相加,从而凑整达到简算 解: 39899899982+++()()()98299829998210010001000011100=+++++=++=例2.计算:36872293644716871636-----分析:减数中,229与471、364与1636的和是整十、整百、整千……的数,687恰好与被减数的末三位数相同,所以,这题可先分组凑整再计算 解: 36872293644716871636-----()()()3687687229471364163630007002000300=--+-+=--=例3.计算:103991039610510298++++++分析:当许多大小不同而又比较接近的数相加时,可选择其中一个数或与所有数都很接近的一个整十、整百、整千……的数作为计数的基础(叫做基准数)。
再找出每个加数与基准数的差,大于其准数的作为加数,小于基准数的作为减数,最后把结果算出来解: 103991039610510298++++++()1007313452210076706=⨯+-+-++-=⨯+=例4.计算:10099989796321+-+-+-+分析:这道题有加有减,如果暂不看头尾两个加数,就会发现中间都是先加后减并且加数与减数相差1,所以,这题可先把中间部分分组凑成若干个1,再与其余部分进行计算解: 10099989796321+-+-+-+()()()49110099989796321100491150=+-+-++-+=++个=【能力训练】A 卷1.437+5042.843-2073.958-5964.396+4995.795+1986.480+325+757.73+126+278.2000-36-8749.1846-324-481-19510.(435+823)+(77+565) 11.(348+94)+152 12.633+(367-706) 13.954-(354-128) 14.516-56-44-1615.1986-(272+986) 16.(24+37+15)+(16+45+13) 17.487-187-139-61 18.876-36-26-6419.723-(223-192)20.843-33-85+25B 卷1.7+39+43+61+8+322.300-123-75-773.145+263+55-1984.27+21+2304+73+795.13+76+275+111+7256.1325-(325-198)7.31+46+32+47+33+48+34+49 8.1328-4761÷9-5719.925-(125+99)10.524-185-115+27611.483-(995-817)12.(1051-489)+(1489-851)13.33979979997+++14.295+307-49815.39994+6997+491+78 16.4789-372-268-728-43217.6998+4995+997+107+91 18.199+202+195+201+196+201C 卷1.83+82+78+79+80+81+78+79+77+842.7+9+99+999+99993.2+19999994.1+2+3+4+……+16+17+18+19+205.2+4+6+……+14+16+186.96-95+94-93+92-91+……+4-3+2-17.5996+4997+3998+407+898.1+2+3+4+……+99+100+99+……+4+3+2+19.1-2+3-4+5-6+7-……+99-100+10110.5+55+555+5555+55555。
《加减法的巧算》活动设计一、活动内容加减法的巧算二、活动重点、难点掌握巧算的方法三、活动目标培养孩子们的巧算数学的能力,加快计算的速度四、准备材料讲义五、活动过程在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
加法具有以下两个运算定律:加法交换律:两个数相加,交换加数的位置,它们的和不变。
即a+b=b+a,其中a,b各表示任意一数。
例如,5+6=6+5。
一般地,多个数相加,任意改变相加的次序,其和不变。
例如,a+b+c+d=d+b+a+c=…其中a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。
例如,4+9+7=(4+9)+7=4+(9+7)。
一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。
把加法交换律与加法结合律综合起来应用,就得到加法的一些巧算方法。
1.凑整法先把加在一起为整十、整百、整千……的加数加起来,然后再与其它的数相加。
例1计算:(1)23+54+18+47+82; (2)(1350+49+68)+(51+32+1650)。
解:(1)23+54+18+47+82 (2)(1350+49+68)+(51+32+1650)=(23+47)+(18+82)+54 =1350+49+68+51+32+1650=70+100+54 =(1350+1650)+(49+51)+(68+32)=224;=3000+100+100=3200。
2.借数凑整法有些题目直观上凑整不明显,这时可“借数”凑整。
例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。
⼀年级上册数学加减法速算与巧算 给孩⼦总结⼀些学习的技巧,也能够有效提⾼孩⼦的学习成绩与学习兴趣,对于数学学习也是如此,为了帮助孩⼦们更好的学习数学⼩编整理了⼀年级上册数学加减法算法,希望能帮助到您。
加法的神奇速算法 ⼀、加⼤减差法 1、⼝诀 前⾯加数加上后⾯加数的整数,减去后⾯加数与整数的差等于和。
2、例题 1376+98=1474 计算⽅法:1376+100-2 3586+898=4484 计算⽅法:3586+1000-102 5768+9897=15665 计算⽅法:5768+10000-103 ⼆、求只是数字位置颠倒两个两位数的和 1、⼝诀 ⼀个数的⼗位数加上它的个位数乘以11等于和 2、例题 47+74=121 计算⽅法:(4+7)x 11=121 68+86=154 计算⽅法:(6+8)x 11=154 58+85=143 计算⽅法:(5+8)x 11=143 三、⼀⽬三⾏加法 1、⼝诀 提前虚进⼀,中间弃9,末位弃10 2、例题 365427158 644785963 +742334452 ——————— 1752547573 ⽅法:从左到右,提前虚进1;第1列:中间弃9(3和6)直接写7;第2列:6+4-9+4=5 以此类推...最后1列:末位弃10(8和2)直接写3 注意:中间不够9的⽤分段法,直接相加,并要提前虚进1;中间数字和⼤于19的,弃19,前边多进1,末位数字和⼤于19的,弃20,前边多进1 减法的神奇速算法 ⼀、减⼤加差法 1、例题 321-98=223 计算⽅法:减100,加2 8135-878=7257 计算⽅法:减1000,加122 91321-8987= 82334 计算⽅法:减10000,加1013 2、总结 被减数减去减数的整数,再加上减数与整数的差,等于差。
⼆、求只是数字位置颠倒两个两位数的差 1、例题 74-47=27 计算⽅法:(7-4)x9=27 83-38=45 计算⽅法:(8-3)x9=45 92-29=63 计算⽅法:(9-2)x9=63 2、总结 被减数的⼗位数减去它的个位数乘以9,等于差。