几何画板视频教程全集(完整)精编版
- 格式:docx
- 大小:22.90 KB
- 文档页数:4
《几何画板》教程——从入门到精通用几何画板做数理实验首先请下载安装好几何画板软件,打开几何画板,可以看到如下的窗口,各部分的功能如图所示:图1-0.1我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。
案例一四人分饼有一块厚度均匀的三角形薄饼,现在要把它平均分给四个人,应该如何分?图1-1.1思路:这个问题在数学上就是如何把一个三角形分成面积相等的四部分。
方案一:画三角形的三条中位线,分三角形所成的四部分面积相等,(其实四个三角形全等)。
如图1-1.2。
图1-1.2方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3。
图1-1.3用几何画板验证:第一步:打开几何画板程序,这时出现一个新绘图文件。
说明:如果几何画板程序已经打开,只要由菜单“文件” “新绘图”,也可以新建一个绘图文件。
第二步:(1)在工具箱中选取“画线段”工具;(2)在工作区中按住鼠标左键拖动,画出一条线段。
如图1-1.4。
注意:在几何画板中,点用一个空心的圈表示。
图1-1.4第三步:(1)选取“文本”工具;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5:注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做:用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。
如图1-1.6B 图1-1.5图1-1.6在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明第四步:(1)再次选取“画线段”工具,移动鼠标与点A 重合,按左键拖动画出线段AC ;(2)画线段BC ,标出标签C ,如图1-1.7。
注意:在熟悉后,可以先画好首尾相接的三条线段后再标上标签更方便。
B图1-1.7第五步:(1) 用“选择”工具单击线段AB ,这时线段上出现两个正方形的黑块,表示线段处于被选取状态;(2) 由菜单“作图”→“中点”,画出线段AB 的中点,标上标签。
《几何画板教程》课件目录1. 几何画板简介 (2)1.1 什么是几何画板 (3)1.2 几何画板的界面介绍 (4)2. 基本绘图工具 (5)2.1 点、线、圆、弧等基本图形绘制 (7)2.2 图形的编辑与操作 (8)3. 基本变换 (9)3.1 平移、旋转、缩放等基本变换操作 (10)3.2 利用坐标系统进行变换 (11)4. 图形的度量与计算 (12)4.1 测量长度、面积、体积等 (13)4.2 图形的代数运算 (14)5. 几何图形的动画与动态效果 (16)5.1 动画制作基础 (17)5.2 制作动态几何模型 (18)6. 交互式教学功能 (20)6.1 创建交互式课件 (21)6.2 利用教学模板进行教学设计 (22)7. 几何图形的性质与证明 (24)7.1 探究图形的性质 (25)7.2 使用几何画板进行数学证明 (27)8. 几何画板在教学中的应用 (28)8.1 制作几何教学课件 (29)8.2 利用几何画板提高教学效果 (31)9. 几何画板教案设计 (33)9.1 如何设计几何画板教案 (33)9.2 教案示例分析 (35)10. 课程设计与资源整合 (37)10.1 如何整合教学资源 (38)10.2 设计综合性几何画板课程 (39)11. 几何画板常见导致问题及解决方法 (40)11.1 常见导致问题 (40)11.2 解决方法 (41)12. 如何提高学习效率与兴趣 (42)12.1 提高学习效率的技巧 (43)12.2 激发学习兴趣的方法 (44)1. 几何画板简介几何画板是一款强大的数学教学软件,它以直观、生动的方式呈现几何图形,帮助学生更好地理解几何概念。
通过几何画板,用户可以创建、编辑和分析各种几何图形,如点、线、圆、多边形等。
几何画板还支持丰富的几何变换和计算功能,为教师和学生提供了一个便捷的数学工具。
直观易用:几何画板采用图形化界面设计,用户无需编程知识即可轻松上手。
完整版几何画板教程2篇完整版几何画板教程(上)导言:在学习几何的过程中,几何画板是一个非常重要的工具。
使用几何画板可以帮助我们更直观地理解几何概念,并通过绘图来解决各种几何问题。
本文将介绍如何使用完整版几何画板来进行几何学习和解题。
第一部分:几何画板的安装和准备工作几何画板通常是通过软件模拟实现的,因此我们需要在电脑上安装相应的软件。
目前市面上有很多几何画板软件可供选择,例如GeoGebra、Cabri等。
在选择软件时,可以根据个人喜好以及软件的用户评价来进行选择。
安装完软件后,我们需要进行一些准备工作,以便于更好地使用几何画板。
首先,我们需要熟悉软件的界面和操作方式。
不同的软件界面和操作方式可能会有所不同,但总体上都包括了绘图区域、工具栏和属性设置等功能区域。
通过熟悉这些功能区域,我们可以更方便地进行几何画板的操作。
其次,我们需要设置一些常用的画板属性。
这些属性包括画板的背景颜色、坐标轴设置、单位长度设置等。
通过设置这些属性,我们可以根据具体的几何问题来调整画板的显示方式,以便更好地展示问题的特点。
第二部分:基本绘图命令的使用在熟悉了几何画板的界面和操作方式后,我们可以开始学习一些基本的绘图命令。
这些命令包括绘制点、线段、直线、射线、角等几何元素。
绘制点是几何画板的基本操作,我们可以通过命令或者鼠标点击来进行绘制。
绘制点时,我们需要注意点的名称和位置,以便后续的绘图和问题解答。
绘制线段、直线和射线是我们进行几何推理和证明的重要工具。
通过绘制线段、直线和射线,我们可以直观地看到它们的长度、方向和位置关系。
在绘制线段时,我们可以通过指定两个点的位置来确定线段的长度和方向。
在绘制直线和射线时,我们可以通过指定一点和一直线上的另一点来确定直线和射线的位置和方向。
绘制角是进行角度测量和推理的基础。
通过绘制角,我们可以直观地看到角的大小、类型和位置关系。
在绘制角时,我们可以通过指定三个点的位置来确定角的大小和类型。
几何画板培训教程(全)教案内容一、教学内容本节课为人教版小学数学四年级下册第107页的内容,主要讲述几何画板的使用方法和技巧。
通过本节课的学习,让学生掌握几何画板的基本操作,能够自主绘制简单的几何图形。
二、教学目标1. 了解几何画板的基本功能,掌握其操作方法。
2. 能够运用几何画板绘制并识别基本的几何图形。
3. 培养学生的动手操作能力和空间想象力。
三、教学难点与重点重点:几何画板的基本操作方法和技巧。
难点:如何运用几何画板解决实际问题。
四、教具与学具准备教具:计算机、投影仪、几何画板软件。
学具:每人一台计算机,安装有几何画板软件。
五、教学过程1. 导入:教师通过向学生展示几幅精美的几何图形,引发学生对几何图形的兴趣,进而导入本节课的主题——几何画板的使用。
2. 基本操作:教师演示如何打开几何画板,如何绘制点、线、圆等基本图形,如何进行图形的移动、旋转和缩放等操作。
学生在教师的指导下,跟随操作,熟悉几何画板的基本功能。
3. 实践练习:教师布置任务,让学生利用几何画板绘制一个正方形,并尝试对其进行旋转和缩放。
学生在完成任务的过程中,巩固所学的操作方法。
4. 解决问题:教师提出问题,如何利用几何画板绘制一个圆的内接正方形。
学生分组讨论,思考解决问题的方法。
教师选取部分学生的作品进行展示和点评,引导学生掌握解决问题的方法。
六、板书设计板书内容:几何画板基本操作方法1. 打开几何画板2. 绘制基本图形(点、线、圆)3. 图形移动、旋转、缩放七、作业设计1. 请利用几何画板绘制一个三角形,并对其进行旋转和缩放。
答案:学生作业答案不唯一,只要符合要求即可。
2. 请利用几何画板绘制一个圆的内接正方形,并标注出各边的长度。
答案:学生作业答案不唯一,只要符合要求即可。
八、课后反思及拓展延伸本节课通过让学生动手操作几何画板,培养学生的动手操作能力和空间想象力。
在教学过程中,要注意关注每一个学生,及时解答学生的问题,确保学生能够掌握几何画板的基本操作。
如何制作课件是每一位想运用现代技术辅助教学的教师所关心的问题。
对于这个问题的回答我们有初学时的困惑,也有经过尝试后的一些思考,但在这里我们无法给您一个完整的答案。
谈到课件制作,首先是制作平台的选择。
现在可用于课件制作的软件平台很多,我们认为《几何画板》应该是数学教师的首选。
《几何画板》软件是由美国K e y Cu rr i c u l u m P r e s s公司制作并出版的数学软件,它的全名是《几何画板--21世纪的动态几何》。
1996年我国教育部全国中小学计算机教育研究中心开始大力推广“几何画板”软件,以几何画板软件为教学平台,开始组织“C AI在数学课堂中的应用”研究课题。
几年来,几何画板软件越来越多的在教学中得到应用。
它简单易学,功能强大。
几何画板动态探究数学问题的功能,使学生原本感到枯燥的数学变得形象生动,可以极大地调动学生学习的积极性。
学习数学需要数学逻辑经验的支撑,而数学经验是从操作活动中获得。
离开人的活动是没有数学、也学不懂数学的。
在老师的引导下,《几何画板》可以给学生创造一个实际“操作”几何图形的环境。
学生可以任意拖动图形、观察图形、猜测并验证,在观察、探索、发现的过程中增加对各种图形的感性认识,形成丰厚的几何经验背景,从而更有助于学生理解和证明。
因此,《几何画板》还能为学生创造一个进行几何“实验”的环境,有助于发挥学生的主体性、积极性和创造性,充分体现了现代教学的思想。
从这个意义上说《几何画板》不仅应成为教师教学的工具,更应该成为学生的有力的认知工具。
在当前大力开展素质教育和减负工作的情形下,把《几何画板》交给学生无异于交给学生一把金钥匙,是一件特别有意义的事。
本教材从用工具构图开始,对 4.04版本的几何画板的功能和基本操作进行了比较详细的介绍,其中也有不少精彩的范例,只要您用心领会,多动手操作,相信您能很快在几何画板的使用上得心应手的.教材中大部分资料来自(q i u s i r.c o m网站)画板联盟的《在线教程》,我只作了一些整理工作。
几何画板完全教程pdf一、教学内容本节课的教学内容选自人教版小学数学四年级下册第五单元《几何画板的使用》。
本节课主要介绍如何使用几何画板进行基本的绘图操作,包括绘制线段、射线、直线,以及圆和正方形等基本几何图形。
二、教学目标1. 学生能够熟练掌握几何画板的基本操作,绘制出各种基本几何图形。
2. 学生能够通过几何画板加深对数学几何图形概念的理解。
3. 学生能够运用几何画板进行简单的几何问题探究。
三、教学难点与重点重点:掌握几何画板的基本操作,绘制基本几何图形。
难点:理解并运用几何画板进行几何问题的探究。
四、教具与学具准备教具:多媒体教学设备、几何画板软件。
学具:每人一台计算机,安装有几何画板软件。
五、教学过程1. 实践情景引入:教师通过多媒体展示一些常见的几何图形,如线段、射线、直线、圆和正方形等,引导学生思考如何用工具绘制这些图形。
2. 基本操作学习:教师演示如何使用几何画板进行基本操作,如绘制线段、射线、直线,以及圆和正方形等。
学生在教师的引导下,跟随操作,体会几何画板的使用方法。
3. 随堂练习:教师给出一些简单的几何图形绘制任务,如绘制一条线段,一个圆,一个正方形等,学生独立完成,加深对几何画板操作的理解。
4. 例题讲解:教师通过几何画板演示一些基本的几何问题,如线段的和差,圆的周长和面积等,引导学生理解并掌握这些几何问题的解决方法。
5. 课堂互动:学生分组,使用几何画板解决一些简单几何问题,如相互绘制三角形,计算三角形的面积等,教师巡回指导,解答学生疑问。
6. 作业布置:学生利用几何画板绘制一个自己设计的图形,并计算其面积或周长,下节课分享。
六、板书设计板书内容主要包括本节课的主要内容和操作步骤,如线段的绘制方法,圆的面积计算公式等。
七、作业设计作业题目:利用几何画板绘制一个你喜欢的图形,并计算其面积或周长。
答案:学生根据自己的喜好绘制图形,并利用几何画板计算出面积或周长。
八、课后反思及拓展延伸课后反思:教师对本节课的教学进行反思,看是否达到了教学目标,学生是否掌握了几何画板的基本操作。
“几何画板5.05”入门培训教程赤峰市松山区当铺地学区中心校秦国祥老师们,大家好!受教育局电教站领导的委托,我今天与大家共同学习交流几何画板的基础知识。
我今天要讲的是面对画板初学者的,对于在座的画板高手而言,可能是“班门弄斧”,在交流中如有什么不当之处,请多多包涵和指教。
几何画板是一个通用的数学、物理教学平台,只要熟悉软件简单的使用技巧,就可以自行设计和编写出能够动态演示的教学课件,从而实现自己的教学思想,展示自己的教学水平,提高课堂教学效率。
可以说几何画板是最出色的教学软件之一。
下面就以最新版本“几何画板5.05”为例,通过先演示后操作或边演示边操作的形式,结合中小学数学简单课件的制作实例,学习掌握一些几何画板的基本操作知识。
一、零距离接触几何画板“5.05”1、“几何画板5.05”程序的安装。
请打开培训资料我一起安装这个程序。
2、几何画板工作界面的认识(见下图)几何画板的操作界面非常简洁,上面是它的标题栏、菜单栏,下面左侧是它的绘图工具箱,中间空白区就是我们绘制几何图形的工作区。
3、分别用画点工具、画圆工具、画线工具画一个点、一个圆和一条线段(或射线、直线)。
重要提示:我们在操作几何画板时,要养成把左手中指(或食指)放在电脑键盘“Esc”键上面的习惯,通过按“Esc”键,随时把鼠标切换到选择工具状态。
4、用选择工具选中刚画好的点、线、圆,再用“显示”菜单中的点型、线型和颜色项设置一下点、线、圆的表现形式,即点的大小,线的粗细、虚实以及它们的颜色。
注意:把鼠标移动到要选择的对象时,左上箭头变成向左的箭头时点击一下,对象就被选中了。
与其它应用程序不同的是,对象可以连续选择;选择后,在某一对象上再点一下,这个对象就被取消选择,在空白处点一下,所有选择对象就全部取消选择了。
5、用画线工具分别画一个任意三角形和一个任意四边形,然后给它们(包括上面画的圆)的内部填上颜色。
注意:在给图形填充颜色时,除了圆、圆弧和轨迹外,一定要按顺序选择点(顺时针或逆时针)。
几何画板教程几何画板怎么用
几何画板是一款功能强大的画笔设备,主要用于画画,制图,绘图和
计算几何图形等。
它具有分析和推理的功能,可以完成丰富多样的几何图
形绘制,并可以表示几何图形的结构,方便学习和推理。
使用几何画板时,首先应当按照图形的外形,找出需要绘制的点,根
据绘制的点找出它们之间的角度和距离,调整尺寸,并确定边界线的颜色。
接下来应该把原有的点,按照要求的样式连接起来,生成线条。
有时候需
要把图形移动到其他位置,可以把鼠标移动到绘制的图形边缘,按住鼠标
左键不放,可以把图形移动到其他位置。
在图形上画箭头时,除了可以使用几何画板的箭头符号,也可以使用
画笔工具,把原有的点连接起来,生成箭头图形。
在绘制曲线时,可以使用几何画板中的曲线图形工具,该工具集合了
曲线绘制的基本知识,可以根据用户指定的参数,自动根据曲线求出每一
个曲线的绘制数据,以及最佳路径,这样绘制出来的曲线才是最理想的。
另外,几何画板也可以完成几何形状的绘制,大多都是常见的几何形状,例如:正方形、长方形、圆形、椭圆形等,绘制时,可以在画板中选
择合适的几何形状,然后根据指定的尺寸。
几何画板教程第一章用工具作图第一节几何画板的启动和绘图工具的介绍1、启动几何画板:单击桌面左下角的【开始】按钮,选择【所有程序】|【GSP4.05】应用程序后,启动几何画板。
如图1所示,是打开一个几何画板文件的截图。
菜单栏工具框工作区状态栏图1几何画板的窗口是不是和其他Windows应用程序窗口十分类似?有控制菜单、最大/最小化以及标题栏,画板窗口的左侧是画板工具栏,画板的右边和下边可以有滚动条可以使小画板处理更大的图形。
画板的左侧是画板工具箱,把光标移动到工具的上面,一会儿就会显示工具的名称,看看它们分别是什么?它们分别是【选择箭头工具】、【点工具】、【圆规工具】、【直尺工具】、【文本工具】、【自定义画图工具】。
和一般的绘图软件相比,你会不会感觉它的工具是不是少了点?几何画板的主要用途之一是用来绘制几何图形。
而几何图形的绘制,我们通常是用直尺和圆规,它们的配合几乎可以画出所有的欧氏几何图形。
因为任何欧氏几何图形最后都可归结为“点”、“线”、“圆”。
这种公里化作图思想因为“三大作图难题”曾经吸引无数数学爱好者的极大兴趣从而在数学历史上影响重大,源远流长。
从某种意义上讲几何画板绘图是欧氏几何“尺规作图”的一种现代延伸。
因为这种把所有绘图建立在基本元素上的做法和数学作图思维中公里化思想是一脉相承的。
按住工具框的边缘,可随意拖动到画板窗口的任何位置,不同位置形状不同。
试一试,能否拖到某一个地方,工具框变成图2所示的形状?图2顾名思义,猜测一下它们都有何功能?:选择对象这是它的主要功能,当然还有其他:画点可以在画板绘图区任何空白的地方或“线”上画点。
“线”可以是线段、射线、圆、轨迹、函数图像:画圆只能画正圆不能画椭圆,是不是有点遗憾?(几何画板也能画椭圆,请看第二章):画线直尺工具当然用于画线段,还不仅仅如此!:加标注(即说明性的文字)或给对象标标签:自定义工具如果你觉得上述工具不够(如:不能直接画正方形),你可以定义新的工具选择某项绘图工具时,用鼠标单击一下该工具即可。
几何画板课件制作实例教程(5)中学数学——解析几何解析几何一直都是学生学习的难点,而现在用几何画板展示直线、圆、圆锥曲线非常方便;用几何画板可以演示曲线关于某点某线的对称图形,让我们一目了然;也可以用几何画板演示我们不很清楚的习题,使我们对某一类型的题有了深刻的认识和印象,提高学习效率,并为利用代数方法的计算提供了一个动画思维的过程。
目录实例51 直线的斜率实例52 两直线垂直实例53 网页探究型课件实例54 椭圆(双曲线)的第二定义实例55 椭圆长、短轴变化(一)实例56 椭圆长、短轴变化(二)实例57 椭圆工具(已知顶点和任意一点)实例58 发掘课本习题的作用实例59 半椭圆实例60 双曲线的第一定义实例61 双曲线的切线实例62 抛物线的切线实例63 抛物线的焦点弦实例64 圆锥曲线的统一形式实例65 与定线段成定张角的点的轨迹实例65 与定线段成定张角的点的轨迹实例65 与定线段成定张角的点的轨迹实例66 到定点的距离与定直线的距离的比值等于定值的点的轨迹实例67 与两定点的距离的比值等于定值的点的轨迹实例68 与两定点连线的斜率之积等于定值的点的轨迹实例69 与两定直线的距离之积等于定值的点的轨迹实例70 心形曲线的构造–249–实例51 直线的斜率【课件效果】直线的倾斜程度由倾斜角和斜率确定。
本实例效果图,如图2-169a 表示单击【旋转】按钮后的状态,直线CE 将从x 轴开始旋转到与直线CD 重合,同时出现倾斜角和斜率,如图2-169b 所示。
拖动点D ,可以改变直线CD 的倾斜度,拖动点C ,可以将直线CD 平移。
a b图2-169 课件效果图【构造分析】1.技术要点◆ 利用圆上的弧标记角◆ 【移动】按钮的使用2.思想分析本例构造的的目的用于理解直线倾斜角的范围及斜率的含义。
对于与x 轴相交的直线,可以通过移动交点将直线进行平移,为此构造了一个辅助圆。
选择【显示】|【显示所有隐藏】命令,显示出整个课件的制作过程,如图2-170所示;对于与x 轴平行的直线,读者可以自行构造。
几何画板视频教程全集(完整) 一、绘制几何图形和几何体[本章实例下载]
实例1 利用画点工具任意画三点
实例2 绘制线段
实例3 绘制过同一点的三条直线
实例4 绘制相同端点的三条射线
实例5 绘制三个同心圆
实例6 绘制共点圆
实例7 绘制圆在第一象限内的部分
实例8 绘制三角形的中线
实例9 绘制三角形的三条角平分线
实例10 绘制三角形的三条高
实例11 绘制相邻两边可以随意改变的平行四边形
实例12 绘制菱形
实例13 绘制梯形的中位线
实例14 绘制等腰梯形
实例15 绘制正三角形
实例16 绘制正五边形
实例17 绘制关于某条直线对称的两个全等的三角形
实例18 绘制关于某点对称的两个三角形
实例19 绘制相似三角形
实例20 绘制五角星
实例21 绘制正方体
实例22 绘制相邻三条棱可改变的三棱柱
实例23 绘制三棱台
实例24 绘制圆柱
实例25 绘制圆锥
实例26 绘制圆台
二、制作度量型课件[本章实例下载]
实例1 验证三角形的中位线定理
实例2 验证圆幂定理
实例3 验证三角形内角和
实例4 验证圆周角与圆心角的关系
实例5 验证同底等高三角形面积相等实例6 验证三角形的面积公式
实例7 验证勾股定理
实例8 验证两点间的距离公式
实例9 验证正弦定理
实例10 验证两平行线间的斜率关系实例11 验证余弦定理
实例12 绘制分段函数
实例1 二次函数的图像
实例2 指数函数的图像
实例3 对数函数的图像
实例4 函数y=sinx的图像
实例5 绝对值函数的图像
实例6 可变系数的二次函数的图像
实例7 可变系数的三角函数的图像
实例8 定义在区间[a,b]上的函数的图像实例9 椭圆的参数方程
实例10 星形线
实例11 圆锥曲线的统一方程
实例12 心脏线
实例1 两圆的位置关系
实例2 制作向量平移动画
实例3 制作切割三棱柱动画
实例4 三角形拼接成平行四边形
实例5 用定义画椭圆
实例6 绘制抛物线动画
实例7 研究指数函数图像与对数函数图像的关系实例8 绘制函数y=Asinx的图像
实例9 圆锥的形成
实例10 制作旋转旋转的正三棱锥
实例11 制作三棱锥的侧面展开图动画
实例12 制作圆柱侧面展开动画。